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Discriminative multi-resolution sub-band
and segmental phonetic model combination

P. McCourt, N. Harte and 8. Vaseghi

A joint discriminative [ramework for multi-resolution sub-band
HMMs and a hybrid segmenta] phonetic model is prosented
which combines independent likelihood scores using class
dependent weighiings (rained to a minimmn classification error
criteria, This successfully cxtends the performance on a phenetic
classification task to 76.3% compared to a full-band HMM score
of 69.2%.

Introduction: While the use of hidden Markov models (FHMMs) of
phonetically defined sub-word unils remains dominant in current
large vocabulary automatic speech recognition systemns, there has
been much recent explotation of altzrnative modelling strategics,
particularly ‘segmental’ modelling [1], Segment based models aim
to model sequences of feature veclors it order to acceunt for the
constraints of feature dynamics inherent in the specch production
process. The segment-based features introduced in [2] for example
give similar phoenetic classification performance 1o HMM mono-
phones trained on mel-frequency cepsiral coefficient (MICC) fea-
tures with first- and second-order time derivatives, Despite equal
classification scores, dilferences exist in the discriminative capahil-
ities of cach model set. Tn the cxample quoted, correct classifica-
tion by one model type and not the other oceurs for 12% of the
total number of test tokens. This suggests that exploiting the com-
plementary discriminative properties of alternative acoustic models
bears the potential for increased performance. Direct likelihood
combination from independent acoustic models representing the
same phonetic ¢lass is explored hete as a solution to combined
decoding decisions. Multi-resolution sub-band madelling and a
novel segmental madel are described which independently outper-
form MFCC trained HMMs, Lincar log-likelihood score combina-
tion based on an independence assumption is then demonstrated
to increase the phonetic classification performance over either
model set in isolation. Finally, discriminative training according 1o
the minimum classification crror (MCE) criteria [3] of a class-
dependent weight set for linear log-likelihood combination is dem-
onstrated to extend this performance advantage yot further.

Multi-vesolution  sub-band featwres and models; For standacd
MFCC features, cepstral analysis is performed on the mel-spaced
filterbank log energy vector E of cach shori-time analysis frame,
as expressed by the linear transformation X = AT, where A repre-
sents the DCT. The log energy vector B can be sphit into N sub-
vectors B = [E,T - BT - Ex']? (where T indicates matrix trans-
pose) such that each sub-vector E, effectively represents a grouped

bandwidth of log energies, Separate copstral analysis using appro-
priately dimensioned DCT transforms A, yields new sub-band
cepstral vectors X, Thus

(XT - X3 = (AT - (AENT]T ()

The usefulness of these features is based on the conjecture that
important cues for dizcrimination exist in the local spectral corre-
tates not captured by [ull band cepstra. Unlike much recent sub-
band modelling work, e.g. in (4], the sub-band models ttained on
these fealures are used to supplement rather than replace full band
models. Multi-resolution analysis implies feature extraction from
alternative sub-band decompositions,

T sucoessive MFGC
vactors stacked

M columris praserved as

apply DCT phonstic featurss

n

brancnaouas
i

e ——— M

0 M

Fig. 1 Transformaiion across segment of MFCC vectors to peld pho-
netic fearures

Sbag

¥ig. 2 Phonetie model twpology

FPhanetie segmental model: For a given unit of speech of length T
vectors, identified as a phonetic unit, the phonetic features for that
segment can be calculated as

Y = ApX ()

where X =[x, ..., Xory] 18 the sepment and Ay is a transforma-
tion depencient on Lhe segment length 7. Here Ag-is the 7 length
DCT used Lo encede the transitional dynamics across the duration
of the phonetic event. Y hence denotes the phonetic features for
that segment derived via a DCT on the stacked cepstral vectors X.
This is iMustrated in Fig. 1. The fist A columns of the malrix are
presorved as phonetic features for the complete segmient such that
a fixed length representation is yielded from variable length
sequences.

The phonetic model in Fig, 2 looks similar to the standard
menophone FIMM. Transilion probabilities between states are
omitted however. The beginning and end state mode! the conven-
tional cepsiral feature frames hounding the segment. The middle
or phonetic state is dedicated to modelling the segmental phonetic
features, Given a segment X =[xy, ..., 5] with known boundzaries,
the likelihood for the segment using the full phonetic model A=)
is capressed as

PKIAE0)) =

Plxlsy) - PIY(2,T — Vlspn) - P{xy|e,)  P(T|yH)
(3)

where ¥{(2, T - 1) are the transformed phonetic foatures with the
individual scores for the beginning frame, the phonetic fearure col-
urins and the end frame conditioned on the relevant state.
P71y} is a probability measure of a segment having a duration
of T frames calculated from a gamma distribution detived from
duration statistics.
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Model combinarion: Tet Af® denote independent phoneme models
for each band & of resolution decomposition », and A2 an inde-
pendent hybrid segmental model, for a phoneme J. The log-likeli-
hood scote of the scgment belonging to class 7 is

R .
4(X) = [Z ngrb) log; (Xgrb)‘/\g‘rb))

r=0h=1
+ wjtlsen] log (XE-”"?)lA‘Sv””)) (4)

Here B, identifies the number of bands in sub-band decemposition
level » (By = | represents the [ull band case). Tt is assumed that X
represents the complete sequence aof obsgrvation vectors for the
segment with the model-specific subsets appropriately identified as
shown, Minimum classification crror (MCE) teaining [3] of the
class-dependent weights 0" and @ is defined as follows, The
misclassification measure &(X) for an observation known to

belong to class & is given by
di(X) = —gn{X) + 6,(X) (5}

whete 1) represents the model with the nearest score, i.e. the most
confisable class, A smoothed continuous loss function is defined
as a sigmoidal function of d,(X) (¥ controls the slope of the sig-
moid function), i.e
1
X = —_— 6

Pk(x) ]—f—(‘-}""dk(x) ( }
Generalised probabilistic descont (GPD) token-by-token training
implies that the gradieni of the class-specific loss function drives
the parameter updales [3]. Thus the weight update equation is

ATW(X)
o (M

Atl o
W =W — &

where .7 is a model weight after the ath iteration, ol (X)w, is
the gradient of the locul loss function and e is a small positive
learning constant. The gradient function expanded according o
the chain rule of calenlus gives the update equations for the (7 + 1l
iteration below, where m € {rb, seg} identifies the model type.

Wi = T e (I (X)) — 1)) Togs (X A0)

(8a)
W™ = Wl (1, (XU (X) = 1) log (X [AG™)
{80}

Tahle 1: TIMIT classification results for model combination

Model combinalion Unity weights Trained weights
FB, $B;, 5B 70.4 72.8
FRB, SB;), SBy3, 5By 71.5 73.7
FB, SB2|, SBQQ, piiv; g 73.3 753
FB, SBy;, SBy, SBas, ses 74,5 76.3

Baseline scores: FB = 69.2%, seg = 70.6%

Experimentad vesults: Results are reported for phoneme classifica-
tion oy the core test set of the TIMIT database. This task remaing
important in assessing new acoustic modelling sirategies with
many recent results available for comparison. For the phonetic
segmental model, the segmental features arc calewlated from
MFECC vectors extracted with a window length of [5ms at frame
rate of 1,5ms, The first four columns of the trajectory matrix
{Fig. 1) were retained in lraining 48 mixture continvous density
Gaussian disiribulion models. Sub-band MFCCs for the multi-res-
olution models were extracted at a 10ms rate for 25ms frames and
supplemented by delta and delta-delta coefficients. IFor full band
MECCs, 13 coefficients are retained, with seven from cach sub-
bang (regardless of the number of bands). Continuous density
Gaussian HMMs with 20 mixtures were trained in each case.
Equal width sub-band decomposition in the mel-frequency scale
was applied, ie. for two bands the band ecdges arc (0, 2kHz,
79kHz) and for three bands {0, 0.9kHz, 2.7kITz, 7.9kHz). The
baseline scotre lor standard full-band HMMs is 62.2%. The pho-
netic segmental model itself improves on this giving a performance
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of 70.6. Table { gives the classification scores for various model
combinations for unily and diseriminative tained weightings. The
multi-resolution models for full-band (FB) combined with two
sub-bands (SB;), 8B,,) or three sub-bands or (SBy, 885, SBys)
are all scen to improve the performance compured to full-band
HMMs, The combination af the multi-resolution models with the
segmental (seg) models yiclds yet a further significant increase in
performance, This result indicates that likelihood combination
based on an independence assumption is effective in crealing a
Jjoint discriminative function that cxtends on the performance of
any model type in isclation. This improvement is greatest for the
segmental model combined with the full-band mode! and three
sub-band models. The use of discriminatively trained weights
cxtends the performanee advantage in all combination varialions.
Changes Lo the weights are of the order of or £3% from unity. As
weight updates are proportional to the independent model score
{eqn. R), the efTect of training the weights is o slightly modify the
relative dynamic ranges of the model scores. The best classifica-
tion rate of 76,3% achieved for a full-band model combined with
three sub-band models and the segmental model compares among
the best reported for this task.

Conclusions: A multi-resolution sub-band model and a novel seg-
mental phonetic model have been described which independently
improve the phenetic classilication performance compared to that
ol [ull-band HMMSs. It has been clearly demonstraled that a linear
combination of the log-likehood scores from these different acous-
tic modelling strategies is effective in facilitating a joint discrimina-
tive framework, The usc of class-dependent model weights trained
aceording to & minimum classification error objective successfully
extends this performance advantage. The highest phonetic classifi-
cation rate reported of 76.3% improves signilicanily on a full-
band HMM score of 69.2% and compares ameng the best recently
reported for this task,
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Q-factor measurement of nonlinear
superconducting resonators

X.S. Rao, C.K, Ong and Y.P, Feng

A novel methed, in which a multi-bandwidth measurement
technique and an extrapolation procedure are combined, is
proposcd for extracting the loaded Q-factor () with improved
accuracy [tom Lhe non-Lorentzian resonances of nonlincar
superconducting cesonators,

Introduction: The nonlinear microwave surlace mmpedance (Zg =
Ry + jXg) of high temperalure superconductors, ie. ils power
dependence Zg(F), 18 of interest both for practical applications
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