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Discriminative multi-resolution sub-band 
and segmental phonetic model combination 

P. McCourt, N. Hark and S. Vaseghi 

A joint discriininnlive rramcwork for multi-isoldon sub-band 
I-IMMs nnrl R hybrid scgmcntal phonetic model i s  prcrntcd 
which coinhiiics intlependent likclihood scoirs using class 
dcpcndcnt weighlings trained to a ininiiniiin classiticahn error 
criienn, This siiccessrully cxtcnds thc perlomimce on a ptioiictic 
d ~ s ~ i f i ~ ~ ~ i o n  task to 76.3% compared to R full-hand HMM YCOI’C 

of69.2%. 

Infrod~rction: While the usc of hidden Markov models (HMMs) of 
phonetidly defined sub.woi-d units remains dotininant in current 
large vocabulary automatic spccch recognition systems, tlicrc has 
been much recent cxploration of alternative  nodc cl ling straiegies, 
particularly ‘scgmcntal’ modelling [L]. Segnicnt based models sim 
to model sequences of featurc veclors in order to account for 1 1 c  
constraints of fedtorc dyiiimics inherent in the speccli production 
process. The scgmcnt-based fentiires iiitroduccd in [2] for exatiiple 
give similar plionclic classification performancc to HMM mono- 
phoncs trained on mel-frequency cepstral coefficient (MFCC) fca- 
tures with first- and second-order time derivatives. Dcspite equal 
classifiatioii mws, direrences exist in thc discriminative capabil- 
ities of each model set. In the erainplc quoted, correct classikr- 
tioii by one model type m d  not the other occiirs for 12% of tlic 
tolal number of test tokcns. This suggesis that exploiting the coni- 
pleinentary discriminative properties of alternative acoustic inodels 
h r s  tbc potential for incrensed perfarmancc Uirecl likelihood 
combination from independent acaiistic niodels representing thc 
same phonetic class is cxplored here as a solution to combined 
dccoding decisions. Multi-resolution sub-batid modelling and a 
novel segmenval model a1.e described which indcpcndeiitly outper- 
form MFCC trained HMMs. Liiicdr log-likelihood m r e  combina- 
tion based on nn independencc a~~uiiiptiori i s  then demonstratcd 
to increase the phonctic classiliaition performanm over either 
model sct in isolwtioii. Finally, discrimiilativc [raining sccordiiig to 
the minimum classification crror (MCE) criteria [3] of a c1as.s- 
dcpciident weight set for linear log-likelihood coinbindon is dcm- 
onstrated to extend this perronnance advmtagc yct further. 

&h/ti-re,dulion sub-halid features and m0dei.r: For standard 
MFCC features, ccpstral analysis is perforincd on lhe mel-spaced 
filtcrbaiik log energy vector E of cach short-tiiiie aiinlysis frninc, 
as express4 by the linear transformalion X = AE where A reprc- 
sents the DCT. Thc log energy vectar E can bc splil into h’ sub- 
vectors E = [KIT .” ..’ Exy]r (wherc Tindicates tnntrix trans- 
pox) such that each sub-vector E), cffcctivcly represents a grouped 

bantlwidlh of log energies. Separate ccpslral aiialysis using appro- 
printely dimensioned DCT transforms Ah yields new sub-band 
cepstwl vectors XI,. Thus 

The usefiiliiess of thesc Fcuturcs is based on the conjecture that 
important cues for discrimiuatioii exist in the local spectral corrc- 
lates not captured by full hand ceprtra. Unlikc inuch recent srtb- 
band inodelliiig work, e.g. in 141, the siib-baiid iodcls trained on 
thcsc fcatures are used to supplcmciit rather than replace full haiid 
models. Multi-resolution analysis implies feature extraction from 
alternativc sub-band decompositions. 

T successive MFCC M columns preserved as 
VBctors stacked V P l Y  DCT phonetic features 

I * 

m-m ’phon 

Pimelic stgmeritnl modal.. For a given unit of speech of lciiglh 7’ 
vcctors, i d c n l i f i e d  as a phonetic itnit, the plioiictic fcaiures for that 
segment can be colculatcd as 

Y = A2’X (2) 
where X = [x~, ..., X , + ~ - J  is the segment and AT is  a trimforma- 
tion depcndcnl on lhe segment length T. Hcre AT is thc 7’ length 
DCT used lo encode the transitional dyiianiics axass ihe durntioii 
of the phonetic cvcnt. Y haice denotes the phonetic fcaturcs for 
that segment dcrivcd via a DCT on the stacked cepsiral vcctors X. 
This is illustrated in Fig. 1, The fiist M columns of tlic matrix are 
prcserved as phonetic features for thc coiiiplele segment such that 
a fixcd length repreqentation is yicldcd from variable length 
sequences. 

The phonetic model in Fig. 2 luoks similar to the ictatidard 
monophone HMM. Transilion probabilities between siatcs are 
omitted however. Thc bcginning and end state model thc conve~i- 
tional ccpslral feature frames hounding thc scgmcnt. The middle 
or phonetic state i s  dediciitcd to iiiodelliog the segmental phoiictic 
katnres. Given a scgnicnt X = (XI, ..., xT] with known boundaries, 
the likelihood for the segment using the full phonetic model k(se.) 
is cxprcssd as 

P(XIX(“‘”)) = 

P ( X l l S * )  ’ P(Y(2 ,T  - l ) I . S p h ) .  P(XJ+,)  ’ P(Tly(”””)} 
( 3 )  

wlicrc Y(2, T - 1) are the transformed phoiictic fcaturcs with the 
individual scores for the boginning franc, the phoneiic reature col- 
umns and the end frame conditioned on the relevant state. 
f ‘ (Tl~drf ’ ) )  is a probability measure of a segment having a duration 
of T kames calculated from a gainina distribulioii derived froin 
duration statistics. 
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Model r u w h d o n :  1x1 h,)’’) denote indepzndetit phoneme models 
ror each band b or resoliition decompositioti Y ,  aiid k/-“@ 011 indc- 
pcndciit hybrid scgncntal modcl, for a phoneme j .  The log-likeli- 
hood score of the scgmeiit belonging to clnssj i s  

Model combilialion 
FR, SRa. S E X  

Here B, identifies the mimber of bands in sub-band dccompusition 
lcvcl r (Bo = 1 rcprcscnts the rid1 band case). Ti is assumed that X 
represent3 the complete sequence of oh~ei-v~ition vectors foi the 
segment with the madel-specific subscts appropriately identificd as 
shown. Miniirmm cliissific;rtion crror (MCE) training [3] or the 
class-dcpcnrlcn~ weights o$’‘] and w:)eg) is defined as follows. The 
midassilication measure 4(X) Tor ai1 observation known to 
belong to class k is given by 

Unity weights Trained weights 
70.4 72.8 

where q represents the model with the nearest score, i.e. thc most 
confusable class. A smoothd continuoiis loss function is dcfincd 
as ii sigmoidml function of d,,(X) (y controls thc slupc uf the sig- 
moid function), i.e. 

71.5 

Gcncrdiscd probabilistic dcsccnt (GPD) token-by-token training 
iinplics that thc gtadicnl of the class-specific loss fuiictioii drives 
the paraineter updates [3], Thus Ihe weight update eqiration i s  

73.7 

(7) 

where U,” is a model weight after the nth iteration, Zk(X) /q  is 
tlic gradient of tlic locd loss function and E is a small positive 
learning conskint. Tlic Wadicrit function cxpantlcd according lo 
thc c h i n  rulc of calculus givcs tlic u p h t c  ecliiations for the (n + l)th 
iteratioil below, where ni E {rb, seg} identifies the tnodel type. 

Tnhlc 1: TlMlT classific;~tion results for modcl coiiibinntiou 

.. .. .. 

Fl3, SEzl, SH22, seg 73.3 75.3 
FH, SU21, Sllz2, St323, seg 74.5 76.3 

Ilasclinc scvrcs: PU = 69.21/0, scg = 70.6%) 

~ 

73.3 
74.5 

scg = 70.6%) 

fihperimctiid wsuit.r: Results are reported for photieme classifica- 
tion on the core test set of the TIMIT datahse. This kisk remains 
important in asscssing IICW amustic modclling stratcgies with 
many r m n t  rcsiilts avwilable Tor comparison. For the phonetic 
segmental model, the segmental features iirc calculiitcd from 
MFCC vectors extracted with a window length of 15111s a1 framc 
rate of 1.Stnr. The first four coliimns of thc 1riijectoi.y matrix 
(Fig. I )  wcrc rctaiucd in training 48 mixture continuous density 
Gaussian distribution models. Sub-band MFCCs for the multi-res- 
oluiion iiiodels were extracted at R lOms rate for 25tns frames and 
supplemented by delta and rleltn-delta coefficients. For full bsnd 
MFCCs, 13 coefficients are retetained, with scveii from cnch sub- 
band (regardless of tlic numbcr of bands). Continuous density 
Gaussim I-IMMs with 20 iiiixtures were trained in each GI%. 
Equal width sub-band decomposition in the mel-frequency scale 
was applied, i.e. for two hands the band cdgcs arc (0, Zktlz, 
79kHz) and for tlirce bands (0, 0,9kHz, 2.7kTIz, 7.9kH7.). The 
baseline -re Tor standard full-hand HMMs is 69.2‘%. Tlic pho- 
netic segmental iiiodel itself improves a n  this giving a pcrforinancc 

of 70.6. Table 1 givcs tlic ckissificition scorcs for various model 
combinations for iiiiity and diseriiiiinativc Iraincd wcightings. The 
multi-resoliition models for fdl-band (FB) conibined with two 
sub-bands (SU,,: SU,,) or thrce sub-bands or (SU,,, SU,,, SB,,) 
mc d l  sccn to improvc thc pcrformanoc coinptrrcd to full-band 
HMMs. The coiiibinatioii of thc multi-resolution ~iiotlels will1 the 
scginciitd (seg) modcls yiclds yet a further significant incrcasc in 
pxformancc. This rcsult indicates that likelihood combilialion 
b a d  on an indcpcndcncc assiiinptioii is effectivc in crc;itiiip a 
joint discriminativc fiinction that cxtcnds on the pcrforinancc or 
any iiiodcl type in isolation. This iinpi-ovcmcnt is grccntcst lor the 
segmental model combined with the full-band inodel and threc 
sub-band tnodels. The use of discrimmtively trained wciglits 
cxtcnds thc pcrformiincc ;idv;intagc in all combin;itioii viriialioiis. 
Cliangcs lo the w i y h l s  a1.c or tlic oi.dcr of or S Y D  froin iiiiity. As 
weight updates are proportionnl 10 the intlepentleiit model score 
(eqn. 8). the effect of training the weights is to slightly modify the 
relative dynamic ranges of the model scores. The hest classifica- 
tion rate of 76.3’1/0 :ichicvcd for a tiill-band model combiiicd with 
thrcc sub-band mod& ;tiid the scgnicntd inodcl cnmp;ircs among 
thc bcst icportcd for this task. 

Conchiom: A multi-rcsnlation suh-hand model and ii novcl scg- 
riicntd phonctic rriodcl 1i;ive bcen dcscrikd whicli iiidcpcntlciitly 
iiiiprove t Ire phonclic classilicalion perfoiiirancc compared to that 
or rull-band IIMMs. II has bcen clearly dcmonstrakd that B linear 
cotnbinntioii or the loglikehood scores from these different BCOUS- 
tic inodelling strategies is effective in facilitating n joint discriiniiia- 
tive fraiircwork. The iisc of cl:rss-dcpcndent model weights trailid 
iiccortliiig to a minimum c1assific;itioir error objwtivc siimssfully 
extends this performance advantage. The highcst phonetic classifi- 
cation rate reporled or 76.3%) improves significmtly on a full- 
hand HMM score of69.2% arid wmpares among the hest rmiitly 
reported foi this tirsk. 
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Q-factor measurement of nonlinear 
superconducting resonators 

X.S. Rao, C.K. Ong and Y.P. Fcng 

A novcl incthod, iii wliicli n inulti-bandwidth mcnsuienient 
tcclitiiquc arid an extiagolation procctlurc arc coinhind, iu 
pioposed Fui cxtrlicling the londcd Q-factor (e,) with improvud 
ticcurncy I‘i-om Llie non-Larcnizinii iesoiimws oT tiontincar 
suprconducring rcsoi~atoi’s. 

Aitrorliiction: The nonlinear microwave surrace impzdance (2, = 
K.5 + jX’T) of high tcnqxridurc supcrcoiidiictors, i.e. its power 
dcpcndcncc Z,v (P), is of intcrcst both for practical applications 
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