
POSIX and the Verification Grand Challenge: a roadmap

Leo Freitas, Jim Woodcock
Department of Computer Science

University of York, YO10 5DD, UK

Andrew Butterfield
School of Computer Science and Statistics
Trinity College Dublin, Dublin 2, Ireland

E-mail: {leo,jim}@cs.york.ac.uk, Andrew.Butterfield@cs.tcd.ie

Abstract

We present a research roadmap for the second pilot
project in the Verified Software Grand Challenge on for-
mally verified POSIX file stores. The work is inspired by
the requirements for NASA’s forthcoming Mars Rover mis-
sions. The roadmap describes an integrated and compre-
hensive body of work, including current work, as well as
further opportunities for collaboration.

1. Introduction

Recent advances in theory and tool support have inspired
industrial and academic researchers to join up in an inter-
national Grand Challenge (GC) in Verified Software [22].
With tools backed by mature theory, formal methods are
becoming more effective, and their use is easier to justify,
not just as an academic or legal requirement, but as a busi-
ness case. That is, despite the initial extra effort, the gains
given by formal methods in terms of reliability, account-
ability, and precision, can save money. Also, as tool matu-
rity rises, levels of expertise from the user tend to decrease,
hence helping to de-skill the process and making it cheaper
to industrialise.

Work has started with the creation of a Verified Software
Repository (VSR) with two principal aims: (i) assembling
a collection of verified software components; and (ii) per-
forming industrial-scale verification experiments with the-
oretical significance and tool-support impact [11]. A re-
search roadmap for the entire challenge is hosted at SRI’s
Computer Science Laboratory (see qpq.csl.sri.com).

Related work The first VSR pilot project experiment
took place during 2006: the successful mechanisation of a
sanitised version of the first ITSEC Level 6 high-integrity
smart-card banking application: Mondex [49]. In that ex-
periment, seven groups used different theories and tools to
mechanise the specification of Mondex’s security proper-

ties, the protocol that implements these properties, and to
verify correctness of the protocol [52].

In the next section, we discuss the POSIX pilot project.
The roadmap structure is given in Section 3. After that,
we present the pillar of our work in Section 4. The POSIX
standard is discussed in Section 5, where a brief overview of
fault tolerance aspects via IBM CICS is given in Section 6.
Section 7 decribes current efforts to standardise flash mem-
ory devices. Some conlcusions are drawn in Section 8.

2. What makes a pilot project?

In [34], Joshi & Holzmann suggest a pilot project for the
GC. They characterise, motivate, and justify an interesting
verification mini-challenge. It breaks the GC into smaller
pilot projects, where each has the following features: (i) it
would be of sufficient complexity that traditional methods,
such as testing and code reviews, are inadequate to estab-
lish its correctness; (ii) it would be of sufficient simplic-
ity that specification, design and verification could be com-
pleted by a dedicated team in a relatively short time, say 2–3
years; and (iii) it would be of sufficient importance that suc-
cessful completion would have an impact beyond the verifi-
cation community, to both academia and industry.

At the Menlo Park workshop at SRI [48], the POSIX
file-store interface of the Linux Kernel [33] was sug-
gested as a candidate pilot project. The suggestion in-
volved a small subset of POSIX suitable for flash-hardware
with strict fault-tolerant requirements to be used by forth-
coming NASA missions. Due to the nature of the en-
vironment this small subset would run in, two impor-
tant robustness requirements for fault-tolerance were later
agreed [12]: (i) no corruption in the presence of unexpected
power loss; and (ii) recovery from faults specific to flash
hardware (i.e., bad blocks, bit corruption, wear-levelling,
etc). In recovery from power loss in particular, they require
the file system to be reset-reliable in the following sense: if
an operation Op is in progress at the time of a power loss,
then on reboot, the file system state will be as if Op either
has successfully completed or has never started.

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.35

153

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.35

153

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

POSIX file system The choice of the POSIX file-system
interface is interesting for various reasons: (i) it is a clean,
well-defined, and standard interface that has been stable for
many years; (ii) the data structures and algorithms required
are well understood; (iii) although a small part of an operat-
ing system, it is complex enough in terms of reliability guar-
antees, such as unexpected power loss, concurrent access,
or data corruption; and (iv) modern information technology
is massively dependent on reliable and secure information
availability. All these reasons go beyond the verification
community interest, as well as the intended initial use on
forthcoming NASA Mars Rover missions, as developed by
the Jet Propulsion Laboratory (JPL).

An initial subset of POSIX file systems [41] has been
chosen for the pilot project. There is no support for: (i)
file permissions; (ii) hard or symbolic-links; or (iii) entities
other than traditional files and directories (e.g., no pipes,
sockets, etc). Adding support for (i) is not difficult and may
be done later, whereas support for (ii) and (iii) is more dif-
ficult and might be beyond the scope of the challenge. Ex-
isting flash-memory file-systems, such as YAFFS2 [55], do
not support these features, since they are not usually needed
for the kinds of embedded systems with flash memory.

3. Roadmap structure

We present in this paper a roadmap for the POSIX pilot
project, containing an organised set of activities, interests,
documents, goals, and achievements. It has been compiled
in 2007, and represents the result of painstaking digging
through articles, standards, books, and other sources.

Over this period, in the various workshops and confer-
ence meetings, three important milestones came to life: (i) a
good synergy of interest with various researchers from dif-
ferent technical background; (ii) enough critical mass of
results in the form of models, theories, tools, and exper-
iments; and finally, (iii) requests from different sources
wishing to participate, but not knowing where to start, or
where to look for information. These led us to write this
paper. We tried to organise our achievements, as well as
all the work that remains to be done, in the hope that col-
leagues would go beyond being merely interested and start
to get involved in doing the work.

We have divided this paper in five branches, each tack-
ling different aspects of the mini-challenge. After consid-
erable search through documentation, external guidance,
and other sources, we decided to follow a guideline for
file systems given in an Intel architecture document [29],
which allowed us to divide the challenge into three aspects
layered orthogonally: (i) file store functionality; (ii) hard-
ware interaction; and (iii) fault tolerance. This architecture
follows POSIX conventions and is particularly useful for
flash-hardware devices, where Power Loss Recovery (PLR)

is guaranteed. Flash hardware is very relevant to space-
flight missions, since the devices have no rotating parts, but
the architecture can also be generalised to other types of
hardware, as well as other fault-tolerance concerns.

One important benefit of this orthogonality is that it al-
lows different groups applying varied techniques to collab-
orate while working in parallel. This makes the file store
project collaborative, in contrast to the previous Mondex
pilot project, which was essentially competitive [16]. Since
POSIX is a considerably bigger, more copmplex problem,
this seems the best way forward. At first, we intend to
work on a minimal file system that is enough for NASA’s
purposes, but the ultimate goal is much wider than this: to
achieve conformance certification (see Section 5).

In what follows, we present a roadmap following Intel’s
architecture. Our presentation of the roadmap does not por-
tray the chronological order in which the documentation
was found and the work was built-up. Instead, it provides a
logical and systematic view of our researches. For each sec-
tion, we present the work done so far, what remains to be
done, the known participating and interested parties, where
the remaining challenges lie, and so on. Our aim in this pa-
per is to distill our findings and the relevant references in a
logical and discernible way to inspire others to join us!

4. Intel’s architecture

In 2004, Intel released a document containing a set of
API’s for file systems that is layered at various levels of
abstraction [29], and is particularly targeted at flash hard-
ware. It contains the API’s signature (in C) with main data
structures, error codes, expected functionality, control-flow
algorithms, contracts among various layers, and so on. This
architecture clearly states a reference guide for file system
implementation that carefully considers varied aspects, such
as file store functionality, operating system interoperabil-
ity, real-time issues, hardware interfacing, fault tolerance
aspects at various layers, and so on. Unfortunately, to our
knowledge, a reference implementation for this architecture
is not freely available. Yet, based on the given level of de-
tail, this reference API is most likely to have been derived
from some implementation.

Our aim is to try to link our formal models created from
the use of the various verification techniques, so that a ref-
erence implementation can be constructed correctly through
the refinement calculus [39, 2]. We want to have a verified
file store that is correct by construction using refinement,
from requirements down to code, shaped according Intel’s
API’s, and taking into consideration both fault tolerance and
flash hardware aspects along the way.

These API’s are laid out in eight layers wrapped up at the
top-level to look and behave like the POSIX standard API.
We divided these layers into four categories, where each

154154

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

category has a set of important associated documents: (i) file
operations involving both the code for a file database, as
well as the actual file data itself; (ii) virtual blocks and their
operations, which maps physical into local blocks of vari-
ous sizes providing garbage collection and space manage-
ment; (iii) device independent and device abstraction oper-
ations; and (iv) device-specific operations.

Fault tolerance is handled by different techniques at dif-
ferent layers, where the property under concern is power
loss recovery. It is maintained through different transaction
processing schemes. For instance, redundant virtual (and
physical) areas are used at lower layers closer to hardware.

In what follows, we present a brief top-down description
of each layer, addressing both their functionality, their in-
teraction, and the way fault tolerance is added at each level.

Top-level POSIX API layer This layer represents the en-
try point of the execution flow for any file system operation.
It assembles the file system layer API’s below into standard
POSIX file system API’s [41].

As Intel put it [29, p.12], it is a “concise interface that
is POSIX-aware.” It is used “to implement all file and di-
rectory operations per the POSIX standard”, where “vari-
ances are documented and called out (...)”, since “certain
operating systems have already implemented” parts of these
artefacts. An implementation of the standard POSIX API’s
containing all available file system functionality is supposed
to wrap up the layered API’s described below.

Since different operating systems already have their own
file system requirements, and their own interfaces for varied
resources, an intermediate OS-dependent layer is needed in
order to accommodate the general file system core.

Real-time OS-wrapping and OS-resources translation
layers The real-time OS wrapping layer provides an
entry-point for operating system specific API’s, hence it is
not described in the Intel document. The description of the
layer allows room for OS-specific implementation needs.
Similarly, the OS-resources translation layer provides an
access point to required resources managed by the operat-
ing system, such as mutex semaphores, background threads,
hardware interrupts, error codes, and so forth.

Calls to API’s in these layers from within the main file
system layers means that allocated resources at the differ-
ent layers are allocated and released properly. For exam-
ple, when a flash array (i.e., the flash-hardware abstraction
within the low-level layer) is no longer needed because the
volume is unmounted, the device driver will be released; or
when an error is returned by the Intel API’s, it is translated
into the appropriate operating system error code, and con-
trol flow is transferred to the right thread of execution.

These OS-wrapping API’s are also responsible for telling
the file system layer if transaction processing is required or

not, and that appropriate permission checks have not failed
for the requested operation within the operating system ac-
cess control policies.

File system layer This is a generic interface into the file
system that understands the POSIX conventions, and which
is used by individual operating systems to communicate
with the file system core. The requirements of this layer
are pretty much determined by the POSIX standard spec-
ification. The later handles file system operations through
twenty available API’s, where calls are directed down to
the appropriate data object API. That involves: (i) locating
static file information, as well as the file data root; (ii) per-
forming the file system operation over the right data ob-
ject; (iii) updating both static and dynamic meta-data file
information, in the case of write-like operations; (iv) re-
turning appropriate results and/or error codes; and so on.
It also provides file and directory management in order to
keep track of open file handles within the file system that
are being used by the operating system.

Fault tolerance for PLR is added at this level by using a
transaction processing mechanism within the file database
in the data object layer below, so that multiple operations
per file handle are allowed until a commit or rollback takes
place. This is much like what was implemented for the
IBM CICS transaction processing system [24, 23], which
has some mechanised models available [14, 38, 56, 18], and
is further discussed below (see Section 6).

The layer also provides other user facilities like: search-
ing, moving, and renaming of files and directories; file ac-
cess, permission, and cache control; volume management
for partitioning and user quotas; multi-threaded access; cus-
tom set of API’s (packed within one API) for non-POSIX
functionality; and so on. Together with the twenty API’s,
there are eighty different return/error codes related to var-
ied aspects of the functionality, such as general file system
behaviour (21), specific flash file system behaviour (34), or
the interaction with the data object layer (25). Seven com-
plex data structures are defined, and they handle: (i) a file
allocation table; (ii) volume format; (iii) space usage in-
formation, such as fragmentation size granularity and al-
lowance; (iv) various initialisation options, such as max-
imum number of open files or path length; (v) types of
file; (vi) file and directory information, such as size, at-
tributes, and time-stamp; and (vii) storage/caching for open
file information like seek offset, and access (e.g., read-only,
read-write, etc) and share (e.g., share-read, share-write, etc)
modes. Together with file access and share modes, there are
other execution modes also defined for: file search, open,
and seek; RAM buffer usage; transaction operation sta-
tus; and non-POSIX I/O control sub-API commands.

155155

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

Data objects layer It provides a common structural or-
ganisation for different types of data, such as static and dy-
namic allocation information (e.g., file access table), file
data and directory pages, etc. In this way, it offers an in-
terface with 23 API’s for the file system components to
uniformly access and manipulate data. Among other func-
tionalities, it also: provides a uniform way of manipulating
these various types of data; joins together logical units of
data separate across multiple virtual blocks, which is impor-
tant to handle fragmented data or larger devices; accesses
appropriate logical units irrespective of their type; and so
forth. These enable the translation of read/write commands
within varied types of data into read/write commands within
multiple uniform logical units of data.

Power Loss Recovery is added at this level through par-
tial data write schemes. This allows transacted operations
on a file, where appropriate PLR steps are taken whilst writ-
ing the data, so that all partial data writes are successful. All
layers have initialisation and shutdown API’s to detect any
power loss issues (or indeed other fault tolerance character-
istics needed), and to perform the appropriate recovery op-
erations. Not surprisingly, each layer calls the layer below
in order to perform lower-level initialisation/shutdown.

To implement the PLR schemes, a set of extra PLR-
specific API’s is also provided (i.e., 10 of the 23 API’s),
where failure error codes provide the guarantee that no
change is made to persistent data.

Basic allocation layer It breaks up physical erase blocks
into logical units of equal size, whilst keeping track of in-
dividual units and their status. It also keeps track of the
used, free, and dirty (invalid/erasable) space within each
erase block. In this way, it manages available space within
a given volume, which includes the functionality needed for
volume formatting, mounting, and unmounting. One well-
known file system part within this layer is the file allocation
table, which is built in RAM.

It allocates units on request from the data object layer
above, one unit at a time (i.e., one execution thread at a
time), and is responsible for PLR of each logical unit. It
is indifferent to the type of data requested, since the data
object layer above performs requests in logical block units.
The way PLR schemes are implemented at this level de-
pends on the nature of the hardware being used. The spe-
cific details on how PLR is performed at the logical (vir-
tual) units level are similar to the way it takes place at the
physical (hardware) block level, where a translation layer
between logical and physical blocks/volumes is in place.

A series of logical/physical tables are managed and
maintained by this layer, which together with the reclaim
layer, are the most complex in the whole architecture de-
sign. For instance, for flash hardware, the logical block
table keeps track of the various wear-levelling schemes

needed to avoid early malfunction of flash hardware.
Requests are then passed to the flash interface layer be-

low. By doing so, basic allocation can take place regardless
of the kind of device being used. During initialisation, the
flash interface layer is called again in order to detect (or
build) a physical block table. There is also an interaction
with the reclaim layer, which is placed alongside the basic
allocation layer. Reclaim (or free-space garbage collection)
is performed by associating logical block numbers to each
physical erase block within the volume. Basic allocation
then divides and allocates particular units of equal and pre-
determined size for the data object layer above.

During reclamation, a backup mechanism is in place in
case of power loss; the recovery process restores physical
block information that would otherwise be lost. Error de-
tection and correction (EDAC) schemes are also incorpo-
rated, so that the file system can detect and recover from
corruption to the file system structure. For that, redundant
meta-data is physically stored.

This is certainly the most complex of all layers. It is
further divided into seven sub-layers, which we have sepa-
rated in three categories: (i) interfacing with the data objects
layer above, and the flash interface below; (ii) logical-to-
physical block mapping and management, which is a quite
delicate task, as it can severely affect the file system’s per-
formance; and (iii) physical block management, which in-
cludes compression and EDAC algorithms. Among these
layers there are around 15 API’s, 9 complex data struc-
tures representing the various mappings.Again, failure error
codes ensure no change has been made to persistent data.

Reclaim layer It is used for garbage collecting free space
from the dirty (invalid) space generated during file system
operations. It copies data from source (dirty) to destina-
tion (free) blocks, so that the source block is reclaimed as
free space for future write operations. This includes pre-
emptive reclaim before large file writes. These processes
are completely shielded from power loss. The employed
PLR mechanisms are also further protected with EDAC al-
gorithms. Moreover, it is here that the wear-levelling algo-
rithms used in flash hardware reside.

An erase block is reclaimed based on the amount of dirty
space it contains, which depends on the frequency that the
logical block is deleted or updated. As usage varies widely
among applications, it is impossible for the basic allocation
layer to optimally foresee what is to be reclaimed. Informa-
tion on free/dirty space is fed back to the basic allocation
layer to maintain the logical block information structure.

During reclamation, each physical erase block of a vol-
ume is assigned a unique logical block address that is stored
within the block itself, except for the destination block,
which will store data. Then, upon reclamation of a phys-
ical block, its logical block address is copied along with

156156

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

valid data to the destination block as part of the reclamation
process. Thus, the logical address “follows” the data of the
erase block it is being moved from. When the basic allo-
cation layer accesses the reclaim information, it must per-
form logical-to-physical block address translation. This is
a known bottleneck of the file system, since it is frequently
performed, and should be quite carefully implemented to
achieve optimal performance.

As reclamation is power-loss recoverable, the process of
copying valid data to some other free location before eras-
ing data must be carefully performed. A naı̈ve approach
would be to use the basic allocation RAM cache. This
is a bad idea for two reasons: (i) erase blocks tend to be
large, hence requiring much memory; and (ii) in the event
of power loss, all data in transit on the RAM would be lost.
Instead, this layer sets aside one logical block (i.e., the des-
tination block) to be used as temporary storage during the
reclaim process. This way, the reclaim destination block is
never used to store data, but only for the reclaim process.
When a source block is targeted for reclaim, the destination
block is erased and contains no data. Next, only valid data is
copied to the destination block at the right offsets. After all
valid data is copied, the original source block becomes the
next spare destination block. Also, a Reclaim-In-Progress
(RIP) write-flag is used per block to differentiate between a
block being written to a block being reclaimed. A table of
RIP flags is maintained by the basic allocation layer.

For flash hardware, the reclaim module performs another
fundamental task: wear-levelling. As flash physically de-
grades on writing, the reclaim layer also ensures that ade-
quate wear-levelling of physical blocks is in place in order
to maximise the flash usage life.

Due to its complexity, more information on the use of
the eight reclamation API’s is also available. These are
five specific state-machine-like algorithms on how to select,
idle, relocate, erase, and update different source/destination
blocks during reclamation, which includes handling the RIP
flag. External OS-resources are required, such as mutex
semaphores, and background daemon threads. Semaphores
are used to guarantee that only one reclaim per volume can
occur at a time, since there is only one spare destination
block per volume to perform reclamation; whereas a back-
ground thread is kept idle until the semaphore-protected
erase region is available for reclamation.

As both basic allocation and the reclamation process
seem to be amongst the most sensitive and complex tasks
within the file system core, a great degree of care ought
to be taken when implementing them. For instance, as
they are cental to file store performance, one challenging
extension would be to have multi-threaded reclamation al-
gorithms, which also consider wear-levelling of the flash
with EDAC of data in the process. In a survey of algo-
rithms and data structures for flash memories [21], vari-

ous options are explained, yet none exploit concurrency.
The same is true for patented industrial wear-levelling
algorithms (e.g., www.patentstorm.us/patents/
6732221-description.html). This is an exciting
area for research with direct industry impact and interest.

Flash interface layer It shields upper layers from
platform-specific low-level device drivers. Its five API’s
are quite simple: read, write, erase, initialise,
and shutdown. They are used to translate all basic allo-
cation and reclaim requests into simple read, write, or erase
calls that are platform/hardware specific. They communi-
cate with the appropriate device driver, hence linking the
file system with a particular hardware device. With 31 addi-
tional execution (result/error) codes, this layer reports back
to the file system information on the managed hardware,
such as block size and block count. These return codes are
then translated back into appropriate file system error codes.

For flash hardware, this layer translates file system vol-
umes into flash arrays, which are an abstract view of the
way the physical device is laid out (see Section 7). For file
system operations, it translates the basic allocation layer op-
erations into physical flash device operations, such as page
programming or physical block erasure [26, 5, 6].

Any system resources obtained during these hardware-
related operations are released. For instance, when a vol-
ume is mounted, the corresponding device driver will be
loaded. That also means that initialisation and shutdown of
hardware, which may include hardware PLR and other fault
tolerance schemes, are performed.

Low-level hardware layer This represents the device
driver directly manipulating the hardware. To ensure in-
tegrity, this is the only available access point to hardware.
Depending on the platform and device type, the driver be-
haviour (and implementation) may vary.

Hardware interaction obviously depends on the device.
For flash, there is usually the ability to perform read-while-
write operations, where specific quality-of-service timing
constraints are in place [26, Ch. 4]. For instance, it is pos-
sible for some devices to erase a physical block, while exe-
cuting code from another physical block in the same device.

Such operations are performed either from the hard-
ware itself or via software. For hardware read-while-write,
disabled interrupts and scheduling ensure proper comple-
tion of the command cycles [26, Ch. 7], whereas software
read-while-write operations also work with interrupts and
scheduling, but uses flags indicating the mode the flash ar-
ray is in, to control operation suspension and pool for hard-
ware interrupts requests.

Other functionalities encompass: creating virtual flash
devices to allow a single physical device to be broken into

157157

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

multiple virtual devices, and vice-versa (i.e., multiple phys-
ical devices into single virtual device); interleaving flash de-
vices across a data bus for improved data throughput; strip-
ing data across multiple (virtual) devices, hence allowing
multiple writes to take place concurrently; physical block
locking; etc. These features are particularly useful to as-
semble large amounts of data, and to considerably increase
device’s performance.

The nine low-level API’s operate over nine general flash-
device structured data types directly linked with the kind of
hardware being handled, where 26 error codes specific to
flash are used to provide detailed information back to the
flash interface layer above. For each API, a detailed control-
flow algorithm and finite state machine is given.

As Intel is involved in standardising flash hardware, we
expect to formally relate the finite state machines from [26,
Ch. 7], with the algorithms and control-flow diagrams pro-
vided in the architecture document. For instance, one op-
tion would be to use process algebras like CSP [43] to anal-
yse these information/control flow diagrams. One success-
ful story of such attempt is an automated technique devel-
oped in Brazil and used by Motorola, which goes from a
requirements table, through state machine diagrams, down
to a CSP process that can be model checked [7].

5. POSIX and the Open Group

POSIX is the Portable Operating System Interface: an
open operating system standard interface produced by IEEE
that is recognised by both ISO and ANSI. It is widely ac-
cepted word-wide, with UNIX and Linux being the best-
known implementations (see www.unix.org).

A reference implementation can be either POSIX con-
forming or POSIX compliant. The former means the imple-
mentation adheres in full to the published standard, where
various optional subsets may also be included, such as
threads or real-time extensions. The latter means the stan-
dard is partially adhered to, where documentation must be
available showing which features are supported. Another
terminology used is POSIX-aware, which means that al-
though an implementation does not conform (or comply)
to POSIX, it uses some known POSIX ideas or API’s.
Certification for conformance is granted by accredited
and independent certification authorities, and is managed
by IEEE (get.posixcertified.ieee.org) and the
The Open Group. The latter is the “vendor-neutral and
technology-neutral” consortium responsible for “develop-
ing a range of services that provides strategy, management,
innovation, standards, certification and test development”.
It was through them that we first got in touch with an in-
valuable source for POSIX [33].

The certification process is quite lengthy, and various
stages are involved. There are also different levels of certi-

fication. The whole of POSIX is formed by around 1,800
API’s with over 4,000 pages of documents. The process for
the current IEEE 1003.1-2003 version involves a quite im-
pressive test-suite (see get.posixcertified.ieee.
org/docs/testsuites.html) with around 23,000
test cases, which need to succeed in under 12 hours of
execution. Certification can take up to eight months, yet
it usually takes two, and is valid for twelve months. At
present, the certification process costs between US$5k–18k,
depending on various factors, such as being a new certi-
fication or a renewal, being a product family or platform-
specific certification, and so on.

During the early phase of the standardisation process, the
POSIX API’s requirements [28] (done in July 1995) were
formally specified in [42] using the Z notation [47] (in Au-
gust 1995). That is, an abstract specification capturing these
requirements in Z was created from the set of informal re-
quirements to show how they were sometimes ambiguous
or contradictory. This work is the model for the top-level
POSIX API wrapping-up layer discussed above. This Z
specification served as a guideline for the actual version of
the POSIX standard (from February 1998), with a revised
version published in 2003 [33]. In fact, the Z specification
from 1995 [42] was inspired by an earlier, even more ab-
stract formal definition of UNIX file systems given in [40].
We mechanised [42] finding some interesting results. Due
to lack of space, we will not discuss this further; some of
the results are available in [20].

This was the starting point of our bibliography archaeol-
ogy work and it took place in the end of 2006. In the re-
mainder of this section we present our results on this front.

UNIX filing system In [40], Morgan & Sufrin described
an abstract specification of a UNIX filing system given by
few data structures and operations of files and file storage
using the Z notation [47] (the M&S specification). It is di-
vided into three parts comprising: (i) file storage database
with file creation and data manipulation operations; (ii) file
descriptors (or channels) used for random access of file data
(i.e., a file access table); and (iii) directories and links. Al-
though it does not completely model POSIX behaviour,
such as error codes or file permissions.

This was our starting point for the functional require-
ments for the subset of POSIX that is within JPL’s interest.
As the POSIX standardisation body chose the Z notation,
and we are quite familiar with Z and its tools, we followed
suit and started the work in Z as well. Nevertheless, this is
not necessarily a requirement of the project, and other for-
malism such as B [45] could be used as well.

We took the file database and the directories of the M&S
specification and mechanised them using the Z/Eves theo-
rem prover [44]. That meant parsing, typechecking, con-
sistency checking (e.g., making sure that partial functions

158158

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

are applied within their domains), adding automation lem-
mas, and so on. In this process alone, we found (and fixed)
some inconsistencies from the original M&S work. This re-
sulted in two MSc. theses [19, 30]. For the file database,
we proved a data refinement to a Z hash map of the fil-
ing operations using an extended set of forward simulation
laws [51, Ch. 16-18], which include refinement of the API
interface [8]. Hash maps were considered, as it we have ev-
idence that industry-scale file systems use such data struc-
ture. This resulted in a series of publications [15, 13, 17].

Since a Z hash map is a result in itself, and since the Ver-
ified Software Repository is as much about verified com-
ponents as verified experiments, we did some extra work
on exporting (informally, but systematically) some of the Z
hash map invariants and operation pre and postconditions
as JML [3] annotations for Java HashMaps [15]. These an-
notations can be used to perform further checks on the Java
code, such as static analysis with ESC/Java [9], or func-
tional correctness verification with JACK [4], loop/invariant
detection with LOOP [25], and so on. This turned out to be
helpful in prototyping a flash file store for Java. The exer-
cise was also useful in foreseing a possible link between Z
and JML, as well as extending the JML mathematical type
system with the Z mathematical toolkit.

And there is still plenty of work to do. We would like
to refine both the file seeking and directory structure down
to code in a similar fashion. There is ongoing work in de-
scribing the directory structure part of M&S using Event-
B and the RODIN tools (www.event-b.org). We also
plan to refine it to a B+-tree specification [10] written in
VDM [31], which we think is another quite interesting ex-
ercise. This B+-tree specification shows how to go from an
abstract VDM B+-tree down to an annotated Pascal code
using refinement.

Recently, we worked on theoretical results on how to
trade theorems among different theories [53], and in this
case, different logics: from the three-valued logic of VDM,
to the semi-classical two-valued logic of Z. With that and
some other minor adjustments, we believe it is possible
to use Z tools to mechanise this specification and gener-
ate code annotations for the B+-tree in a similar way we
did for the Z hash map mentioned above, in order to al-
low code-level verification. This time, we want to gener-
ate annotations for C# using the Spec# tools (research.
microsoft.com/specsharp). In a recent visit to Mi-
crosoft Research (Redmond), in order to familiarise our-
selves with Spec# and its tools, it turned out that such a B+-
tree could be of interest for the Vienna Hypervisor: the hard-
ware abstraction layer written in C that Vienna, Microsoft’s
next operating system, will use for virtualisation.

Other interesting aspects of the problem yet to be tackled
are: (i) introduction of fault tolerance aspects to the file store
database; (ii) reference implementation for the relevant Intel

API layers that has been derived through refinement from
the requirements, where formal annotations are added and
analysed in the source code; (iii) test-case generation and
model based testing, as advocated in [50]; and so on.

6. IBM CICS and fault tolerance

We mechanised the Z specifications of two modules of
the IBM CICS transaction processing system. They were
the file control [24] and task control [23] API’s [14, 38,
56, 18]. They are important because they enabled us to in-
ject fault tolerance for files, as well as the conditions under
which API’s can be called. There is considerable work to
be done in porting the results from IBM CICS into Intel’s
API’s. Due to lack of space, we do no discuss this further.

7. Open NAND Flash Interface (ONFi)

Flash memory devices are often used as the data-storage
medium of choice. Of particular interest are file stores
based on the relatively recent NAND flash Memory tech-
nology, which has a recent standard [26]. NAND flash is
now very popular in portable devices, such as MP3 players
and datakeys. Flash memory is seen as ideal for these pur-
poses as it has good physical handling properties: it is non-
volatile, shock-resistant, and capable of operating under a
wide range of pressures and temperatures. For spacecraft, it
is even more valuable since it has no moving/rotating parts.

There are two types of flash memory: (i) NOR flash
memory, which can be programmed (written) at byte level,
but must be erased at block level, is relatively slow, but suits
random access; and (ii) NAND flash memory with higher
speed, but where programming must be done at the page
level, making it a sequential access device. The former suits
non-volatile core-memory, whilst the latter is better suited
for implementing file systems.

A key issue when in developing these devices is in the
way the hardware is physically laid out, as well as its avail-
able features, which usually varies by manufacturer. This
difficulty is then inherited by those designing equipment re-
lying on flash memory, which was a limiting factor in the
adoption of the technology.

In order to alleviate this situation, leaders in the flash
manufacturing industry formed a standardisation organisa-
tion: the Open NAND Flash Interface consortium (ONFi).
Their aim is to develop a common standard to which most
manufacturers would then adhere. The current ONFi stan-
dard is then the obvious choice as our modelling target.

Flash device data modelling A flash memory device
is decomposed hierarchically into targets, logical units,
blocks, pages, and data units. Each of these are important

159159

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

for modelling different perspectives, as they capture bound-
aries that define if and when operations can be performed.

The basic data unit in a flash memory is either a Byte (8
bits), or a Word (16 bits), depending on the type of device.
A page is an array of data items, consisting of a main page,
plus some spare locations used for EDAC. A page is the ba-
sic unit for programming (writing). A block is a collection
of pages, and is the smallest unit to which an erase opera-
tion can be applied. A logical unit (LUN) is the smallest
sub-entity within a device that is capable of operating inde-
pendently. They compare to the logical blocks from Intel’s
basic allocation layer. It comprises a collection of blocks,
along with a status register and at least one page register in
RAM. A target, within a device, is the smallest unit that can
communicate independently off-chip. It is made of one or
more logical units.

An erased data item has all its bits set to logical 1’s, and
programming a data item involves changing some of those
to 0’s, which means that overwriting already written data is
typically not possible without an intervening erasure oper-
ation. Erase operations need to be kept as low as possible,
since flash memory physically degrades when erased.

Such formal models of flash devices capture the relevant
aspects of behaviour (i.e., functional, performance/timing,
reliability, etc), in a way that allows them to be tied into
formal descriptions of the surrounding hardware and asso-
ciated software operations.

Flash device chip-set operations With the data structure
for such devices modelled, we need to provide support for
key operations, such as programming, reading, and erasing,
as well as other fault-tolerance features like PLR. These are
specified as a command set table with 22 operations, where
13 are optional.

This layered modelling of ONFi devices is quite inter-
esting, as consistency checks can be performed at different
levels of abstraction, as shown in recent publications [5, 6].
This result can be further exploited by industry to explore
different operation configurations.

For instance, each operation can be modelled as atomic,
hence the flash is performing one operation at a time. Still,
current flash device are not atomic and require the appro-
priate sequencing of inputs and outputs to complete any op-
eration, as well as the need to wait for certain tasks (typ-
ically data transfer) to complete. This provides an oppor-
tunity to optimise performance by interleaving operations
and the use of cache techniques. Most of those are part of
the optional operations within the ONFi standard. All these
options are described to some level of detail in the ONFi
standard, and an obvious modelling goal is the formal de-
scription of all three, as well as how they relate.

No matter the level, a key issue that arises is that cer-
tain operations may fail, with various degrees of observ-

ability. The probability of failure is initially very low, but
rises over time, as measured by the number of operations
performed. This requires wear-levelling algorithms at the
hardware-level to minimise the failure rate. This requires
us to model failure properly, with a particular emphasis on
the fact that such failures have a persistent and lasting effect.

Our initial model of ONFi [5, 6] focuses on the first level,
viewing operations as atomic. A key concern was to de-
scribe formally the state in which devices are shipped, as
memory faults will already be present as bad blocks, and
there is a scheme in place to mark such blocks.

There is no other published work on the formal mod-
elling of NAND flash devices, to the best of our knowl-
edge, but there has been a considerable body of work done
on formal models of file systems, and the technical, usage,
and reliability aspects of NAND flash devices. We know
that work with the ONFi standard is also being undertaken
at the University of Minho (in Portugal), which is led by
José Nuno Oliveira, but no publication is yet available.

Flash device finite state machines The internal control
of flash devices relies (conceptually at least) on a collec-
tion of communicating finite state machines, whose interac-
tions support the sequencing and interleaving of operations.
These state machines are quite similar to those presented in
the low-level layer in Section 4.

A wide range of material has been published regarding
the implementation of file systems on NAND flash mem-
ory, most of which utilise some form of log-structuring [32,
54, 55, 36]. Of interest to a potential space application are
techniques that use NAND flash to implement low-power
file caches for mobile devices [37, 35]. A key feature is the
need to cope with the accumulation of errors over time, a
mechanism which is well understood [1, 46].

Continued standardisation The ONFi standard is evolv-
ing continuously, with version 2 due out in early 2008. The
ONFi consortium have another standard [27] that looks at
devices capable of supporting, at the hardware level, an ac-
cess mode based on logical block addresses, which are al-
ways 40 bits in length, accessing blocks of 512-bytes, re-
gardless of the underlying block size or number of address
bits of the real device.

A separate committee, entitled Non-Volatile Memory
Host Controller Interface (NVMHCI), is another standard-
isation initiative on flash device drivers lead by Intel, which
works alongside ONFi. Its first standard draft should be
ready by early 2008. It corresponds to the functionality de-
scribed in the flash interface layer API.

The University of York has become the first aca-
demic member of ONFi, and we are currently discussing
NVMHCI membership as well. Membership entitles early

160160

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

access to non-public draft documents, as well as participa-
tion in various moderated discussion lists. Once we bet-
ter understand the underlying models, we intend to present
our findings to the standardisation committee through these
discussion lists. In a recent Grand Challenge workshop at
ICFEM in Florida (in November 2007), members of ONFi
participated and gave interesting insights on the issues they
face. We also had the chance to show some inconsistencies
in the current public standard and ask advice on how to pro-
ceed, as well as clarifying some hidden assumptions within
the standard.

8. Conclusions

In the quest to formally specify a POSIX file store, we
divided the work suggested in [34] following an orthogo-
nal architecture provided in [29] that enables separation and
later combination of concerns, such as functional require-
ments, fault-tolerant imperatives, and various hardware de-
vices. This is crucially important in order to allow collab-
orative work among scientists with different interests and
backgrounds to collaborate in completing the challenge.

We report on the various references we found, and how
they all fit together to make a cohesive and comprehensive
body of work. We defined a roadmap reporting achieved
goals, summarising important information, and offering
suggestion for collaboration as “micro-challenges” within
the pilot project. Within the roadmap, we identified op-
portunities and presented results that contribute to all three
branches of the verified software verification Grand Chal-
lenge: theories, tools, and experiments.

Our efforts are firstly aimed at a particular user (NASA’s
JPL), hence we concentrate on an initial small subset of
POSIX file store functionality of their interest. This is
possible because we follow Intel ’s architecture mentioned
above, hence we have a modular project development strat-
egy. The results of this work are collected and available
on-line at the VSR repository at SourceForge [11].

Collaboration and exploitation In due time, this effort
could lead to a formally verified POSIX compliant file store
that is widely used in other main stream industries. In
this process, undoubtedly new tools will be created, mature
tools will be improved, theories will be extended, and other
experiments will benefit from the results.

Future work Throughout the document we pointed
out various opportunities for collaboration and ambitious
“micro-challenges” within the POSIX verification Grand
Challenge pilot project. We are working on an extended
version of this roadmap, as well as a commented bibliog-
raphy paper providing a reference manual for the various
documents and sources available.

References

[1] S. Aritome et al. Reliability issues of flash memory cells (in-
vited paper). Proc. of the IEEE, 81(5):776–788, May 1993.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Text in Computer Science.
Springer-Verlag, 1998.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll5. An Overview
of JML Tools and Applications. In Eighth International
Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS), Electronic Notes in Theoretical Computer
Science, pages 73–89. University of Nijmegen, Elsevier,
March 2003.

[4] L. Burdy, A. Requet, and J. L. Lanet. Java Applet Cor-
rectness: a Developer-Oriented Approach. In Proceedings
of Formal Methods Europe, Pisa, number 2805 in Lecture
Notes in Computer Science, pages 422–439. Formal Meth-
ods Europe, Springer-Verlag, 2003.

[5] A. Butterfield, L. Freitas, and J. Woodcock. Mechanising
a Formal Model of Flash Memory. Science of Computer
Programming, 2008. under review.

[6] A. Butterfield and J. Woodcock. Formalising flash mem-
ory: first steps. In 12th ICECCS, pages 251–260, Auckland,
Jul. 2007. IEEE.

[7] G. Cabral and A. Sampaio. Formal specification generation
from requirement documents. In Brazilian Symposium on
Formal Methods (SBMF), 2006.

[8] D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z
Refinement Proof Rules: Forwards and backwards rules in-
corporating input/output refinement. Technical Report YCS-
2002-347, University of York, 2002.

[9] D. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended Static Checking. Technical Re-
port 159, COMPAQ Systems Research Center (SRC),
www.research.digital.com/SRC/, 1998.

[10] E. Fielding. The specification of abstract mappings and their
implementations as B+-trees. Technical Report PRG-18,
Oxford University, 1980.

[11] L. Freitas et al. Verified Software Repository @ Source-
Forge. http://vsr.sourceforge.net/gc6index.html, 2006.

[12] L. Freitas et al. Workshop on the vsr grand challenge:
POSIX file stores. Dublin, 2006.

[13] L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in
Z/Eves: an experiment in the verified software repository.
In 12th ICECCS, Auckland New Zealand, Jul. 2007. IEEE.

[14] L. Freitas, K. Mokos, and J. Woodcock. Verifying the CICS
File Control API with Z/Eves: an Experiment in the Veri-
fied Software Repository. In 12th ICECCS, pages 290–298,
Auckland New Zealand, Jul. 2007. IEEE.

[15] L. Freitas and J. Woodcock. Proving Theorems about JML
Classes. In Formal Methods and Hybrid Real-time Systems,
volume 4700 of LNCS, pages 255–279. Springer, 2007.

[16] L. Freitas and J. Woodcock. Mechanising Mondex with
Z/Eves. Formal Aspects of Computing Journal, 20(1), Jan-
uary 2008.

[17] L. Freitas, J. Woodcock, and Z. Fu. POSIX file store in
Z/Eves: an experiment in the verified software repository.
Science of Computer Programming, 2008. under review.

161161

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

[18] L. Freitas, J. Woodcock, and Y. Zhang. Verifying the CICS
File Control API with Z/Eves: an experiment in the verified
software repository. Science of Computer Programming,
2008. submitted for revision.

[19] Z. Fu. A refinement of the UNIX Filing System using
Z/Eves. Master’s thesis, University of York, Oct. 2006.

[20] Z. Fu. POSIX 1003.21 Standard in Z/Eves. Master’s thesis,
University of York, Sep. 2007.

[21] E. Gal and S. Toledo. Algorithms and Data Structures for
Flash Memories. ACM Computer Surveys, 37(2):138–163,
2005.

[22] T. Hoare. The verifying compiler: A grand challenge for
computing research. Journal of the ACM, 50(1):63–69,
2003.

[23] I. Houston. The CICS Application Programming Inter-
face: Task Control. Technical Report TR12.307, IBM UK,
Hursley Park, 1991.

[24] I. S. C. Houston and J. B. Wordsworth. A Z Specification
of Part of the CICS File Control API. Technical Report
TR12.272, IBM UK, Hursley Park, 1990.

[25] M. Huisman. Reasoning about Java Programs in Higher-
Order Logic using PVS and Isabelle. PhD thesis, Univer-
siteit Nijmegen, 2001.

[26] Hynix Semiconductor et al. Open NAND Flash Inter-
face Specification. Technical Report Revision 1.0, ONFI,
www.onfi.org, Dec. 2006.

[27] Hynix Semiconductor et al. Open NAND Flash Interface
Specification: Block Abstracted NAND. Technical Report
Revision 1.0, ONFI, www.onfi.org, 18th July 2007.

[28] IEEE POSIX Working Group. Interface Requirements for
Realtime Distributed Systems Communication. Technical
Report IEEE P1003.21, IEEE, Jul. 1995.

[29] Intel Flash File System Core Reference Guide, version 1.
Technical Report 304436001, Intel Coorporation, Oct. 2004.

[30] V. S. Jegannathan. Specification and Refinement of a Nam-
ing System in Z, for the UNIX File System. Master’s thesis,
University of York, Sep. 2007.

[31] C. B. Jones. Systematic Software Development Using VDM.
Prentice-Hall, 2nd edition, April 1990.

[32] H. joon Kim and S. goo Lee. A new flash memory man-
agement for flash storage system. In COMPSAC, page 284.
IEEE Computer Society, 1999.

[33] A. Josey, editor. The Single UNIX Specification Version 3.
Open Group, 2004. ISBN: 193162447X.

[34] R. Joshi and G. J. Holzmann. A Mini-Challenge: Build A
Verifiable Filesystem. In Verified Software: Theories, Tools,
Experiments (VSTTE), Zurich, Switzerlan, 2005. IFIP Work-
ing Conference.

[35] T. Kgil and T. Mudge. Flashcache: a nand flash memory
file cache for low power web servers. In CASES ’06: Pro-
ceedings of the 2006 international conference on Compil-
ers, architecture and synthesis for embedded systems, pages
103–112, New York, NY, USA, 2006. ACM Press.

[36] S.-H. Lim and K.-H. Park. An efficient NAND flash file sys-
tem for flash memory storage. IEEE Transactions on Com-
puters, 55(7):906–912, July 2006.

[37] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file
caching for mobile computers. In T. N. Mudge and B. D.

Shriver, editors, Proceedings of the 27th Annual Hawaii In-
ternational Conference on System Sciences, Vol. I: Archi-
tecture, HICSS’94 (Maui, Hawaii, January 4-7, 1994), vol-
ume 1, pages 451–460, Los Alamitos-Washington-Brussels-
Tokyo, 1994. IEEE Computer Society Press.

[38] K. Mokos. Specifying the IBM CICS File Control API For
the Verified Software Repository. Master’s thesis, University
of York, Sep. 2006.

[39] C. Morgan. Programming from Specifications. Prentice-
Hall, 1994.

[40] C. Morgan and B. Sufrin. Specification of the UNIX Fil-
ing System. IEEE Transactions on Software Engineering,
10(2):128–142, 1984.

[41] Open Group Technical Standard. Protocols for Inter-
working: XNFS, Version 3W. Technical Report C702,
The Open Group, Feb. 1998. ISBN: 1859121845.

[42] P. Place. POSIX 1003.21—Real Time Distributed Systems
Communication. Technical report, Software Engineering In-
stitute @ Carnegie Mellon University, Aug. 1995.

[43] A. W. Roscoe. The Theory and Practice of Concurrency. In-
ternational Series in Computer Science. Prentice-Hall, 1997.

[44] M. Saaltink. Z/Eves 2.0 User’s Guide. ORA Canada, 1999.
TR-99-5493-06a.

[45] S. Schneider. The B-Method—an Introduction. Palgrave,
2002.

[46] A. Sikora, F.-P. Pesl, W. Unger, and U. Paschen. Technolo-
gies and reliability of modern embedded flash cells. Micro-
electronics Reliability, 46(12):1980–2005, 2006.

[47] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, 1998.

[48] SRI. Workshop on the Verification Grand Challenge.
www.csl.sri.com/users/shankar/VGC05, Feb. 2005.

[49] S. Stepney et al. An Electronic Purse: Specification, Refine-
ment, and Proof. PRG 126, Oxford University, Jul. 2000.

[50] M. Utting and B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan-Kaufmann, 1st edition,
2007.

[51] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. International Series in Computer Science.
Prentice-Hall, 1996.

[52] J. Woodcock and L. Freitas. Z/Eves and the Mondex Elec-
tronic Purse. In 3rd ICTAC, volume 4281 of LNCS, pages
15–34. Springer, 2006.

[53] J. Woodcock and L. Freitas. Linking VDM and Z. In In Pro-
ceedings of 13th ICECCS, Belfast, LNCS. Springer, 2008.
under review.

[54] D. Woodhouse. JFFS: The Journalling Flash File System.
Ottawa Linux Symposium, Oct 2001.

[55] YAFFS Direct Interface (YDI) User’s Guide.
www.aleph1.co.uk/node/349, Jul. 2006.

[56] Y. Zhang. Specifying the IBM CICS Task Control API For
the Verified Software Repository. Master’s thesis, University
of York, Sep. 2007.

162162

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 05:58 from IEEE Xplore. Restrictions apply.

