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Abstract

Event-based communication is useful in many applica-
tion domains, ranging from small, centralised applications
to large, distributed systems. Many different event models
have been developed to address the requirements of dif-
ferent application domains. One such model is the ECO
model which was designed to support distributed virtual
world applications. Like many other event models, ECO
has event filtering capabilities meant to improve scalability
by decreasing network traffic in a distributed implementa-
tion. Our recent work in event-based systems has included
building a fully distributed version of the ECO model, in-
cluding event filtering capabilities. This paper describes
the results of our evaluation of filters as a means of achiev-
ing increased scalability in the ECO model. The evalu-
ation is empirical and real data gathered from an actual
event-based system is used. The findings show filters to be
highly valuable in making distributed implementations of
the model scale, that multicast contributes to the scalabil-
ity and, perhaps most signifcantly, that multicast groups can
be dynamically generated from filters using local (per node)
rather global knowledge of the distributed application.

1. Introduction

Event-based communication is appropriate for many ap-
plication domains, ranging from small, centralised appli-

cations such as GUIs to large, distributed systems such as
telecommunications, network monitoring, and virtual world
support systems. Many different event models have been
put forward, some designed for small-scale systems and
others for large-scale systems. One such model is the ECO
model which was designed to support distributed virtual
world applications in the Moonlight ([6]) project. Like
many other event models ([9, 5]), ECO was designed to
be scalable by including filtering capabilities that were in-
tended to decrease network traffic in a distributed imple-
mentation.

Our recent work in event-based systems has included
building a fully distributed version of the ECO model,
including filtering capabilities. This paper describes the
model and our implementation of it, as well as the experi-
ments conducted to evaluate filtering as a means of increas-
ing scalability. The experiments are based on empirical data
from an actual event-based system. This data is used to per-
form three simulations of the original system to evaluate the
performance implications of using filtering and the impact
of using unicast or multicast communications. The results
show that filtering coupled with multicast communications
can substantially decrease network traffic and thus enhance
scalability. Significantly, we also demonstrate that multicast
groups can be constructured from filters without need for
global knowledge about the distributed application, demon-
strating a further programming level benefit from filters.

In the following, we describe the ECO model and its
implementation thereafter we present our experiments and
comparisons.
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2. The ECO Model

As event models go, the ECO model is relatively sim-
ple. It has only three central concepts and its application
programmer interface (API) contains only three operations.
The intent of the model is that it is applied to a given host
language and extends that language’s syntax and facilities
as to support the ECO concepts. This section describes the
ECO concepts and operations, paying special attention to
notify constraints which are the model’s event filters.

As mentioned, the ECO model was originally designed
for use in virtual world support systems. This is reflected in
the terminology used to describe ECO. Thus, the terman
ECO world means whatever collection of entities constitute
the application in which the model is being used. For a
detailed description of the model, please refer to [12, 7].

2.1. Concepts

The acronym ECO stands forevents, constraints, and
objects—the three central concepts in the event model:

Objects in the ECO model are much like objects in a stan-
dard object-oriented language. However, instead of in-
voking other objects for communication ECO objects
communicate with other ECO objects via events and
constraints as explained below. ECO objects are of-
ten implemented as programming language objects but
not all programming language objects are necessarily
ECO objects. In order to distinguish the two, ECO
objects are often referred to asentities. Entities have
identifiers that are unique within an ECO world and
they may contain threads of control.

Events are the only means of communication in the model.
Entities do not invoke each other’s methods directly
but instead raise events which may, or may not, lead to
other entities’ methods being invoked. Any entity can
raise an event. Events are typed and have parameters,
and they are propagated asynchronously and anony-
mously to the receiving entities in no particular order.
The type of events is usually specified using the type
system of the underlying language.

Constraints make it possible for entities to impose restric-
tions upon which events they actually receive. The
ECO model specifies several types of constraints of
which the central one in a scalability context isnotify
constraints. Notify constraints can be used by an entity
to specify what events it is interested in receivingno-
tification about. Notify constraints effectively consti-
tute filters as they are known from other event models
([9, 5]). Other types of ECO constraints arepre, post,
andsynchronisation constraints. However, they are not

interesting for event filtering and will not be discussed
further in this paper.

The three concepts are shown in relation in figure 1
which depicts a simple scenario with two entities commu-
nicating. In the figure, entity A raises an event which may,
or may not, reach entity B because of the constraint C. The
constraint is imposed by entity B. The raising of an event
can be thought of as an announcement to the rest of the
ECO world that the event has occurred. A notify con-
straint can be thought of as a filter that decides whether
or not a given entity is to receive the event, and receiv-
ing an event can be thought of as invoking an appropriate
method (called anevent handler) of an entity in response to
the event. When an entity uses a notify constraint to enable
it to receive certain events, we say that itsubscribes to those
events. An entity can subscribe multiple times to the same
events using different constraints and handlers. It is also
possible to subscribe without using a constraint, in which
case no filtering is performed.

Event

Entity A C
onstraint C

EE

Entity B

Event

Certain event propagation
Possible event propagation

Figure 1. The Three ECO Concepts in Relation

2.2. Operations

The model’s API contains three operations which are
used by entities to communicate:

Subscribe(eventType,eventHandler,constraint)
is used by entities to register interest in events. An
entity that subscribes to a certain type of event will
receive an invocation of one of its methods when a
matching event is raised. The event is delivered to the
entity by being passed as a parameter to the handler.
When an entity performs a subscription, it can also
choose to specify a constraint. An event must be of
the right type and must match the constraint (if any),
in order to be delivered to a particular subscriber.

Raise(event) is used by an entity to announce the oc-
currence of an event. The event is delivered to all enti-
ties subscribing to events of that type, subject to filter-
ing against their respective constraints.
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Unsubscribe(event-type, event-handler)
is used by an entity to cancel an existing subscription.

3. Scalability of Distributed ECO Implementa-
tions

The ECO model as such is neither centralised nor dis-
tributed but can be implemented in a centralised or dis-
tributed manner. A distributed implementation has the ad-
vantage that new nodes (typically in the form of physical
machines) can be added in order to accommodate a larger
number of entities. On the other hand, distributing the ECO
implementation across a number of nodes means that enti-
ties on different nodes will need to exchange events as well
as subscription and unsubscription information across ma-
chine boundaries. The amount of communication across
node boundaries depends not on the number of entities but
on the level ofactivity, i.e., on the number of subscriptions
performed (and canceled) and the number of events raised.

3.1. Scalability

The termscalability has become something of a buz-
zword in the computer industry. There is no generally ac-
cepted scientific definition of what exactly scalabilityis, and
people tend to rely on an intuitive understanding of the con-
cept instead. Textbooks generally provide rather vague def-
initions and rely on examples to explain it. One of the more
tangible definitions was made in connection with distributed
garbage collection,

Scale is a relative concept that is hard to charac-
terize precisely; rather we define scalability as a
property related to an algorithm: it is scalable if
its cost increases much slower than the number of
spaces or of sites in the system. ([11])

Though somewhat specific to distributed garbage collec-
tion, the definition makes the important observation that
scalability is an algorithmic issue. To make the definition
more general,spaces andsites should be interpreted accord-
ing to the underlying domain. In a distributed ECO context,
the following parameters are considered when discussing
scalability:

� number of entities (or objects)

� number of nodes (or machines)

� activity (communication)

These parameters are not mutually independent. As
mentioned, for example, a common means of scaling (i.e.,
supporting a large number of)entities is to add morenodes

to the system. This, however, causes morecommunication
between nodes. Hence, improving scalability in one way
may decrease it in another. This is a common dilemma in
distributed systems; the greater the degree of distribution,
the more communication. Therefore, any means of reduc-
ing unnecessary communication is valuable.

4. SECO- a Distributed ECO Implementation

The implementation was named SECO forScalable
ECO. It uses C++ as the host language. The ECO exten-
sions take the form of a library with which an application
using event communication is linked. There is also a series
of header files which contain abstract C++ base classes for
events, constraints, and entities, in addition to prototypes
for the actual ECO operations. Two implementations are
discussed: a unicast version (uSECO) and a multicast ver-
sion (mSECO).

4.1. Overview

The architecture of the SECO implementation is based
on the concept ofApplication Instances (AIs). An AI is im-
plemented as a program running on a node in the network. It
hosts a number of entities and relays events raised by them
to other AIs. An AI also receives events from other AIs and
delivers them to its own entities. A scenario with six enti-
ties hosted by three AIs running on two nodes is shown in
figure 2.

Entity

AI

Entity

Entity

AI

Node B

Entity

Entity

Entity

Node A

AI

The arrows denote
communication.

Figure 2. Scenario with Nodes, Application
Instances (AIs), and Entities.

In the uSECO implementation anApplication Instance
Register (AIR) is used to maintain authoritative information
about the AIs that are active at any given time. A new AI
joining an existing set of AIs obtains a list of its peers from
the AIR. The current implementation of the AIR is cen-
tralised, but could readily be implemented in a distributed
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fashion without further impact on the rest of the SECO im-
plementation.

In mSECO, since multicast communication does not re-
quire the sender to know the number of receivers, global
knowledge of the SECO entities is not necessary thus elimi-
nating the AIR. The number of event messages and manage-
ment (overhead) messages sent will be reduced. In uSECO,
an AI that raises an event propagates a copy of the event
to each subscriber, whereas in mSECO a single multicast
message is sent only. The same applies for management
messages. Instead of having to send a copy of a manage-
ment message to each AI, a single broadcast (implemented
as a well-known multicast group) message is sent.

Entities hosted by an AI invoke the SECO operations
to make and cancel subscriptions and to raise events. The
SECO library relays subscriptions, unsubscriptions, and
events to remote AIs as appropriate (e.g., subject to filter-
ing constraints) and delivers events obtained from remote
as well as local entities to the entities that it hosts by in-
voking their handlers. The SECO library uses a com-
munications package called KANGA ([2]) to communi-
cate with other AIs over the network. KANGA imple-
ments a convenient class-oriented front-end to the transport
layer (TCP/IP) based onconnection endpoints rather than
hostnames and ports. Unlike TCP, KANGA is message-
oriented and includes marshalling operations for all stan-
dard C++ types. Figure 3 shows how the components in
a SECO application communicate. Note that, for reasons
stated above, the AIR is not needed in the mSECO imple-
mentation.

The SECO implementation performs not only the task it
is explicitly built for—in this case implementing the ECO
model—but also the task of keeping track of itself as a
distributed application. With regards to implementing the
ECO operations (propagating subscriptions, unsubscrip-
tions, and events) the implementation is fully distributed.
Messages pass directly from peer to peer; there is no cen-
tralised “event server” and therefore no single point of fail-
ure. With regards to distribution management, it should be
noted that the current version of the AIR is centralised and
therefore a single point of failure. However, it is used only
for maintaining the set of currently active AIs. In particular,
it has no influence on event flow or filtering and is therefore
of no interest to the findings described in this paper.

4.2. Latecoming Entities

When an entity joins an ECO world that already exists,
there may be subscriptions in place that the new entity does
not know about. ECO semantics specify that old subscrip-
tions should apply for new entities, and therefore new enti-
ties need to obtain information about the subscriptions cur-
rently in effect. The solution adopted in the SECO imple-

mentation is to let the AIs holding entities with active sub-
scriptions resend the subscriptions to new AIs.

4.3. Implementation and management of the multi-
cast communication

mSECO’s multicast layer is implemented based on IP
multicast, providing a means of one-to-many group com-
munication. IP multicast uses UDP as its transport layer
and thus is a connectionless best-effort (unreliable) service.
A reliable transport layer can be build on top of IP multi-
cast. mSECO uses a hash algorithm to generate multicast
groups. The hash operation is invoked on the consumer side
for each subscription sent and on the raising side for each
subscription received. The IP group address is calculated by
the hash function on the event type and the event filter (i.e.,
the notify constraint). This enables entities to manage their
group memberships based on a local decision, avoiding a
centralised component, and hence a single point of failure.

The success of this approach depends on the efficiency of
the chosen hash algorithm and on the size of the available
multicast group address space. The hash algorithm used in
mSECO is an adaptation of one proposed in [10, p.212]
which generates a unique key from a sequence of charac-
ters of arbitrary length and spreads the keys evenly into the
multicast group address space. The exact efficiency of var-
ious hash algorithms is beyond the scope of this paper, but
the algorithm may easily be replaced by another. The cur-
rently available IP multicast address space consists of up to
28 bit address and a 16 bit port number. Although the IP
multicast address space may have to be shared with other
applications, the rather large number of available multicast
group addresses ensures that our approach suffices even in
large-scale systems that include many different event types
and notify constraints.

5. Simulating a Real-time System

Our experiments consist of running simulations on data
from an actual real-time event-based system found at the
University of Cambridge. The experiments and conclusions
presented in this paper are based on empirical event data ob-
tained from the Cambridge system. This section describes
the system and our simulation of it.

5.1. Active Badge System

The Cambridge system is anactive badge system. It
is based on a number of infrared sensors (calledstations)
which are placed in some university laboratories and pick
up signals emitted by battery-driven badges worn by per-
sonnel in the labs. When a station detects the presence of a
badge, it raises a so-calledsighting event to announce that
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Figure 3. Communications in a SECO Application

this particular badge has been seen in that particular loca-
tion. Stations are grouped intonetworks, each being a part
of a particular laboratory. In addition, users can also be de-
tected when they log into the campus computer network,
e.g., via an X-terminal. Each badge carries a uniquebadge
identifier which is picked up by the sensors. Certain kinds
of equipment, such as workstations, X-terminals, and some
network devices, also have badge identifiers associated with
them and can cause sighting events to be raised.

The empirical data that we have obtained from the sys-
tem consists of 35,811 sighting events collected over pe-
riod of almost 21 hours by 118 stations distributed over 12
networks. For each sighting, the following information is
available:

Station Identifier identifying the network (by a symbolic
name) and the station (by an integer) within that net-
work.

Badge Identifier identifying the sighted person or equip-
ment (by a sequence of six eight-bit hexadecimal num-
bers separated by dashes).

Time stamp identifying the moment when the sight-
ing was made in seconds and microseconds, since
00:00:00 UTC, January 1, 1970.1

The experimental strategy is to replay these sightings in a
simulation. We represent each station as an ECO entity that
raises the sighting events recorded in the Cambridge data
at the appropriate times, as measured by the local system
clock.2 The simulation and its configuration are described
in the following sections.

5.2. Hardware Configuration

Our testbed consists of five PCs with a minimum of 16
megabytes of memory, running FreeBSD and connected

1As returned bytime(3).
2Recall that the ECO model makes no requirements to event ordering,

and we can therefore disregard clock variations between nodes.

with a standard 10 Mbit/s Ethernet. Because we measured
bandwidth usage on a per message basis (as opposed to,
e.g., roundtrip times) the experiments were run in multiuser
mode. Also, the machines were on a network segment with
traffic not related to the experiments. The native compiler,
GCC 2.6.3, was used to compile the programs.

5.3. Software Configuration

In the simulation, each of the twelve networks in the real
badge system is represented by one AI as shown in figure 4
located on a single node (hogthrob). Four of the five
nodes (janis, zoot, statler, anddown) are used
to run AIs which act as event consumers.

To measure network traffic as a function of the number
of AIs, some of our experiments (2 and 3) are run in four
configurations. Configuration A uses only one consumer
node, configuration B uses two, and so on. This is illustrated
in figure 4 where the four consumer AIs are marked with the
configurations in which they are active.

All configurations of all experiments have two character-
istics,

1. Event subscribers and consumers are held on disjoint
AIs.

2. All AIs hosting event-generating entities outlive those
with subscribing entities.

Given knowledge of the implementation, this configu-
ration makes it relatively easy to calculate administration
overhead caused by distribution and filtering. Whereas the
latter is extremely relevant for the evaluation of filtering as a
means of scalability, the former can be assumed to be equiv-
alent to a distributed ECO implementationwithout filtering
and is therefore of little concern for this paper. A discussion
can be found in [3].

Filtering overhead is caused by making and cancelling
subscriptions. This means that, given thatn is the num-
ber of AIs andm the number of subscriptions performed
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Figure 4. Badge System Simulation Overview

during the application’s lifetime, the total number of extra
messages due to filtering for unicast Nu�filtering and for
multicast Nm�filtering can be written as,

Nu�filtering(m;n) = m�Nsubscription(n)

Nm�filtering(m;n) = m�Subscription

where Nsubscription is the number of extra messages
sent for a single subscription and in Nm�filtering .
Subscription is the number of messages generated by a
subscription and is independant of n.

To derive Nu�filtering in the given configuration, all
subscribing entities are hosted by a single AI. Subscriptions
will be sent to all other instances and the total number of
messages transmitted over the network for any particular
subscription can be computed easily. If ns is the number of
AIs at subscription time, the number of subscription mes-
sages (and replies) sent is,

2(ns � 1)

At unsubscription time, the number of AIs may have
changed. Assuming it is called nu and that there is an un-
subscription for each subscription, the total number of sub-

scribe/unsubscribe messages is,

2(ns � 1) + 2(nu � 1)

In the configuration used in our experiments, the AIs
with event-generating entities always outlive the one with
the subscriber, so for this particular case we have ns =
nu. Setting n = ns = nu the total number of sub-
scribe/unsubscribe messages is,

Nsubscription(n) = 2(ns � 1) + 2(nu � 1) = 4(n� 1)

Insertion into the earlier formula for Nu�filtering gives us,

Nu�filtering(m;n) = m�Nsubscription(n) = 4m(n� 1)

Moreover, for Nm�filtering we simply argue that there is a
message due to subscribe and a message due to unsubscribe
for each subscription, giving us 2 messages per subscription
and hence:

Nm�filtering(m;n) = 2m

These formulae are used in the next section to compute the
number of overhead messages. Note a multiplier, which is
the number of subscriber AIs, must be applied depending
on which configuration is being used.
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6. Three Experiments

In practice, the complete event flow through an active
badge system is large and difficult to comprehend. Sub-
scribers with well-chosen notify constraints can be used to
provide meaningful views of this event flow by dynami-
cally extracting events according to certain patterns, and
in this way make it easier for humans to monitor the sys-
tem at runtime. The three experiments presented in this
chapter were designed to present such meaningful views of
the event flow and would be likely candidates for imple-
mentation in a real (non-simulation) badge system. Each
experiment features one type of subscriber. Some experi-
ments feature a subscriber which can be given parameters
and which filter events according to their values. Such sub-
scribers were run with all possible sets of parameters. For
each experiment we list the number of event messages sent
in the absence of filtering, the number of event messages ac-
tually sent, and the number of overhead messages caused by
subscriptions (calculated according to the formulae 3 from
the previous section). Finally, the total number of messages
actually sent (including overhead messages) is listed, along
with the relative decrease in number of messages sent due
to event filtering.

6.1. Experiment 1: God

The God entity sees all and hence receives all events. In
a real badge system, such a subscriber could be useful for
logging purposes. Here it is also used to measure filtering
overhead by implementing a filter without effect. Table 1
shows the results from the experiment.

The reduction in number of messages is negative, mean-
ing that using this filter (not suprisingly) introduced a slight
overhead. However, in the experiments it was as low as
0.01%. It is important to look at the scenario in which
this result was obtained. Overhead in the form of extra
network messages is generated at subscription and unsub-
scription time but not while the subscription is in effect. In
experiment 1, there was only one subscription involved and
it was in effect for a very long time (time enough to raise
35,811 events). Consequently, the relative cost decreased as
more and more bandwidth was used for other purposes. We
conclude that long-lasting subscriptions have a relatively
low overhead. No significant difference was noted between
uSECO and mSECO in this experiment.

6.2. Experiment 2: CCTV

A number of CCTV entities subscribe to all events gen-
erated in a particular network. In a real system, it could be

3Apply appropriate multiplier as per previous observation.

used to monitor a specific (and therefore more manageable)
area of the entire system. This experiment was run with
twelve subscribers in parallel, one for each network. The
results are displayed in tables 2, 3, 4, and 5.

As can be seen, the reduction in number of transmit-
ted messages is quite high: above 90% on average. Had
events simply been broadcast instead of filtered, approxi-
mately ten times as many messages would have been trans-
mitted across the network. Even the most busy camera only
received 20% of the messages it would have received if fil-
ters had not been used. As in experiment 1, these subscrip-
tions were in effect for a long period of time, and the fixed
administration overhead of 24 messages in uSECO and 2
messages (per camera) in mSECO gradually became less
and less significant as more events were raised.

6.3. Experiment 3: Private Eye

The Private Eye entity subscribes to all events generated
by a particular badge. In a real system, this subscriber could
be used to trace the movement patterns of a particular badge
owner. This experiment was run with at least 12 (out of
a possible) 162 subscribers in parallel, one for each badge
present in the event data. An extract of the results (twelve
private eye entities) is shown in tables 6, 7, 8, and 9. For
the remaining data, please refer to [3].

The data shows substantial savings, averaging just above
99.0% reduction in the number of messages transmitted
across the network. The private eye entities in this experi-
ment collectively get all sightings of registered badges. The
busiest of the badge-wearers caused 658 sightings and still
received only 2% of the messages it would have received if
filters had not been used.

6.4. Overall Conclusion

Figure 5 shows the average number of event messages
sent depending on the number of subscribing AIs, accord-
ing to the data found in experiment 2. A similar graph could
be depicted based on the data that resulted from experi-
ment 3. For the uSECO experiment, the number of event
messages sent increases linearly to the number of subscrib-
ing AIs. Whereas, the mSECO experiment found that the
number of event messages sent is independent to the num-
ber of subscribing AIs. Furthermore, the graph shows that
the number of overhead messages, although reduced in the
mSECO experiment, do not contribute significantly towards
the number of event messages sent.

The experiments presented in this section shows that fil-
tering was generally worthwhile in the example simulation.
Notify constraints caused a reduction of between 99.9% and
80.0% for all entities used in the experiments, except the
God entity where notify constraints caused a slight increase.
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Figure 5. The summary graph of experimental data

To what extent these findings can be expected to hold for
other applications of course depends on the applications in
question. The application in this scenario used subscrip-
tions which were in effect for a fairly long time. Appli-
cations with frequent subscriptions (and cancelling of sub-
scriptions) will benefit less from using notify constraints,
but for the active badge system constraints were extremely
useful. The next section discusses three other event models,
two of which contain filters and one of which does not.

7. Related Work

In this section, we look closer at three state-of-the-art
event models. Two of them are from industry and one is
a research model. They are targeted for different applica-
tion domains and therefore have different characteristics. A
more detailed discussion of the three models, in particular
in the context of ECO, can be found in [3].

7.1. JavaBeans

Java is an object-oriented programming language, rem-
iniscent of C++, which has become increasingly popular
since it was launched by Sun in the mid 1990s. JavaBeans
is a component model for Java also developed by Sun, and
version 1.01 of the JavaBeans specification ([13]) defines an
event model. The model is designed with small centralised
systems (e.g., window toolkits) in mind but can be used in
a distributed fashion by using the Java Remote Method In-
vocation (RMI) system.

The model has no inherent filtering support. The event
source and receiver are tightly coupled, compared to other
models, and must maintain detailed knowledge about each
other. The model specifies that the source of an event should
invoke receivers in sequence, passing its thread of control to
each receiver. These semantics mean that implementations
of the model cannot benefit from network level multicast.
In its current form, the model will not scale to be used in
any distributed environment of substantial size.

7.2. CORBA Services

The Common Object Request Broker Architecture
(CORBA) is a middleware architecture specificied by the
Object Management Group (OMG). The architecture is
based on the idea of using Object Request Brokers (ORBs)
as a common way for different systems to perform remote
procedure calls (RPCs). In addition to ORB functional-
ity, the CORBA 2.0 specification ([8]) describes a number
of general-purpose services, one of which is the CORBA
Event Service. Applications using this service can com-
municate using events in addition to the normal RPCs pro-
vided by the bare ORB. Moreover, work is currently on-
going within the OMG to define a Notification Service to
extend the event service with event filtering capabilities.4

The CORBA Event and Notification Services have been
designed to be usable in virtually any setting where event-
based communication is required. The pending Notifica-
tion Service proposal, effectively a superset of the Event

4The OMG Technical Committe initiated the adoption vote on Novem-
ber 13, 1998.
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Service, constitutes an extremely general event model with
powerful filtering capabilities based on filters expressed in
an interpreted language. It is difficult to imagine a dis-
tributed event-based application that could not fit into this
model. However, the generality is paid for by an increase
in complexity—understanding and using the CORBA event
model is difficult, and a correspondingly high development
cost can be expected for applications using it.

7.3. Cambridge Event Model

The event model described in [1, 4] was developed at the
University of Cambridge Computer Laboratory. Like the
CORBA model, it has filters which are expressed in an in-
terpreted language. The Cambridge model is architecturally
much simpler than the CORBA model, but has a feature not
present in the other, namely that of event composition. The
idea is that subscribers can register interest in the occur-
rence of events, subject to restrictions on the order in which
they occur. For example, it is possible to register interest
in an event, only if it has been (or explicitly has not been)
preceded by another. The composite event language is rem-
iniscent of regular expressions and can be used to form very
complex filter expressions.

In general, the Cambridge model is less flexible than the
CORBA service but also a lot less complex. Its principal
strength is that it has native support for composite event fil-
ters, a powerful feature which has yet to be discovered by
industry. Like the CORBA model, but unlike the JavaBeans
model, it is designed for large-scale systems.

7.4. Summary

The three event models discussed here are different in
many respects. The CORBA and Cambridge models share
some similarities in that both are designed for large-scale
systems and both have excellent filtering support. In com-
parison, the JavaBeans model is well suited for centralised
or small-scale distributed applications but has no inherent
support for filtering.

8. Conclusion

The initial discussion about scalability identified three
parameters in the ECO model, one of which (number of
entities) could be scaled by scaling the second (number of
nodes) at the cost of decreased scalability of the third (ac-
tivity). In any large-scale distributed event system, activity
is probably the parameter which is most difficult to scale.
New nodes can be added practically ad inifinitum but they
all have to exchange events over the same network. Reduc-
ing network traffic is therefore an important way of scaling
activity in any such system.

Our work has shown filtering to be an extremely pow-
erful means to save network bandwidth in an event-based
system as demonstrated in the results obtained over unicast,
and consequently a feasible way to dramatically increase
scalability. We have also shown that the introduction of
multicast communications produces a further improvement
in scalability from the network traffic perspecitive.

Of at least equal significance is our demonstration that a
high level description of constraints can be used to generate
multicast groups. In doing this we are masking out lower
level network decisions from the designer.

Furthermore, because the experiments were conducted
with data from a real event-based system, we claim the re-
sults to have practical relevance and expect them to hold for
similar event-based systems outside the laboratory. Indeed,
a sign that the industry is becoming aware of the impor-
tance of event filtering is the OMG’s initiative to augment
their event service with filtering capabilities. ([9]).
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Entity
Unfiltered
event msgs

Actual
event msgs

Overhead
msgs

Total
msgs

Relative
decrease

Unicast God 35,811 35,811 24 35,835 -0.07%
Multicast God 35,811 35,811 2 35,813 -0.01%

Table 1. Experiment 1: God (Configuration A)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 35,811 35,811 52 52 24 2 76 54 99.8% 99.8%
CL-ArupMain# 35,811 35,811 22 22 24 2 46 24 99.9% 99.9%
ORL-Home#5 35,811 35,811 7 7 24 2 31 9 99.9% 100.0%
ORL-Net#0 35,811 35,811 2,125 2,125 24 2 2,149 2,127 94.0% 94.1%
ORL-Net#1 35,811 35,811 5,703 5,703 24 2 5,727 5,705 84.0% 84.1%
ORL-Net#2 35,811 35,811 6,932 6,932 24 2 6,956 6,934 80.6% 80.6%
ORL-Net#4 35,811 35,811 2,582 2,582 24 2 2,606 2,584 92.7% 92.8%
ORL-Net#5 35,811 35,811 5,023 5,023 24 2 5,047 5,025 85.9% 86.0%
ORL-Net#6 35,811 35,811 2,075 2,075 24 2 2,099 2,077 94.1% 94.2%
ORL-Net#7 35,811 35,811 1,899 1,899 24 2 1,923 1,901 94.6% 94.7%
ORL-Three#8 35,811 35,811 7,144 7,144 24 2 7,168 7,146 80.0% 80.0%
ORL-Three#9 35,811 35,811 2,247 2,247 24 2 2,271 2,249 93.7% 93.7%
Average 35,811 35,811 2,984 2,984 24 2 3,008 2,986 91.6% 91.7%

Table 2. Experiment 2: CCTV (Configuration A)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 71,622 35,811 104 52 48 4 152 56 99.8% 99.8%
CL-ArupMain# 71,622 35,811 44 22 48 4 92 26 99.9% 99.9%
ORL-Home#5 71,622 35,811 14 7 48 4 62 11 99.9% 100.0%
ORL-Net#0 71,622 35,811 4,250 2,125 48 4 4,298 2,129 94.0% 94.1%
ORL-Net#1 71,622 35,811 11,406 5,703 48 4 11,454 5,707 84.0% 84.1%
ORL-Net#2 71,622 35,811 13,864 6,932 48 4 13,912 6,936 80.6% 80.6%
ORL-Net#4 71,622 35,811 5,164 2,582 48 4 5,212 2,586 92.7% 92.8%
ORL-Net#5 71,622 35,811 10,046 5,023 48 4 10,094 5,027 85.9% 86.0%
ORL-Net#6 71,622 35,811 4,150 2,075 48 4 4,198 2,079 94.1% 94.2%
ORL-Net#7 71,622 35,811 3,798 1,899 48 4 3,846 1,903 94.6% 94.7%
ORL-Three#8 71,622 35,811 14,288 7,144 48 4 14,336 7,148 80.0% 80.0%
ORL-Three#9 71,622 35,811 4,494 2,247 48 4 4,542 2,251 93.7% 93.7%
Average 71,622 35,811 5,969 2,984 48 4 6,017 2,988 91.6% 91.7%

Table 3. Experiment 2: CCTV (Configuration B)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 107,433 35,811 156 52 72 6 228 58 99.8% 99.8%
CL-ArupMain# 107,433 35,811 66 22 72 6 138 28 99.9% 99.9%
ORL-Home#5 107,433 35,811 21 7 72 6 93 13 99.9% 100.0%
ORL-Net#0 107,433 35,811 6375 2,125 72 6 6,447 2,131 94.0% 94.0%
ORL-Net#1 107,433 35,811 17109 5,703 72 6 17,181 5,709 84.0% 84.1%
ORL-Net#2 107,433 35,811 20796 6,932 72 6 20,868 6,938 80.6% 80.6%
ORL-Net#4 107,433 35,811 7746 2,582 72 6 7,818 2,588 92.7% 92.8%
ORL-Net#5 107,433 35,811 15069 5,023 72 6 15,141 5,029 85.9% 86.0%
ORL-Net#6 107,433 35,811 6225 2,075 72 6 6,297 2,081 94.1% 94.2%
ORL-Net#7 107,433 35,811 5697 1,899 72 6 5,769 1,905 94.6% 94.7%
ORL-Three#8 107,433 35,811 21432 7,144 72 6 21,504 7,150 80.0% 80.0%
ORL-Three#9 107,433 35,811 6741 2,247 72 6 6,813 2,253 93.7% 93.7%
Average 107,433 35,811 8,953 2,984 72 6 9,025 2,990 91.6% 91.6%

Table 4. Experiment 2: CCTV (Configuration C)
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Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

CL-ArupExtn# 143,244 35,811 208 52 96 8 304 60 99.8% 99.8%
CL-ArupMain# 143,244 35,811 88 22 96 8 184 30 99.9% 99.9%
ORL-Home#5 143,244 35,811 28 7 96 8 124 15 99.9% 100.0%
ORL-Net#0 143,244 35,811 8,500 2,125 96 8 8,596 2,133 94.0% 94.0%
ORL-Net#1 143,244 35,811 22,812 5,703 96 8 22,908 5,711 84.0% 84.1%
ORL-Net#2 143,244 35,811 27,728 6,932 96 8 27,824 6,940 80.6% 80.6%
ORL-Net#4 143,244 35,811 10,328 2,582 96 8 10,424 2,590 92.7% 92.8%
ORL-Net#5 143,244 35,811 20,092 5,023 96 8 20,188 5,031 85.9% 86.0%
ORL-Net#6 143,244 35,811 8,300 2,075 96 8 8,396 2,083 94.1% 94.2%
ORL-Net#7 143,244 35,811 7,596 1,899 96 8 7,692 1,907 94.6% 94.7%
ORL-Three#8 143,244 35,811 28,576 7,144 96 8 28,672 7,152 80.0% 80.0%
ORL-Three#9 143,244 35,811 8,988 2,247 96 8 9,084 2,255 93.7% 93.7%
Average 143,244 35,811 11,937 2,984 96 8 12,033 2,992 91.6% 91.6%

Table 5. Experiment 2: CCTV (Configuration D)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 35,811 35,811 651 651 24 2 675 653 98.1% 98.2%
0-0-0-0-13-e 35,811 35,811 658 658 24 2 682 660 98.1% 98.2%
0-0-0-0-4-2b 35,811 35,811 12 12 24 2 36 14 99.9% 100.0%
0-0-0-0-79-0 35,811 35,811 2 2 24 2 26 4 99.9% 100.0%
0-0-0-0-81-2 35,811 35,811 353 353 24 2 377 355 98.9% 99.0%
0-0-0-0-81-8 35,811 35,811 110 110 24 2 134 112 99.6% 99.7%
0-0-0-0-82-5 35,811 35,811 332 332 24 2 356 334 99.0% 99.1%
0-0-0-0-82-5 35,811 35,811 338 338 24 2 362 340 99.0% 99.1%
0-0-0-0-83-2 35,811 35,811 59 59 24 2 83 61 99.8% 99.8%
0-0-0-0-83-4 35,811 35,811 279 279 24 2 303 281 99.2% 99.2%
0-0-0-0-83-9 35,811 35,811 50 50 24 2 74 52 99.8% 99.9%
0-0-0-0-e-e9 35,811 35,811 548 548 24 2 572 550 98.4% 98.5%
Average 35,811 35,811 283 283 24 2 307 285 99.1% 99.2%

Table 6. Experiment 3: Private Eye (Configuration A)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 71,622 35,811 1,302 651 48 4 1,350 655 98.1% 98.2%
0-0-0-0-13-e 71,622 35,811 1,316 658 48 4 1,364 662 98.1% 98.2%
0-0-0-0-4-2b 71,622 35,811 24 12 48 4 72 16 99.9% 100.0%
0-0-0-0-79-0 71,622 35,811 4 2 48 4 52 6 99.9% 100.0%
0-0-0-0-81-2 71,622 35,811 706 353 48 4 754 357 98.9% 99.0%
0-0-0-0-81-8 71,622 35,811 220 110 48 4 268 114 99.6% 99.7%
0-0-0-0-82-5 71,622 35,811 664 332 48 4 712 336 99.0% 99.1%
0-0-0-0-82-5 71,622 35,811 676 338 48 4 724 342 99.0% 99.0%
0-0-0-0-83-2 71,622 35,811 118 59 48 4 166 63 99.8% 99.8%
0-0-0-0-83-4 71,622 35,811 558 279 48 4 606 283 99.2% 99.2%
0-0-0-0-83-9 71,622 35,811 100 50 48 4 148 54 99.8% 99.8%
0-0-0-0-e-e9 71,622 35,811 1,096 548 48 4 1,144 552 98.4% 98.5%
Average 71,622 35,811 565 283 48 4 613 287 99.1% 99.2%

Table 7. Experiment 3: Private Eye (Configuration B)

Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 107,433 35,811 1,953 651 72 6 2,025 657 98.1% 98.2%
0-0-0-0-13-e 107,433 35,811 1,974 658 72 6 2,046 664 98.1% 98.1%
0-0-0-0-4-2b 107,433 35,811 36 12 72 6 108 18 99.9% 99.9%
0-0-0-0-79-0 107,433 35,811 6 2 72 6 78 8 99.9% 100.0%
0-0-0-0-81-2 107,433 35,811 1,059 353 72 6 1,131 359 98.9% 99.0%
0-0-0-0-81-8 107,433 35,811 330 110 72 6 402 116 99.6% 99.7%
0-0-0-0-82-5 107,433 35,811 996 332 72 6 1,068 338 99.0% 99.1%
0-0-0-0-82-5 107,433 35,811 1,014 338 72 6 1,086 344 99.0% 99.0%
0-0-0-0-83-2 107,433 35,811 177 59 72 6 249 65 99.8% 99.8%
0-0-0-0-83-4 107,433 35,811 837 279 72 6 909 285 99.2% 99.2%
0-0-0-0-83-9 107,433 35,811 150 50 72 6 222 56 99.8% 99.8%
0-0-0-0-e-e9 107,433 35,811 1,644 548 72 6 1,716 554 98.4% 98.5%
Average 107,433 35,811 848 283 72 6 920 289 99.1% 99.2%

Table 8. Experiment 3: Private Eye (Configuration C)
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Security
Camera

Unfiltered
unicast
event msgs

Unfiltered
multicast
event msgs

Actual
unicast
event msgs

Actual
multicast
event msgs

Unicast
overhead
msgs

Multicast
overhead
msgs

Total
unicast
msgs

Total
multicast
msgs

Relative
unicast
decrease

Relative
multicast
decrease

0-0-0-0-10-1 143,244 35,811 2,604 651 96 8 2,700 659 98.1% 98.2%
0-0-0-0-13-e 143,244 35,811 2,632 658 96 8 2,728 666 98.1% 98.1%
0-0-0-0-4-2b 143,244 35,811 48 12 96 8 144 20 99.9% 99.9%
0-0-0-0-79-0 143,244 35,811 8 2 96 8 104 10 99.9% 100.0%
0-0-0-0-81-2 143,244 35,811 1,412 353 96 8 1,508 361 98.9% 99.0%
0-0-0-0-81-8 143,244 35,811 440 110 96 8 536 118 99.6% 99.7%
0-0-0-0-82-5 143,244 35,811 1,328 332 96 8 1,424 340 99.0% 99.1%
0-0-0-0-82-5 143,244 35,811 1,352 338 96 8 1,448 346 99.0% 99.0%
0-0-0-0-83-2 143,244 35,811 236 59 96 8 332 67 99.8% 99.8%
0-0-0-0-83-4 143,244 35,811 1,116 279 96 8 1,212 287 99.2% 99.2%
0-0-0-0-83-9 143,244 35,811 200 50 96 8 296 58 99.8% 99.8%
0-0-0-0-e-e9 143,244 35,811 2,192 548 96 8 2,288 556 98.4% 98.4%
Average 143,244 35,811 1,131 283 96 8 1,227 291 99.1% 99.2%

Table 9. Experiment 3: Private Eye (Configuration D)
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