
Chisel: A Policy-Driven, Context-Aware, Dynamic Adaptation

Framework.

John Keeney, Vinny Cahill

Distributed Systems Group,

Department of Computer Science,

Trinity College,

Dublin 2,

Ireland.

{John.Keeney, Vinny.Cahill}@cs.tcd.ie

Abstract

We argue that the software user, the developer, the

designer and indeed the application logic itself all possess

invaluable intelligence to gear how software should adapt

itself to changing requirements and changing context.

We present Chisel, an open framework for dynamic

adaptation of services using reflection in a policy-driven,

context-aware manner. The system is based on

decomposing the particular aspects of a service object

that do not provide its core functionality into multiple

possible behaviours. As the execution environment, user

context and application context change, the service object

will be adapted to use different behaviours, driven by a

human-readable declarative adaptation policy script.

To demonstrate this framework we will provide a

dynamically adaptive middleware for mobile computing.

The framework will allow users and applications to make

mobile-aware dynamic changes to the behaviour of

various services of the middleware, and allow the addition

of new unanticipated behaviours at run-time, without

changing or stopping the middleware or an application

that may be using it.

This is achieved by implementing the behaviours as

metatypes in Iguana/J, which supports non-invasive

dynamic associations of metatypes to service objects

without any requirement to interrupt, change or access

the object’s source code.

1. Introduction

The principal aim of the Chisel project is to build a
framework supporting unanticipated dynamic adaptation
that will take account of contextual information from as
many sources as possible. These sources include low-level
information about the changing nature of the execution
environment, but also include high-level knowledge and
intelligence from the application being adapted and the

user using the application. Traditional systems [2, 14, 15,
21, 22, 31-33] have failed to take into account the
intelligence of the user and the application to drive
dynamic adaptation, as the execution environment, the
application resources and demands, the users’ resources
and requirements all change, possibly in an unpredictable
and erratic manner. It is unrealistic to expect an adaptation
framework using a “black box” approach to its adaptation
intelligence to perform adequately in a generalised
manner.

When an application needs to adapt it is usually not
because the core problem domain of the application has
changed, but rather that a non-functional requirement or
behaviour of some object within the application needs to
change. For example, it should not be necessary to
recompile a distributed application in order to adapt to use
a different network communications protocol. By
separating out the aspects of the application that do not
provide the core functionality of the application into
multiple non-functional behaviours, the application can be
adapted by changing these behaviours, without changing
the application itself. This can be achieved using the
concept of metatypes and reflection to implement the
adaptation mechanism.

This paper describes the design of the Chisel dynamic
adaptation framework. Section 2 describes why the
dynamic association of metatypes with base level service
objects was chosen as the adaptation mechanism. Section
3 gives an overview of the design of the Chisel framework
and how adaptations are driven by a declarative policy
rule script, which also describes high-level contextual
information influencing how the framework should adapt
base-level service objects. Section 4 describes an adaptive
middleware system based on ALICE [2, 14, 15, 32] to
demonstrate the Chisel adaptation framework. Section 5
describes related research, with conclusions and planned
future work described in Section 6.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

 2. Using reflection to dynamically inspect and

adapt software systems

This section describes the use of reflection as a dynamic
adaptation technique, and how metatypes can be used to
describe non-functional behaviours of service objects. The
Iguana/J reflective architecture is also described.

2.1. What is reflection?

A reflective computational system is a computational
system that reasons about and acts on itself. Reflection can
be used to dynamically inspect and introspect on a
computational system. Maes [19] defines a meta-system as a
computational system that stores data (metadata) that
represents some part of another computational system (base-

system or object system), i.e. a part of its domain is another
computational process. This metadata is causally connected

to the part of the object-system that it represents, i.e. if the
object-system changes then the metadata changes
accordingly, or if the metadata is changed then the object
system must change or adapt in a corresponding manner. A
reflective system is a meta-system with itself as its base
system. So a reflective computational system is one that
contains data (metadata) representing some part of itself,
data representing its functional application or domain
(object data), and a program of execution to manipulate
these data (both object data and metadata). This metadata
can be inspected to describe some part of the system, and
changed to adapt the system.

Structural reflection provides structural information about
the system by providing a concrete representation of
(reifying) structural parts of the base level as metadata (e.g.
data structures in the base-level, data types used,
inheritance, interfaces implemented etc). Behavioural
reflection is the ability to reify and change the representation
of a system and so adapt the computation and behaviour of
that system. Changing the structure of the base-level system
can also be used to change the behaviour of that base-level
system. Similarly changing the computation or behaviour of
the base-level usually involves changing some part the base-
level structure of the system. Therefore it is difficult to draw
a clear separation between structural reflection and
behavioural reflection.

The architecture of a software system may be defined as
the system’s overall structure as an organised collection of
interacting components [7]. It is described by the
components that make up the system and how these are
inter-connected. Architectural reflection is defined as
computation performed by a system about its own
architecture [7]. In an architecturally reflective system, the
system architecture is usually reified as a data structure that
is causally connected to the actual architecture of the system
[11]. This can be used to dynamically examine the

architecture of a system at run-time in a structurally
reflective manner, but it can also be used to dynamically
adapt the architecture of the system as behavioural
reflection.

In an Object Oriented programming language, a meta-
object is an object that stores information about the
implementation and interpretation of some object [19]. The
set of meta-objects that represent a particular object is that
object’s meta-level [30]. The set of meta-objects that
represent all of the base-objects in an application make up
that application’s meta-level since an application is a
collection of objects.

A black-box approach to system design means that
implementation of a system is hidden behind a strict
interface whereby the system user has no information on the
internal make-up of that system. “Open Implementation”
[17], based on reflection, gives the system a second “meta
interface”, which is separate to the traditional (base)
interface, to have the system adjust its own implementation.
The communications between the base level and meta-level
takes place through a set of well-defined interfaces. These
interfaces together are referred to as the meta-object
protocol or MOP for short [18]. A MOP allows the user to
incrementally modify the implementation and behaviour of a
programming language [18]. In an OO programming
language, a MOP can be seen as an extension to the
language’s object model, as it specifies which parts of the
object model may be reified and possibly changed.

2.2. Metatypes as an adaptation mechanism

An object’s type will describe the functional behaviours
that are directly related to the part of the core application
domain being modelled by that object. Schäfer [30]
introduced the concept of a metatype as a characterisation of
an object’s own object model, and as such its non-functional
behaviour and structure. Examples of metatypes include:
verbosity, remote accessibility, persistence, debugability,
fault tolerance or optimisation (see figure 1). An object’s
metatype may be orthogonal to its type since the behaviours
described in metatypes are not those inherent behaviours of
the entity being modelled by the object, i.e. behaviours that
are not directly related to the part of the core application
domain being modelled by that object. A metatype can be
implemented using meta-objects to implement a non-
functional behaviour. An example involves adding
persistence behaviour to an object by associating that object
with a set of meta-objects that implement persistence,
regardless of the functional data, interface or behaviour of
the object. Objects of a single type may have multiple
metatypes associated with them. Several objects of different
types may have the same metatype associated with them.
Ideally, this association of metatypes should occur
transparently to the objects, so the objects can be written in
a manner completely unaware of any metatype that may be

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

applied to it, with no changes to the object or its code, and
without interrupting any current operation of the object.

The Iguana reflective programming model [13, 26, 27,
30], is a reflective programming extension for object-
oriented languages. Iguana provides a framework to allow
metatypes to be defined, implemented as meta-objects, and
associated with objects without changing those objects’
type. It was introduced [13] as a language independent
model to incorporate meta-object protocols into high level
programming languages. It was later refined into
Iguana/C++ [30], then support for unanticipated adaptation
with Java was added in Iguana/J [26, 27].

Iguana supports the definition of multiple MOPs by
providing a framework to allow the meta-level programmer
to choose which parts of an object’s object model to reify
(see “reification categories” in [13, 26, 30]). Each part of the
object model that is reified is represented by a meta-object,
which is an instance of a meta-object class. In Iguana, a
MOP is the selection of which parts of the object model to
reify, and the association of a meta-object class to each of
these reification categories.

In Iguana, metatypes are implemented by deciding which
parts of the object model to reify, writing a set of meta-
object classes for these reified elements that embeds the new
metatype behaviour and then associating that MOP with an
object, class, or interface. The term “metatype selection” is
used to refer to this association of MOP implementations to
objects. Iguana supplies the framework to dynamically
instantiate these meta-objects to reify the object model and
correctly order and compose them if more than one
metatype is selected. Another novel contribution of Iguana
is the ability to have objects select new metatypes at run
time, thereby dynamically adding new non-functional
behaviours to the system, without changing the type of the
object.

2.3. Iguana/J

Iguana/J [26, 27] implements the Iguana reflective
architecture for the Java programming language. It supports
runtime reflection, whereby meta-objects exist at runtime
rather than compile-time, so reified operations are redirected
to the appropriate meta-objects. The Iguana/J runtime
operates by extending the Java JVM using the JIT interface,
so meta-objects can be associated with base-level object
operations at load-time or at run-time

The MOP is declared in a protocol declaration file, by
declaring which parts of the object model will be reified:

protocol MyProtocol1{

Verbose B ehaviour

+service creation
+service execution
+service state access

Verbose M etatype

-m etatype sta te

Debugging B ehaviour

+service creation
+service execution
+service sta te access

Debugging M etatype

-m etatype state

Rem ote Access Behaviour

+service creation
+service execution
+service state access

Rem ote Access M etatype

-m etatype sta te

Synchronised B ehaviour

+service creation
+service execution
+service sta te access

Synchronised M etatype

-m etatype state

M etatype selection

Som e Service
-service state

+service m ethod 1
+service m ethod 2
+service m ethod 3

Figure 1. Example service object with four possible
behaviours

 reify Creation:MyCreate1();
 reify Execution:MyExecute1();
}

The code for the meta-object classes is provided in Java,
with each class extending the default class for that
reification category:

import ie.tcd.iguana.MExecute;
class MyExecute1 extends MExecute {
 Object execute(Object o,Object [] args, Method m){

System.out.print("Executing:“+m.getName());
return m.invoke(o,args);

 }
}

The association of this MOP and its associated meta-
objects classes (a metatype) can be made statically to any
class or interface in a protocol selection file:

MyClass1==>MyProtocol1();
java.net.Socket==>MyProtocol1();

Metatype association can also be performed dynamically
from within base-level or meta-level code, to any class,
interface or object:

import ie.tcd.iguana.Meta;
MyClass1 myObject1 = new MyClass1();
Meta.associate(myObject1,"MyProtocol2",args);

With this mechanism Iguana/J maintains a high degree of
separation of concerns since there is no tangling of meta-
level code and application-level code. New meta-objects to
implement new metatypes can be written at any time and
dynamically associated with any class, interface or object.

The ability to dynamically associate metatypes with an
application’s objects allows the object model of that
application to be completely changed in a manner that is
transparent to that application since the type of any object
that selects a metatype is unchanged. Iguana/J does not
require any access to the application source code since
metatype association occurs at load-time or runtime.
Metatypes can even be associated with any third party
application classes or objects. The application does not need

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

to be restarted or altered in any way since interception
occurs every time the reified operation is performed.

While this has obvious advantages as a mechanism for
dynamic adaptation in response to changing context, it
ignores the fact that the application itself and the user are
most knowledgeable about how an application should be
adapted as its operational context changes.

3 The Chisel dynamic adaptation framework

Chisel is an adaptation framework that supports service
object adaptation in a resource aware, application aware and
user aware manner. This section describes policy-based
control, the design and operation of the Chisel framework,
and the policy language to be used to control context-aware
adaptation in the Chisel framework.

 3.1. Policy based control

A policy rule is defined as a rule governing the choices in
behaviour of a managed system [8]. Management action
policies are defined as persistent, positive or negative,
imperatives or authorities for a set of policy subjects to
achieve goals or actions on a set of target objects [8].
Informally, a policy rule can be regarded as an instruction or
authority for a manager to execute actions on a managed
target to achieve an objective or execute a change. An
adaptation policy rule is usually made up of a trigger for the
rule, which is often fired as a result of a monitoring
operation, an action to perform in response to the trigger and
a target for the action, which describes which managed part
of the system to enforce the rule upon. Many policies will
also contain some restrictions or guards confining the rule
action to appropriate occasions.

Many traditional adaptable systems [2, 14, 15, 21, 22, 31,
32] are composed of a single adaptation manager that is
responsible for the entire adaptation process; i.e. monitoring,
adaptation selection intelligence and performing the actual
adaptation. Since the intelligence to select appropriate
adaptations and the mechanism to perform these adaptations
in embedded directly within the adaptation manager, this
type of system becomes inflexible and inappropriate for
general use.

By decoupling the adaptation mechanism from the
adaptation manager, and removing the intelligence
mechanism to select or trigger adaptation, the adaptation
manager becomes more scalable and flexible. Since the user
and the application are often most enabled to make informed
choices, which are based on high-level contextual or
semantic information about how a system should adapt, then
it is logical that the user and the application help drive the
adaptation of the system.

Policy specifications maintain a very clean separation of
concerns between the adaptations available, the decision
process that determines when these adaptations are

performed and the adaptation mechanism itself. Policy
specification documents are persistent text-based declarative
representations of policy rules, where the document can
usually be edited then interpreted to support the addition of
new rules. Policy declaration files can be read, understood
and generated by users, programmers and applications.

In order for an adaptation to occur, the context changes
that may trigger some adaptation must be monitored. The
context manager should then leverage all available context
knowledge and intelligence to determine if some adaptation
is required. A separate adaptation mechanism, controlled by
an adaptation manager can then perform this triggered
adaptation as a response to an adaptation request.

3.2. Design of a context-aware, policy controlled

adaptation framework

We propose the Chisel dynamic adaptation framework,
which will adapt service objects in a context-aware policy-
based manner, using metatypes. A policy-based approach
was chosen to drive the adaptation mechanism by
incorporating user and application specific semantic
knowledge and intelligence, combined with low-level
monitoring of execution environment.

 The system is based on decomposing the aspects of the
service objects that do not provide the core functionality of
that service into multiple possible non-functional
behaviours. These behaviours of the service objects will be
implemented as Iguana/J metatypes that can be statically or
dynamically associated and disassociated with the service
object, in a completely dynamic manner, without stopping,
overwriting or changing the application or object’s code in
any way. New service behaviours can be written and
incorporated into the system at any time, even while the
service objects are operating. This system will include in the
policy document a-priori information for adaptation (self

adaptive system[11]) in the form of default behaviours and
known adaptations. To cope with adaptation requirements
that were unprecedented when the service was designed and
compiled, new reconfiguration intelligence (adaptable

system [11]) can be incorporated at runtime by altering the
policy declarations and the inclusion of new behaviours in
the form of new metatypes.

The application and the service objects will be
dynamically managed and adapted by a meta-level
adaptation manager. This meta-level coordinator will have
full access to the data in the application and so can adapt the
application and service operation in a user-aware and
application-aware manner by dynamically selecting different
behaviours for the middleware services.

The adaptation manager can access information on local
resources to trigger evaluation of the policy rules, which
may force adaptation of the base-level objects. Rule
evaluation can also be triggered by high-level contextual
information passed via the policy script. New behaviours

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

Application

CPU

Security

P
C

M
C

IA

56K

INSERT THIS END

Hardware
Resources

7 56

1211
10

8 4

2
1

9 3
Execution
Context

Context and
Resources
 Monitors

Adaptation Policy

Policy

User

<<uses>><<uses>>

Default_Behaviour
Metatype

+DoSend()
+DoRecv()

-BehaviourSpecificState1

Default_Behaviour

+DoSend()
+DoRecv()

-BehaviourSpecificState4

ConnectionOffline_Behaviour

ConnectionOffline_Behaviour
Metatype

+DoSend()
+DoRecv()

-BehaviourSpecificState2

BetterCompression_Behaviour

BetterCommpression_Behaviour
Metatype

+Send()
+Recv()

Network Communication Service

Metatype
selection

+DoSend()
+DoRecv()

-BehaviourSpecificState3

Reconnect+DisconnectEachTime_Behaviour

Disconnect+ReconnectEachTime_Behaviour
Metatype

1

*

Other
Services

Meta-level
adaptation
manager

Base-level

Meta-level

Figure 2. Design of a meta-level adaptation framework to support policy-driven context-aware adaptation of base-level
service objects

$

<<drives>>

<<triggers>>

<<adapts>>

can also be written and made available for selection
dynamically.

As the execution environment, user context and
application context change, the service objects will be
adapted to use a different behaviour in a user-aware,
application-aware and resource-aware manner driven by the
human-readable declarative adaptation policy. The system
designer, system developer, application and user can all
control how the system will adapt through this adaptation
policy document. The meta-level adaptation manager will
interpret the adaptation policy while asynchronously or
synchronously monitoring context changes that may trigger
behaviour reselection for service objects.

3.3. Resource monitoring, event triggering and

initiating adaptation

The metal-level adaptation manager will be broken into a
further series of managers and services (see figure 3). In

conjunction with an event service, events can be registered
with each resource of interest, to be thrown if significant
changes occur. Each resource can also be polled or operate a
callback mechanism to inform listeners when significant
changes occur in its context. Events can also be thrown
when other environment contexts change. This includes user
context, application context and execution environment
context. Users and applications can trigger events using the
policy declaration file. These user defined events can be
triggered by other events, at certain times or dates, or
directly by the user.
A context manager will monitor these resources for
appropriate contextual changes. When context changes
occur, the context manager, in conjunction with the policy
rule manager, will check the policy rule set to identify
relevant policy rules that may trigger adaptation relating to
the specific context change.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

The behaviour manager will be responsible for
performing behaviour adaptation by performing a metatype
reassociation on a managed service object, while keeping
track of the set of managed services and available
metatypes, and incorporating new metatypes dynamically
into its behaviour set.

Meta-level Adaptation
Manager

Event
Service

Complex
Resource

*

*

1

*

1

*

*

Low Level Resources

Rule
Manager

Behaviour
Manager

1

1

1

1

Simple
Resource

Context
Manager

Policy
Manager

<<uses>>

*
Managed

Services

Policy

Script

1

<<uses>>

Figure 3 . Design of the meta-level adaptation manager

A policy manager will be responsible for tracking
changes to the policy declaration file. This interpreted file
will be incrementally parsed, with rule declarations
translated into a series of rule objects, and user and
application contextual information passed onto the context
manager via the event service.

A rule manager will be responsible for evaluating the
rules passed from the policy manager; in conjunction with
the context information passed from the context manager,
thereby triggering appropriate behaviour changes by the
behaviour manager.

3.4. Chisel policy language

Because of the relatively uncomplicated nature of the
adaptation policy directives needed for Chisel, it was
decided to design a new policy declaration language. It was
decided that there would be no appreciable benefit from
incorporating a fully functional scripting or policy language
such as Esterel [1], Jess [29] or Ponder [8].

There are two distinct parts to the policy language
described in this section. The first part is the adaptation
rules themselves:

ON Event:
ManagedService.NewBehaviour

IF Constraints allow

This part of the language is based on a simple event,
condition action rule similar to Ponder [8]. When an event is
triggered by the context manager in response to a significant
change in a monitored resource, any appropriate rules will
be evaluated to check if the selected managed services
should be adapted to use the new behaviours specified. The
new behaviour specifies which metatype the behaviour
manager should associate with the managed service object.
All monitored resources, the managed services themselves,
and the triggered event can be queried for more information
to evaluate a series of constraints or guard statements to
focus the application of this adaptation policy rule. If an
adaptation is necessary the behaviour manager will be
requested to perform the adaptation.

This type of rule can also be used to perform more
complex event operation such as filtering:

ON Event:
Event.Operation

IF Constraints allow

Here when an event is triggered it can be used to perform
an operation on another event, such as TRIGGER, CLEAR,
DISABLE, ENABLE to disable, re-enable or clear the
triggered state of an event, coordinated through an event
service.

The second part of the policy language supports the
definition of new events dynamically.

NEW Event Trigger Condition

This demonstrates how a new event is declared that can
be automatically triggered by the event service if some
condition holds. Triggers include ON, EVERY, and AT, to
have the event trigger at a certain time, or periodically, or
WHEN to define a constraint to be calculated as above.

3.4.1. Specification of new rules

This section introduces a series of examples to illustrate
how rules are specified:

ON WirelessDisconnect:
NetworkConnectionService.WiredBehaviour

 IF NetworkConnectionService.WiredAvailable == True
 &&

WirelessDisconnect.IsTemporary == False

Figure 4. Policy Rule 1:

Here WirelessDisconnect is an event, probably
throwable by a network resources monitor, which signifies

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

that a wireless connection has become disconnected. It has a
boolean field called IsTemporary that may signify that the
resource monitor knows that this disconnection is of a
temporary nature. If the WirelessDisconnect event
triggers, this rule will be evaluated and executed.
NetworkConnectionService is the target service, and
WiredBehaviour is a possible behaviour for that service.
The service NetworkConnectionService has a boolean
field called WiredAvailable that can be queried.

When the event WirelessDisconnect triggers, the
adaptation manager will select the WiredBehaviour
metatype for the NetworkConnectionService service if the
WiredAvailable boolean field has the value True.

ON MemoryLow:

DisconnectedObjectAccess.LowMemoryCachingBehaviour
IF True

Figure 5. Policy Rule 2

In this case MemoryLow is an event, probably throwable
by memory resources monitor, which signifies that the
system is running low on available memory. If the event
triggers, the DisconnectedObjectAccessService service
object will always have its metatype changed to that
implementing a LowMemoryCachingBehaviour.

ON UserVeryInterested:
 ReplicatedDatabase.ResolveConflictBehaviour

.AskUserIfNeededBehaviour

Figure 6. Policy Rule 3:

Here UserVeryInterested is an event that signifies that
the user is knowledgeable and interested enough to
manually resolve conflicts that may occur in a replicated
database service called ReplicatedDatabase. This event is
possibly throwable by an application from a slider bar on an
advanced preferences control, or perhaps thrown in response
to a statement in the adaptation policy by an advanced user.
Since behaviours can themselves also be services, one of
ReplicatedDatabase’s behaviours is itself a service,
ResolveConflictBehaviour, with a possible metatype
called AskUserIfNeededBehaviour that presumably
allows the user to help resolve conflicts.

ON UnluckyDay:

ReallyUnluckyDay.TRIGGER
 IF TimeService.Today.Date.dd == 13

Figure 7. Policy Rule 4:

In this rule UnluckyDay is an event (see figures 8 and 9
below). When it is raised, event ReallyUnluckyDay will
also be triggered if the Today.Date.dd integer stored in the
TimeService service is equal to the value 13.

3.4.2. Specification of new events

A series of examples illustrating how dynamic events are
specified in this section:

NEW UnluckyDay Every Friday

Figure 8. Dynamic event definition 1

In this example the user is dynamically defining a new
event called UnluckyDay that will be thrown every Friday.
When the adaptation policy script is parsed by the policy
manager, the new event will be added to the event service,
with an instruction to trigger the event every Friday. This
slightly extreme example shows the flexibility of the system
to incorporate user-specific semantic information, which
may be important to one user but silly to another.

NEW ReallyUnluckyDay

Figure 9. Dynamic event definition 2

The user has defined another dynamic event called
ReallyUnluckyDay that will not be automatically thrown
by the event service. This type of event will be typically
thrown as a consequence of an adaptation policy rule. See
figure 7 above.

4. Chisel in use: adaptive middleware for

mobile computing

This section describes the use of the Chisel dynamic
adaptation framework to implement context-aware
dynamically adaptable middleware services for mobile
computing, based on the ALICE framework [2, 14, 15, 32].
Section 4.1 introduces mobile computing and the need for
context awareness in mobile computing. Section 4.2
introduces middleware for mobile computing, with an in
depth description of the ALICE framework described in
Section 4.3. Section 4.4 describes the current progress made
with this implementation.

4.1. Motivation for context aware adaptation in

mobile computing

 “Mobile computing” can be considered an extension of
distributed computing, whereby portable devices have
access to (possibly remote) services regardless of their
movement or physical location. Unfortunately, the ability to
take distributed applications to a mobile computing domain
comes with a very high price. Mobile devices are generally
more fragile than stationary computers. They can be easily
broken, reset or stolen. They are usually poor in resources
such as memory, processing power or battery life. However
the main difficulty with mobile computing is
communications via a network connection. The
characteristics of this connection can range from an
inexpensive, very high bandwidth with low latency
connection such as high-speed LAN, to a very expensive,

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

low bandwidth with high latency connection such as GSM
or infrared. Even the network address of the machine can
change. Mobile applications should also be able to handle
periods of disconnection. The application and data
characteristics, and the user’s context requirements and
limitations may all change dynamically. Any of these
contextual conditions can change without warning and to
values unknown and unprecedented by the application
designer, thereby exacerbating the need for dynamic
adaptation in mobile applications. Examples include when
the device becomes out of range for wireless connections,
when the user leaves work, or when a user suddenly
disconnects the device from its synchronisation cradle to go
to a meeting.

Many researchers have already focused on how adaptive
applications can be adapted to improve performance for
specific environment characteristics, especially network
connection conditions (see Section 5). As an example we
examine the adaptations possible to cope with an erratic
network connection. In the presence of a high quality
network connection it is possible to have a lot of network
communication. One of the main indications of this is the
promptness of consistency maintenance messages for
replicated or cached data. However, when the quality of this
connection plummets, it is necessary to maintain application
functionality while using available network resources
efficiently using varied techniques such as batching,
filtering, compression, cache pre-fetching or protocol
reselection.

Fortunately the application and the user already have a
great deal of semantic information about the requirements of
the application, possible performance improvements, future
contextual changes and how to cope best with changes. In a
mobile aware application, the application can tell a great
deal about how these resources are being used and suggest
ways to further improve the efficient use of these resources.
The major disadvantage of mobile awareness is that it is up
to the application developer to write much more than just
the application specific code since the application must
control the system adaptation to support changes in the
environment.

4.2. Middleware for mobile computing

Middleware should shelter applications from the
underlying environment, communication subsystems and
distribution mechanisms, thereby providing a single view of
the underlying environment as seen in systems such as
COM+ [21] Java RMI [31] and CORBA [22]. A middleware
system for mobile computing must be flexible to account for
heterogeneous, erratic execution contexts.

It is desirable that an adaptable middleware for mobile
computing is open, to allow the application and the user to
inspect the execution environment and manipulate the
application and middleware in a mobile aware manner,

using application specific and user specific semantic
knowledge. This open model for middleware is a break from
the black-box model of traditional middleware, yet
middleware for mobile computing should maintain a
homogeneous interface and programming model for the
application

4.3. ALICE

ALICE (Architecture for Location-Independent
Computing Environments) [2, 14, 15, 32] is an architectural
framework to support mobility by providing a range of
application level client/server protocols (see figure 10).
ALICE allows these protocols to provide their own support
for location management, disconnected operation and
connection management. In ALICE, Mobile Hosts (MH) are
mobile devices with a connection to a fixed computer called
a Fixed Host (FH). These connections are tunnelled through
Mobility Gateways (MG), which are also fixed machines.
The Mobile Host can become disconnected from a Mobile
Gateway and later become reconnected to a different
Mobility Gateway without interfering with the connection to
the Fixed Host.

ALICE is made up of a series of layers. The Mobility
Layer (ML) handles communications between devices by
overriding socket function while hiding which
communication interface is being used for the connection.
The ML tracks available connections and picks one using a
reconfigurable selection algorithm while providing
performance statistics on the different available
communication interfaces. The ML also manages
connections between the Mobile Host and the Mobility
Gateway in a mobile-aware manner using application
callbacks to inform the layers above that a disconnection or
reconnection has occurred. An application protocol specific
Swizzling Layer resides above the ML and supports
mobility of servers by translating server references and
redirecting client connections to more up to date server
references. ALICE has been implemented in the C and Java
programming languages. Versions exist for Java RMI [31]
and CORBA [22].

At present, ALICE does not provide support to force
disconnections to select a different communication
connection. In the current system a disconnection must
occur before a new connection can be selected in a resource-
aware and context-aware manner using a new reconnection
algorithm. A Disconnected Operation layer has been
designed for ALICE that will synchronously queue unsent
data between Mobile Host and Mobility Gateways while the
Mobile Host is disconnected. The main issue with ALICE is
the relative difficulty to control which connection to use and
how to incorporate more semantic information to make a
more informed choice about how the ML should reconnect
the Mobile Host and the Mobility Gateway.

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

Mobility Layer

Network Connection

IIOP Java RMI

Mobility Layer

Network Connection

IIOP Java RMI

Application

Logical flow of TCP/IP Protocol Packets

Actual flow of TCP/IP Protocol Packets

Mobile Host (MH) Mobility Gateway (MG) Fixed Host (FH)

Network Connection

IIOP Java RMI

Application

F
IX

E
D

 N
E

T
W

O
R

K

M
O

B
IL

E
 N

E
T

W
O

R
K

Figure 10. The ALICE framework

4.4. Implementation of a middleware based on

ALICE using the Chisel framework

We have begun implementing open adaptive
communication services for middleware for mobile
computing based on the ALICE framework. The
implementation in progress reimplements ALICE to use
policy-driven dynamically adaptive service objects as
described in the Chisel framework in Section 3. The user
and the application will now drive the adaptation of ALICE
in response to operation environment changes but also user
and application context changes.

In conjunction with this, we will be starting the
implementation of the policy and rule managers to interpret
a policy declaration script that uses the policy language
described in Section 3.4. Applications will then be able to
function without any change or disruption as they operate on
mobile devices in a user specific, application specific and
mobile aware adaptive manner.

By statically or dynamically associating different
metatypes with the standard java.net.Socket class [31] in a
completely transparent manner, a simple Java chat client
currently runs without disruption as a connection switches
between direct connection to a server, to connection through
a tunnelling gateway, to connection via a fully functional
mobility layer using ALICE. Absolutely no changes were
required to the application code and all adaptations can
occur without stopping the client or server application. By
performing this behaviour change the chat client application
now supports long periods of disconnection and
reconnection via a different network interface without
breaking the socket connection in any way. Currently this
adaptation occurs transparently to the application, but work
is in progress to fully incorporate the adaptation policy
mechanism to perform this adaptation in a completely
context aware manner.

5. Related Work

This section describes a selection of related research in
the fields of policy-based control, adaptive middleware
systems, and context aware systems.

The Ponder policy language [8], developed at Imperial
College London, is a declarative, object-oriented language
for specifying security and management policies for
distributed object systems. The policy language described in
this document is loosely based on Ponder obligation
policies. In this system, as events occur due to changes in
context, the adaptation manager is obliged to adapt the
behaviour of underlying system services. A fully functional
policy language to specify security constraints is however
outside the constraints of this research.

Also created in Imperial College London, GEM [20] is a
Generalised Event Monitoring language used to program
events and event monitors. It supports the generation,
processing (merging, filtering, validation), dissemination
(registration, distribution) and presentation (event
abstractions or views) of events. The language used in the
framework described in this document closely resembles the
language used in GEM to define and respond to events.

The M3 [24] project from the University of Queensland
have designed an adaptive middleware framework that
supports adaptation in a context aware manner. This is
achieved using a Mobile Enterprise Architecture Description
Language (MEADL) script to dynamically re-configure how
application and system components interact which each
other. While this system has many similar design ideas to
this project, the M3 system has some important drawbacks.
The adaptation mechanisms prototyped (including filtering,
object migration, interface restrictions and web content
adaptation) all lack the generality and openness of a
reflective mechanism like Iguana. The MEADL rules for a
“role” can include contextual information by detecting if the
role is currently operating in or out of a named context. This
approach is extremely limiting however since context
characteristics cannot often be measured as a boolean state,

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

so a ranged metric value should provide more
expressiveness and accuracy.

Presented by the DistriNet research group in Katholieke
Universiteit Leuven, Correlate [16, 28] is a concurrent
object-oriented language based on C++ (and later Java) to
support mobile agents. It has a flexible run-time engine to
support migration and location independent inter-object
communication. Each agent object has an associated meta-
object that can intercept creation, deletion and all invocation
messages for the object. This system allows non-functional
aspects of the application to be separated from the
application object, in a manner very similar to metatypes
described in Iguana above. The meta-level system was
initially used to implement load-balancing, real-time
operation, security and persistence and later used to
customise ORBs to use application specific preferences.
Application specific information is included in high-level
policies, which are consulted by the meta-level before using
the non-functional aspects of the application. However this
policy system is limited by imposing templates for these
policies. These templates cannot be changed so the need for
adaptation in response to unanticipated context cannot be
fully handled so unanticipated forms of dynamic adaptation
are very difficult to achieve in this architecture.

OpenORB [3,5] is a reflective middleware designed at
Lancaster University. At load time, appropriate components
are selected and composed as a middleware instance. Using
reflection, components can also be changed or loaded at run-
time. Every object is associated with a “meta-space” that can
be accessed through one of the “meta-model” interfaces:
“encapsulation”, “composition” and “environment”. This
system was prototyped using the python programming
language. Also described [3] is a mechanism for
management components can be added dynamically to the
component graph to both monitor and strategically adapt the
middleware in a procedural, policy controlled manner.
These event-based scripted and interpreted adaptation
controllers can be dynamically changed to facilitate
changing context and requirements. However a high level
view of how the system should adapt is lacking here.

OpenORBv2 [4], a revision of OpenORB, is a component
based reflective middleware also designed at Lancaster
University. It is implemented using the OpenCOM
component framework and provides a CORBA compliant
interface. The OpenCOM component framework [23] is
built on top of a subset of Microsoft’s COM. OpenCOM
provides low-level support for meta-models, using a series
of interfaces to COM type objects that are encapsulated with
the custom service being developed. These interfaces
provide support for dynamic insertion of interception
mechanisms, support for viewing dependencies of
components, and access to the component graph for each
component. Also included in OpenORBv2 is a “resources”

metaspace to represent the resources needed and used by
components.

DART (Distributed Adaptive Run-Time) [25] is a
reflective run-time for distributed adaptation developed by
Sony, Japan. A framework for reflective objects is provided
using meta-level method implementation selection (adaptive
methods) similar to the strategy pattern [12] to facilitate
internal application adaptation. Also included a method
interception system to call a set of meta-objects before and
after invocation, (reflective methods), to facilitate adaptation
of the application’s environment in a manner similar to
Iguana. The code to make an object reflective and adaptive
is completely mangled with the application code so there is
very little separation of concerns in this framework. How
the system adapts is specified in global policy functions that
register for adaptation events and can introspect on both the
base level and meta-level code. Policies can be loaded and
unloaded at runtime. DART also uses a description file that
is used at load-time to configure the system. This file can be
changed at any time to affect how the system will load in
future invocations, however there doesn’t seem to be
support for adding new behaviours at run-time.

K-Components [10, 11] uses asynchronous architectural
reflection to build context-adaptive software. The adaptation
logic specifying adaptive behaviour is written as adaptation
contracts in a declarative programming language (ACDL).
Adaptation occurs in response to adaptation events raised by
the application components or from the evaluation of
adaptation rules themselves. If adaptation is required, a
component can be removed from the system configuration
graph and another component, exposing the same interface,
can be swapped in. The main issue with K-Component in
relation to this system is its inability to accept new types in
the configuration graph since the configuration graph is a
static representation of the architecture of the system. The
system also requires that the adaptation event types are
known to the configuration manager at design-time, so very
little support is included to initiate adaptations in response
to unanticipated or un-typed events, as will likely occur in a
mobile or pervasive computing environment.

The CARISMA project [6] in UCL is a middleware
system made up from adaptable services. It uses context-
aware application-specific semantic information, such as
resources required or location information, in an
“Application Profile” encoded in XML. When used, the
middleware checks the application profile document and
compares with the current execution context to evaluate
which behaviour or policy the service component should use
when providing its service. Applications may change their
profiles in a reflective at run time to adapt the system as
application-specific and user-specific requirements of the
application change dynamically. This system is based on the
provision of multiple implementations of the same service
but with different behaviours in a manner similar to the

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

strategy pattern [12] unlike this system described here that
adapts the service itself.

RAM [9] from École des Mines de Nantes, France take
the approach of completely separating functional and non-
functional aspects of an application in a manner related to
Aspect Oriented Programming. Using this separation of
concerns approach, only the core application functionality is
inserted into the application code, with all middleware
services represented as non-functional concerns. The system
is adapted at run-time by means of an adaptation engine, an
application policy and a system policy. The system policy is
a low level policy that contains adaptation rules for the
system in an application transparent manner. The
application policy is a higher-level policy that contains rules
to adapt the system in an application-aware manner but does
not contain low-level execution environment information.
This system, while having the advantages of cleaner
separation of concerns, will allow greater inconsistencies to
occur, as the application policy may conflict with the
operation of the system policy. The current system does not
support dynamic changes to the policies, and so cannot
support unanticipated adaptation, however this is planned
for future versions.

Developed by Sony Computer Science Laboratory,
Apertos [33] is a reflective object-oriented operating system.
In Apertos, each object encapsulates state, methods and a
virtual execution processor. Each object is associated with a
set of meta-objects (metaspace) that defines the semantics
and behaviours (object model) for the object. The metaspace
also acts as the virtual processor that can be tailored for the
objects associated with it and later adapt itself to provide
optimal support for the object. In order to adapt an object at
run-time, it is migrated to a different metaspace (group or
hierarchy of meta-objects) that provides the new desired
behaviour. Apertos is the first example of a reflective object
oriented operating system that models operating system
services as behaviours provided by an object’s meta-level.
The Apertos approach of modelling behaviours as adaptable,
low-level operating system level entities is in some ways
similar to approach described here. However, the framework
described here is intended to run on top of a configurable
network enable operating system so it will support
adaptation at a higher level of abstraction than Apertos.
Apertos also does not support dynamic addition of new
behaviours by the dynamic creation of metaspaces, since
metaspaces are compiled down to ordinary code to be used
at run-time. Apertos also has no structured support for
context-aware behavioural adaptation.

6. Conclusions and future work

This document describes a general-purpose adaptation
framework, called Chisel, that gears its adaptation based on
the changing contextual resources and requirements of the

user, application and execution environment. In order to
maintain the general nature of this framework it proved
necessary to open up the adaptation system to allow external
intelligence and contextual information to drive the
adaptation decision process. A human readable declarative
policy script was chosen as an easy to use, generalised and
extensible solution to passing this data to the adaptation
manger.

A context-aware, dynamically adaptable middleware for
mobile computing was chosen as a prototype application of
this framework. This middleware will provide adaptable
services, such as network communications, for the
applications residing above it, without interrupting or
changing the code of the applications or the services in any
way. The policy script will allow the application and the
user to drive the adaptations in manner most appropriate to
their own requirements and available high-level resources.

The implementation of the adaptation framework and the
middleware services is currently underway with favourable
initial results. We expect completion the system within the
next few months.

7. References

[1] G. Berry, "The Foundations of Esterel", in Proof,
Language and Interaction: Essays in Honour of Robin Milner, G.
Plotkin, C. Stirling, and M. Tofte, Editors. MIT Press. 1998

[2] G. Biegel, V. Cahill, and M. Haahr. "A Dynamic Proxy-
Based Architecture to Support Distributed Java Objects in Mobile
Environments". in International Symposium of Distributed Objects
and Applications, (DOA 2002). Irvine, CA. 2002

[3] G.S. Blair, et al., "Supporting Dynamic QoS
Management Functions in a Reflective Middleware Platform". IEE
Proceedings - Software. 147(01): p. 13-21. 2000

[4] G.S. Blair, et al., "The Design and Implementation of
Open ORB v2". IEEE Distributed Systems Online. 2(6). 2001

[5] G.S. Blair, et al. "An Architecture for Next Generation
Middleware". in Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing
(Middleware'98). Lake District, UK: Springer-Verlag. 1998

[6] L. Capra, W. Emmerich, and C. Mascolo. "Exploiting
Reflection and Metadata to build Mobile Computing Middleware".
in Workshop on Mobile Computing Middleware. Co-located with
Middleware 2001. Heidelberg, Germany. 2001

[7] W. Cazzola, et al. "Architectural Reflection: Bridging the
Gap Between a Running System and its Architectural
Specification." in proceedings of 6th Reengineering Forum
(REF'98). Firenze, Italy: IEEE. 1998

[8] N. Damianou, et al. "The Ponder Specification
Language". in Workshop on Policies for Distributed Systems and
Networks (Policy2001). HP Labs Bristol. 2001

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

[9] P.-C. David and T. Ledoux. "An Infrastructure for
Adaptable Middleware". in DOA'02. Irvine, California, USA,.
2002

[10] J. Dowling and V. Cahill, "Dynamic Software Evolution
and the K-Component Model". Workshop on Software Evolution,
OOPSLA. 2001

[11] J. Dowling and V. Cahill, "The K-Component
Architecture Meta-Model for Self-Adaptive Software".
Proceedings of Reflection 2001, LNCS 2192. 2001

[12] E. Gamma, et al., "Design Patterns: Elements of
Reusable Object-Oriented Software": Addison Wesley. 416. 1994

[13] B. Gowing and V. Cahill, "Meta-Object Protocols for
C++: The Iguana Approach". Reflection '96. p. 137-152. 1996

[14] M. Haahr, R. Cunningham, and V. Cahill. "Supporting
CORBA Applications in a Mobile Environment." in MobiCom '99:
5th International Conference on Mobile Computing and
Networking. Seattle. 1999

[15] M. Haahr, R. Cunningham, and V. Cahill. "Towards a
Generic Architecture for Mobile Object-Oriented Applications". in
SerP 2000: Workshop on Service Portability. San Francisco. 2000

[16] B.N. Joergensen, et al. "Customization of Object Request
Brokers by Application Specific Policies". in Middleware'2000
conference. New York, USA. 2000

[17] G. Kiczales, "Beyond the Black Box: Open
Implementation", in IEEE Software. p. 8-11. 1996

[18] G. Kiczales, J.d. Rivieres, and D. Bobrow, "The Art of
the Metaobject Protocol": MIT Press. 1991

[19] P. Maes, "Computational Reflection", PhD, Vrije
Universiteit Brussels, 1987

[20] M. Mansouri-Samani, "Monitoring of Distributed
Systems", PhD, Department of Computing, Imperial College,
London, 173. 1995

[21] Microsoft_Corporation, "COM+
(http://www.microsoft.com/com/tech/COMPlus.asp)". 1999

[22] Object_Management_Group, "The Common Object
Request Broker: Architecture and Specification (OMG Document
formal/02-06-01)", formal/02-06-01, 2002

[23] N. Parlavantzas, et al. "Towards a Reflective Component
Based Middleware Architecture". in Workshop on Reflection and
Metalevel Architectures. Sophia Antipolis and Cannes, France.
2000

[24] A. Rakotonirainy, et al., "Middleware for Reactive
Components: An Integrated Use of Context, Roles and Event
Based Coordination". IFIP/ACM International Conf on Distributed
Systems Platforms, Middleware 01. (LNCS Vol. 2218): p. 77-98.
2001

[25] P.-G. Raverdy and R. Lea. "DART: A distributed
adaptive run-time". in IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware
'98). 1998

[26] B. Redmond and V. Cahill, "Iguana/J: Towards a
Dynamic and Efficient Reflective Architecture for Java", in
Workshop on Reflection and Meta-Level Architectures at 14th
European Conference on Object Oriented Programming (ECOOP),:
Cannes, France. 2000

[27] B. Redmond and V. Cahill, "Supporting Unanticipated
Dynamic Adaptation of Application Behaviour". ECOOP '02. 2002

[28] B. Robben, et al. "Non-Functional Policies". in
Proceedings of the Second International Conference on Metalevel
Architectures and Reflection. Saint-Malo, France: Springer-Verlag.
1999

[29] Sandia_National_Laboratories, "Jess, the Rule Engine
for the Java Platform (http://herzberg.ca.sandia.gov/jess/)", 2003

[30] T. Schäfer, "Supporting Metatypes in a compiled,
reflective programming language", PhD thesis, Dept. of Computer
Science, Trinity College Dublin, Dublin, 131. 2001

[31] Sun_Microsystems_Inc., "Java 2 Platform, Standard
Edition (J2SE)". http://java.sun.com/j2se/. 2002

[32] T. Wall, "Mobility and Java RMI", MSc, Computer
Science, Trinity College Dublin, Dublin, 70. 2000

[33] Y. Yokote, "The Apertos reflective operating system:
The concept and its implementation". Proceedings of the
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA). 27(10): p. 414-434. 1992

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on January 20, 2009 at 07:39 from IEEE Xplore. Restrictions apply.

