
A Peer-to-Peer Reference Architecture
Atul Singh and Mads Haahr

Distributed Systems Group
Department of Computer Science

Trinity College, Dublin
Ireland

Email: Atul.Singh@cs.tcd.ie, Mads.Haahr@cs.tcd.ie

Abstract— Peer-to-Peer (P2P) applications are extremely popu-
lar on the Internet because they allow users to share information
in a decentralised manner. Internet users use file-sharing appli-
cations (e.g., BitTorrent, KaZaA) to share and exchange files and
collaboration applications (e.g., Jabber, Groove) to exchange chat
messages and work on shared documents. A reference architecture
for a domain provides an architecture template which can be used
as a starting point for designing the software architecture of a
system in that domain. Despite the popularity of P2P applications
there is no reference architecture for the P2P domain. This
paper presents a reference architecture for the P2P domain.
The reference architecture has been designed to satisfy the
concerns that a P2P application needs to address. The reference
architecture takes a service-centric view of the P2P domain. The
reference architecture can be used to describe the structure of
existing P2P applications and middlewares. The paper validates
the reference architecture by describing the structure of some of
the existing P2P applications and middlewares using the reference
architecture.

I. INTRODUCTION

P2P applications are distributed systems without any central
control, where all the peers are equivalent in functionality.
Recent surveys show that P2P applications generate a high
percentage of traffic on the Internet [1]. The high popularity
of P2P applications among Internet users is because of its
ability to allow its users to share and exchange information
without the need of costly and difficult to maintain centralized
infrastructure. Internet users use file-sharing applications (e.g.,
BitTorrent [2], KaZaA [3]) to share and exchange files and
collaboration applications (e.g. Jabber [4], Groove [5]) to
exchange chat messages and work on shared documents.
Despite the popularity of P2P applications there is no ref-
erence architecture for the P2P domain. This paper presents a
reference architecture for the P2P domain.

A software architecture describes the structure of a software
system. It describes and defines the software elements that
comprise the system, the externally visible properties of these
elements, and the relationships among them [6]. Software ar-
chitectures are used to communicate the high-level design of a
system to a diverse audience which may include programmers,
managers and customers. The software architecture design
phase is used to take design decisions which affect a system’s
remaining development, deployment and maintenance life.

A reference architecture defines the software elements,
their functional responsibilities and the allowed interactions
between them for a particular domain [7], [6], [8]. Reference

architecture can be used as the starting point for designing
the architecture of a software system of that domain. A
reference architecture saves time and effort in the areas of
requirement analysis and functional partitioning of the system
[9]. Reference architecture is often used in mature domains
like compilers and databases. For example a compiler is
composed of a scanner parser, semantic analyzer and a code
generator subsystem [10]. The dramatic success of Napster
[11] in 1999, brought P2P applications into the limelight.
Since then the research community has done a lot of work
on P2P and many new P2P applications have been developed.
Wikipedia [12] lists more than one hundred P2P applications.
The authors feel that the P2P domain has reached a level of
maturity that a reference architecture should be established for
it. This paper proposes a possible reference architecture for the
P2P domain.

The reference architecture presented in this paper has been
derived by studying existing P2P middlewares and applica-
tions. Based on this we have identified the core-concerns
(use cases) that a P2P application needs to address. The
elements of the reference architecture cooperate to satisfy
these core concerns. A service-centric view has been taken
to simplify the reference architecture because the notion of
services lends itself well to modelling P2P applications and
middlewares. A P2P overlay network is used to share both
resources and services among peers on the overlay network.
However resources can be accessed through services and so the
reference architecture presented in this paper takes a service-
centric view. In the reference architecture peers on the overlay
network work together to use services offered by each other.
The shared services can be used to access resources shared
on the overlay network. A service-centric view facilitates the
development of P2P applications and middlewares using the
reference architecture because the software implementation
can use the support for service-oriented architecture provided
by the existing middlewares like CORBA [13] and SOAP [14].

Bernstein [15] defines middleware as programming inter-
faces and protocols that sit “in the middle”, in a layer above the
operating system and networking software and below industry
specific applications. A middleware provides services that can
be used to rapidly develop and deploy distributed applications.
Singhai [16] has done research on describing the structure
of existing object-oriented middlewares like CORBA and
Java RMI [17]. The growing popularity of P2P applications

0-7803-9575-1/06/$20.00 ©2006 IEEE

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Component-Connector UML 2.0
element element
Component Component
Connector Associations
Role Not represented
Port Port
Protocol Note

TABLE I
THE UML 2.0 ELEMENTS USED TO DRAW COMPONENT-CONNECTOR

DIAGRAMS.

has given rise to P2P middlewares (e.g. JXTA [18], MSN
P2P [19]). While these middlewares facilitate P2P application
development, there is a lack of a common vocabulary to
effectively describe the structure of these middlewares and
P2P applications. The reference architecture presented in this
paper can be used to describe and compare the structure
of P2P applications and middlewares. This paper uses the
reference architecture to describe the structure of some popular
P2P applications and middlewares. The reference architecture
can be used as a starting point for developing the software
architecture of new P2P applications and middlewares. The
reference architecture can be used to develop a customizable
P2P middleware which allows instances of different types of
architecture elements in the reference architecture to work
together with each other to create a P2P application.

The rest of the paper is organized as follows. Section II
presents the background material that is required to understand
the work presented in this paper. The section defines Service
Oriented Architecture (SOA) and discusses the rationale be-
hind taking a service centric view. The section also presents
the diagrammatic notation used to describe the reference
architecture. Section III presents a summary of the study of
existing P2P applications and middlewares which is used as
the basis for deriving the reference architecture. Section IV
presents the reference architecture. Section V validates the
reference architecture by describing the structure of some
of the existing P2P applications and middlewares using the
reference architecture. Section VI presents the conclusion of
this work.

II. BACKGROUND

A. Service-Oriented Architecture

A service is a unit of work done by a service provider to
achieve desired results for a service consumer [20]. Service-
oriented architectures (SOA) is an approach that utilizes soft-
ware services as fundamental elements for developing software
applications [21], [20], [22]. In SOA software resources are
services available and discoverable on a network. Common
Object Request Broker Architecture (CORBA), Microsoft’s
Distributed Component Object Model (DCOM) and SOAP are
examples of middlewares that provided this functionality.

In SOA the underlying implementation details of a service
are hidden from the service consumer through encapsulation.
There is a loose coupling between the service provider and

the service consumer which means that changes can be done
in either one of them without affecting the other. The service
consumer uses the service interface description and the service
address to access the service. The service provider can easily
change the implementation of the service without breaking the
service consumer. Also, if required, the service consumer can
use a service at an alternate location if it has same service
interface as the original service provider. The loose coupling
between the service provider and consumer facilitates the use
of the same service across many applications, thereby reducing
the development cost and errors in the application and ensuring
faster development time.

The reference architecture uses the service-oriented archi-
tecture because it lends itself well to modelling P2P applica-
tions and middlewares. A P2P system is used to share a wide
variety of resources and services. A P2P system can be used
to access shared services which perform tasks like providing
information about other peers on the network, numerical
computations and routing of messages on the overlay network.
A P2P system can be used to access a wide variety of shared
resources like files, videos, messages, CPU cycles and storage
space. However the shared resources can be accessed through
services running on the peers. Since all the sharing in a
P2P system can be conceptualized using services, a service-
oriented approach has been used in the reference architecture.
The reference architecture is designed to support sharing and
access of services on a P2P network.

The paper uses the term servent 1 to refer to components
which provide a service and can be used to access a similar
service provided by another peer. A servent can act both as
a client and a server. All the peers in a P2P network are
equivalent in functionality and can act both as a client and
a server. A peer needs to act both as a consumer (client) and
provider (server) for all the concerns mentioned in Table II
because of which the reference architecture handles most of
these concerns using servents.

Peers join a P2P network to utilize services offered by
other peers. The services can be divided into two types:
network service (NES) and node service (NOS). A network
service is available on more than one peer in the network.
Different instances of the network service work together to
execute a task. A node service is offered by an individual
peer. The service is specific to the peer offering the service.
This distinction is important as it determine the way a service
will be invoked.

B. Documenting Software Architecture

Software architecture is documented using views, each of
which concentrates on a different aspect of the software
system. Different researchers suggest using different types and
numbers of views for documenting software architectures. For
example [23] suggest using 4+1 views, [6] suggest using 3
views and Soni et. al. in their works [7], [24], [25] suggest us-
ing 4 views. This work follows the suggestion given by Soni et.

1coined by merging together the first three letters of the word server and
the last three letters of the word client

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

al.. They suggest using four views called code view, execution
view, module view and conceptual view to document a software
architecture. The views are enumerated in the reverse order
in which they should be designed. The first three views deal
with the actual implementation of the software system using
programming languages, operating systems, communication
mechanisms and so forth.

The fourth view or the conceptual view describes the struc-
ture of the software system at a high level of abstraction using
architecture elements which can not be directly implemented
by using software technology [7]. In this view the functionality
of the system is mapped to architecture elements called con-
ceptual components (or just components), with coordination
and data exchange handled by elements called connectors.
Both components and connectors can be further decomposed
into more components and connectors. The notion of build-
ing a system by interconnecting components is appealing
because of the potential for reuse and for incorporating off-the-
shelf components. The components interact with the outside
world using elements called ports. A port describes both the
messages (operations) that the component can process and
the messages that it invokes. Connectors interact with the
components using elements called roles. Both ports and roles
obey protocols. A protocol is defined as a set of incoming
message types, outgoing message types and the valid message
exchange sequence. A port and a role can be connected
together if the port’s protocol is the conjugate of the role’s
protocol. Because of space constraints this paper only presents
the conceptual view of the reference architecture.

The diagram used to describe a conceptual view is called
a component-connector (CC) diagram. A CC diagram shows
the elements (e.g. components, connectors) of the conceptual
view. The paper uses the UML 2.0 standards to draw the CC
diagrams. There is no direct mapping between the elements of
the component-connector diagram and the UML notation [26].
Table I shows the UML elements that have been used to draw
the elements of CC diagrams. UML components can contain
other UML elements which makes them an ideal choice for
representing CC components. The newly introduced concept
of ports in UML 2.0 is similar to the ports in CC diagrams
and has been used to represent the ports. The paper uses UML
associations to represent connectors as suggested in [26]. Since
roles and ports which are connected to each other must obey
similar protocols, roles are not documented in the CC diagrams
in this paper.

III. CORE-CONCERNS FOR A P2P APPLICATION

Current P2P applications can be divided into three major
categories based on application domain: parallel computing,
content-management and collaborative [27]. The authors have
studied P2P middlewares and applications belonging to all the
three major categories of P2P applications and have identified
the concerns that a P2P application needs to address [28]. The
concerns can be divided into five groups. Table II presents
the groups along with the concerns. The concerns are the use-
cases that a P2P application needs to address. The reference

Group Concern
Naming Identification of entities in a P2P system (identification).

Resolution of entity id to a physical address (resolution).
Overlay Search for a connected peer on the overlay network
Management (search).

Handle join requests (join).
Handle leave requests (leave).

Service Advertise services/resources to share (advertise).
Management Discovery of shared services/resources (discovery).

Access the service/resources (Access).
Message Maintain the topology (topology).
Routing Routing of messages (routing).
Security Authentication of peers (authentication).

Authorization of peers to access a resource/service
(authorization).
Secure transmission of messages (confidentiality).

TABLE II
THE CORE CONCERNS THAT A P2P APPLICATION NEEDS TO ADDRESS.

architecture presented in this paper handles all these use-cases.
P2P systems assign a network (underlying physical network)

and location independent id (identification) to the entities (e.g.,
peers, resources, services, etc.) in a system. The id’s allow
P2P systems to manage entities whose physical location (IP
address) on the network changes with time. The id’s are
dynamically resolved (resolution) to determine the current
physical location of the entity. For example, in the JXTA [18]
reference implementation the id is a 128 bit universally unique
identifier (UUID) generated by the peer. The JXTA reference
implementation uses a combination of a central server (called
rendezvous server) and IP multicast to resolve the id to a
physical address.

Peers join an overlay network through another peer which
is already connected to the overlay network. Connected peers’
addresses may be well known information or they can be
obtained by IP multicast (search). The peer accepting the con-
nection (join) may redirect the incoming peer to another peer.
The connecting peer may also be supplied with information
relevant for it. For example, in Jabber [29], [4], [30] peers
connect to a well known server to join the overlay network.
The server provides the connecting peer with information
about the availability of other peers on the network.

Peers use the overlay network to advertise their resources
and services and to discover new resources and services
which they can access. For example, in Jabber the peers
advertise the details of the shared resources and services to a
central server. Peers can discover the details about the shared
services/resources by sending a query message to the central
server. The service/resources can be accessed by doing a
remote process call (RPC). Peers may inform one or more
peers on the overlay network when they leave the overlay
network. For example, in Jabber the peers send a presence
message of type unavailable to the central server.

Peers in decentralized P2P systems maintain connections
to other peers in the network. The graph formed by these
connections constitutes the topology of the overlay network.
The connections are used to route messages. A peer can
directly send the message to the destination peer if the

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Fig. 1. A UML diagram providing a high level overview of the P2P reference
architecture.

Fig. 2. A UML diagram presenting a conceptual view of the runtime
component.

destination peer’s address is available. If the destination peer
is not accessible or its physical address is not available then
the source peer may route the message to one or more known
peers on the network, which can in turn route the message
to the destination peer. The P2P software is responsible
for maintaining connections (topology) which improve the
efficiency of the P2P system. Authentication, authorization
and secure transmission of messages (confidentiality) are the
security-related concerns.

IV. P2P REFERENCE ARCHITECTURE

Figure 1 presents a high-level overview of the reference
architecture. The reference architecture consists of three key
components: common runtime, security and core servents.
The common runtime provides the messaging infrastructure
used to exchange messages between peers in order to invoke

Fig. 3. A UML diagram depicting the conceptual view of the core servents
of the reference architecture. The core servents handle most of the concerns
which need to be addressed by a P2P application.

(access) a service. The common runtime is used by all types
of servents to communicate with servents on other peers. The
security component deals with handling the security related
concerns such as authentication, authorization and the secure
transmission of messages. The reference architecture suggests
using aspects [31], [32] to implement the security-related con-
cerns. This paper does not define the structure of the security
components. Except for routing, the core servents address all
the concerns that a P2P application needs to handle. The
routing logic may vary for different services and is handled
by the servent for which a request arrives. In the reference
architecture a P2P application consists of application servents
(e.g., for file sharing or instant messaging) that are responsible
for the application logic. The reference architecture supports
multiple co-existing application servents. This means that an
application developed using the reference architecture can be
used to share multiple services. An instance of the reference
architecture can have multiple instances of the core servents,
security component and runtime. These instances can be used
by an application to connect to different overlay networks.

There are six core servents (see Table IV) which handle
all the concerns except routing and access. Figure 3 shows
a conceptual view of the core servents. The core servents
along with the concerns they handle are shown in Table IV.
A servent can handle incoming messages from both remote
and local servents and applications. The protocol used by the
core servent ports is shown in Table III. The protocols are
documented using the notation suggested in [7]. The table
does not show implementation-specific details (e.g. source IP
and port of message that are sent with the messages). The
protocols define the structure of the messages exchanged to
invoke these servents. The OverlayNetworkDiscovery (OND)
servent is used to search for connected peers on the overlay
network to which a new peer can connect. The port portOND
of the OND servent expects a single incoming message
getPeers with the new peer’s information and responds with
information about a list of peers to which the new peer can
connect. The MembershipManagement (MM) servent is used
to handle requests to join and leave the overlay network.
The port portMMJ of the MM servent expects an incoming
message joinOverlayNetwork with the new peer’s information.
Upon receiving the joinOverlayNetwork message the servent

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

portMMJProtocol portONDProtocol portSDProtocol
incoming incoming incoming
joinOverlayNetwork(getPeers(findService(name,

newPeerInformation) newPeerInformation) criteria)
outgoing outgoing outgoing
redirect(PeerInformation[]) PeerInformation[] ServiceDetail[]
reject
accept(PeerInformation[])
portSAProtocol portGetIdProtocol portGetPeerProtocol
incoming incoming incoming
advertise(ServiceDetail) getId(getPeer(id)

ServiceOrResource
Description)

outgoing outgoing outgoing
success id PeerInformation
fail

portMMLProtocol portTAProtocol
incoming incoming
leaveOverlayNetwork registerServentCache(

serventCacheName,
topologyAdaptationPolicy)

outgoing outgoing
accept
reject

TABLE III
THE PROTOCOL OBEYED BY THE PORTS OF THE CORE-SERVENTS IN THE

REFERENCE ARCHITECTURE.

can reject, accept or redirect the new peer’s request. The
port portMML of the MM servent is used to leave the
overlay network and it expects a single incoming message
called leaveOverlayNetwork. A peer wishing to advertise its
services sends an advertise message to the port portSA of
its ServiceAdvertisement (SA) servent. The SA servent may
advertise the service detail to the SA servent of the other peers
on the overlay network and responds back to its peer with a
success or fail message. The ServiceDiscovery (SD) servent is
used to discover the details of services on the overlay network
that match a search criterion. The portSD port of the SD
servent expects a single incoming message findService with
the search criteria and responds with the details of a list of
services matching the search criteria. The Naming (N) servent
is used to assign a unique identifier to entities in a P2P system
(using portGetID) and to resolve an entity’s id to a physical
IP address (using portGetPeer).

An overlay network can be defined in terms of the poli-
cies it uses to implement the different components of the
reference architecture. A peer can join an overlay network
if it has the set of instances of the reference architecture
elements that implement the policies that the overlay network
desires. Existing P2P systems like JXTA [33] try to make P2P
applications interoperable by defining standards (format and
on wire form of the message) for the messages exchanged
between peers. However messaging standards alone do not
ensure interoperability. For example, a peer (P) might not
implement the SA servent and instead use a multicast on the
overlay network policy for the SD servent to discover services
on the overlay network. An overlay network (ON) with a small

Core Servent Concern
OverlayNetworkDiscovery (OND) Search
MembershipManagement (MM) Join (JN), Leave (LV)
ServiceAdvertisement (SA) Advertise
ServiceDiscovery (SD) Discovery
Naming (N) Identification (ID), Resolution (RES)
TopologyAdapter (TA) Topology

TABLE IV
THE CORE SERVENTS OF THE REFERENCE ARCHITECTURE AND THE

CONCERNS THEY HANDLE. THE ACCESS CONCERN IS HANDLED BY THE

CLIENT AND SERVER COMPONENTS OF THE COMMON RUNTIME. THE

ROUTING CONCERN IS HANDLED BY THE INDIVIDUAL SERVENTS.

portCreateProtocol portAddProtocol portSearchProtocol
incoming incoming incoming
createServentCache(addServentCacheEntry(searchServentCache(

serventCacheName, serventCacheName, criteria)
setOrKeyValuePair, serventCacheEntry)
topologyAdaptation-
Policy)

outgoing outgoing outgoing
ServentCache success serventCacheEntry[]

fail
portDeleteProtocol portClientProtocol portServerProtocol
incoming incoming incoming
deleteServentCacheEntry(sendMessage(receiveMessage(

criteria) dstnAddress, Message)
Message)

outgoing outgoing outgoing
success success
fail fail

TABLE V
THE PROTOCOL OBEYED BY THE PORTS OF THE RUNTIME COMPONENTS.

number of peers might expect its peers to use multicast to
all known peers policy for the SA servent and to use the
information provided by the SA servent to perform service
discovery (SD). When P joins ON, messaging standards for
example those set by JXTA, ensure that peers on ON can
understand the SD messages send by P. However the peers on
ON will not know how to process the messages sent by peer
P.

The common runtime can be further decomposed into three
components (see Figure 2) which are: Client, Server and
CacheManager. The server component receives messages from
the network and directs them to the appropriate servent. The
client component helps servents to invoke services provided
by servents on other peers. Together the Client and the Server
components handle the access concern. The CacheManager
component is responsible for maintaining a cache called the
servent cache. The servent cache can be used to process both
incoming and outgoing requests for a service and/or provide
identifiers of a set of hosts which provide that service. The
servent cache can be implemented as a set of values or as a
table of (key, value) pairs. The table may be hashed to improve
efficiency. A servent instance may ask the CacheManager to
create a servent cache of a desired type (set or table). The

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Fig. 4. A UML diagram of the conceptual view of a generic servent. All the connectors depict local method invocation. The Routing component may use
the Client component.

data stored in a servent cache will vary with the service. For
example, for a file sharing service the servent cache can be
a set of (file id, host) pairs. One servent cache can be shared
across multiple servents.

Table V shows the protocols used by the ports of the
common runtime components. The port portCreate of the
CacheManager component is used to create a servent cache.
In the incoming message, the port expects a name for the
servent-cache, the topology adaptation step to be used on the
servent cache and the description of the servent cache (set or
table of (key, value) pairs). The port creates a new servent
cache if one with the given name and properties does not
exists and returns a reference to it. The portAdd, portDelete
and portSearch ports of the CacheManager are used to add,
remove and search entries from a servent cache with a given
name. The portClient port of the Client component is used to
send a given Message to a destination address. The Message
format is determined by the protocols obeyed by the port to
which the message is destined. The portServer of the Server
component is used to receive messages. The server directs an
incoming messages to an instance of the servent type (specified
in destination Address) for which the message is intended.

The TopologyAdapter servent works on the servent cache.
It will normally be used to change the servent cache entries
so that a service request can be processed more efficiently. A
servent cache would generally contain information about other
peers on the overlay network which provide a similar service.
A request for a service would be redirected to one or more
of these peers if the local servent handling the request can
not handle it. The TopologyAdapter servent ensures that the
servent cache contains entries which will help in an optimal

processing of the service.
Figure 4 shows the conceptual view of a generic P2P

servent. During initialization, a servent may do either of the
following: i) advertise its services using the port portSA of the
ServiceAdvertisement servent and/or ii) use the port portGetId
of the naming servent to get an id for the servent, and iii) use
the port portAdd of the CacheManager to create a servent
cache. The Implementation component provides the actual
service implementation. The Implementation component uses
the CacheManager to find an existing response for an incoming
request from a servent cache (if used by the servent). If
a response is available from the CacheManager then it is
returned. However if a cached response is not available then
the Implementation component tries to process the request
locally and send a response. If it can not process the request
locally then it uses the RemoteAccess component that uses
other peers on the overlay network to process the request and
generate a response. The Implementation component directs a
request to the Router component for processing if the request’s
destination is not the servent’s peer. Before returning the
response the Implementation component updates the servent-
cache (if used by the servent) using the CacheManager.

The RemoteAccess component of a servent is used to
process a service request by using other peers on the overlay
network if it can not be processed locally by the servent.
The RemoteAccess component uses its FindPeers component
to find details of peers hosting similar servents that can be
used to process the request. The FindPeers component uses
the CacheManager and/or the ServiceDiscovery servent to
find these peers. The FindPeers component uses the port
portGetPeer of the Naming servent to resolve a peer id to

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

its IP address. The InvokeService component then processes
the incoming request using the servents on the peers supplied
by the FindPeer component.

V. APPLYING THE REFERENCE ARCHITECTURE.

All the components of the reference architecture are ab-
stractions that can have multiple instances implemented using
different policies. This section describes some of the exist-
ing P2P applications and middlewares using the reference
architecture. This section describes: Gnutella a pure P2P file-
sharing system, Freenet a P2P content storage system, JXTA a
multi-purpose P2P middleware and Jabber a platform for P2P
collaboration. For each P2P system the routing algorithm and
the servent cache structure is described. The routing policy and
the servent cache used by all the servents in the P2P system
is documented using tables.

A. Gnutella

Gnutella [34], [35] is a decentralized P2P file-sharing net-
work. Gnutella creates an unstructured, self-organizing overlay
network of peers. There is no constraint on the position of the
files. A peer uses a breadth-first search on the overlay network
to locate a file. Once the peer containing the file is located, a
direct connection is used to transfer the file.

All the peers in Gnutella implement two application servent
which are: File getFile(String fileName) which is used by other
peers to download files and PeerInformation getPeers() which
is a network service used by a connected peer to discover other
peers on the overlay network. Table VI shows the policies
used by Gnutella to implement the different core-servents. The
table also describes the routing policy and the servent cache
used by the different servents. New peers join the Gnutella
network using an available peer from a list of well-known
peers which are connected to the Gnutella overlay network.
When the new peer joins the network the peer accepting the
connection provides the new peer with information about other
peers on the network. Naming service is provided by the
Gnutella application. The application generates a unique 16
byte identifier for each new messages.

ServiceDiscovery is implemented as a network service. The
ServiceDiscovery, OverlayNetworkDiscovery and getPeers()
servents share a single servent-cache which is a set of ad-
dresses of the peers on the overlay network. A peer searches
for a file it wants by using the ServiceDiscovery servent.
The ServiceDiscovery servent sends out a multicast message
containing a search request for a getFile service which can
provide a file matching the peer’s requirements to all the peers
in the servent-cache. A peer receiving the request responds
back with its address and a list of files matching the search
query. If the time to live for the request has not elapsed then
the peer forwards the request to all the nodes in its servent-
cache. The getPeer() network service is accessed by sending
a multicast to all the peers in the servent-cache. The peer
receiving the request responds back with information about
itself. If the request has not reached its time to live then the
peer propagates the request to the peers in its servent-cache.

Servent Cache
Name Description
PeerCache (GPC) Set of Peer Information

Routing Policy
Name: Multicast (GMC)
Algorithm:
if (isRequest(message)) {

if (!hasSeen(message.id)) {
message.TTL (Time to live) = message.TTL - 1
message.TTL ! = 0 ? forwardMessage(GPC - message.peer) :
sendMessageResponse(message.peer)
cache(message.id and message.peer mapping)

}
} else {

if (hasSeen(message.id)) {
forwardMessage(findPeerWhichSendRequest(message.id))

}
}

Application Servents
Name Routing Servent

Policy Cache
PeerInformation getPeers() GMC GPC
File getFile(String fileName) none none

Core Servents
Name Policy Routing Servent

Policy Cache
OND Well-known peers none GPC
MM(Join) Peers on the none GPC

overlay network
MM(Leave) none none none
SA none none none
SD Multicast to peers GMC GPC

in PeerCache
N(ID) none none none
N(RES) none none none
TA none none none

TABLE VI
DESCRIBING GNUTELLA USING THE REFERENCE ARCHITECTURE.

B. Freenet

Freenet [36], [37] is a censorship free P2P content storage
and retrieval system. It provides complete anonymity to the
contents publisher and user. It reduces the slashdot effect2,
by caching the data on multiple nodes closer (in terms of
node hops) to the contents users. All data stored on Freenet
is associated with a key.

All the peers in Freenet implement two application servents
which provide network services. They are Data getData(Key k)
which returns data for a given key, and void insertData(key,
data) which is used to publish data associated with a key.
Table VII shows the policies used by Freenet to implement
the core servents of the Reference Architecture. The table also
describes the routing policy and the servent cache used by the
different servents. New peers join the Freenet network using
an available peer from a list of well-known peers which are
connected to the Freenet overlay network. When a new peer
joins the network the existing peers work together to assign

2Slashdot effect refers to the slowing down or temporarily closing of a
web-site because of a heavy influx of web-traffic caused by a mention of the
web-site on Slashdot, a popular technology news and information site.

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

Servent Cache
Name Description
DataCache (FDC) table of

(dataKey, (hostAddress, data)) tuples

Routing Policy
Name: Freenet Routing Algorithm (FRA)
Algorithm:
if (isRequest(message)) {

if (FDC.hasEntryForKey(message.dataKey)) {
if(FDC.hasDataForKey(message.dataKey)) {

sendMessageResponse(message.peer)
} else {

forwardMessage(FDC.getHost(message.dataKey))
cache(message.id and message.peer mapping)

}
} else {

if (FDC.closestKey(message.dataKey) == thisPeer.id) {
sendMessageResponse(message.peer)

} else {
cache(message.id and message.peer mapping)
forwardMessage(FDC.getHost(FDC.closestKey(message.dataKey)))

}
}

} else {
if (hasSeen(message.id)) {

forwardMessage(findPeerWhichSendRequest(message.id))
}

}
Application Servents

Name Routing Servent
Policy Cache

Data getData(Key k) FRA FDC
void insertData(key k, data d) FRA FDC

Core Servents
Name Policy Routing Servent

Policy Cache
OND Well-known peers none none
MM(Join) Key space to manage FRA FDC
MM(Leave) none none none
SA none none none
SD none none none
N(ID) unique id generated FRA FDC

by consulting existing
peers on the network

N(RES) none none none
TA Prune servent-cache none none

TABLE VII
DESCRIBING FREENET USING THE REFERENCE ARCHITECTURE.

the new node a key space to manage. The Naming servent
generates a unique key for files to be stored on freenet using
SHA-1 secure hashes. The SHA-1 secure hashes ensure that
same key is generated for identical files. Freenet does not allow
the resolution of the id to an actual physical address to ensure
anonymity of the peer storing the file.

getData(...) and insertData(...) servents share a single
servent-cache which is a table of (dataKey, (hostAddress,
data)) tuples. The servent cache is pruned by TopologyMan-
ager to ensure that its size does not exceed a specified limit.
A least recently used algorithm is used to remove the data for
a key. The host address is still cached so that the data can be
retrieved at a later time if required.

The getData(...) and insertData(...) servent implementations

JXTA Protocol Reference Architecture Elements
PDP ServiceDiscovery, ServiceAdvertisement
PRP Client, Server
RVP Application Servents
ERP Application Servents
PIP Application Servents

TABLE VIII
A MAPPING BETWEEN THE JXTA PROTOCOLS AND THE REFERENCE

ARCHITECTURE ELEMENTS.

propagate a request to the host (in servent-cache) whose key
is closest to the key in the request. The getData(...) request is
not propagated further and a response is sent back if the key
in the request is already present in the servent-cache along
with the data, otherwise the request is forwarded to the host
in the servent-cache whose key is closest to the key in the
request. The getData(...) response is sent back to the peer
which forwarded the request which in turn sends the response
back to the peer from which it received the request. The
response is not directly sent back to the peer from which the
request originates in order to preserve anonymity of the peer
interested in the resource. The insertData(...) request is not
propagated further and data is added to the servent-cache if
the id of the peer is closest to the key in the request than any
other key already present in the servent-cache, otherwise the
request is forwarded to the host in the servent-cache whose
key is closest to the key in the request.

C. JXTA

JXTA [38], [18] was conceived by Sun Microsystems Inc
and has been developed as an open source project. JXTA is a
specification for developing P2P applications. The specifica-
tions can be implemented as a framework which can be used
for P2P application development. The Project JXTA reference
implementation [39] is one such framework. JXTA provides
components which can be used by a P2P application. For
example, JXTA provides an abstraction called pipes that is
similar to BSD socket interface and can be used for communi-
cation between peers. JXTA defines the structure of elements
like PeerInformation (peer advertisement) and ServiceDetail
(service advertisement) shown in Table III. However JXTA
does not provides the software architecture of a P2P system.

JXTA specifications define a set of six protocols for P2P ap-
plications. JXTA protocols work together to perform services
required by a peer. The protocols use XML schema to describe
the format of the messages exchanged between peers to per-
form a service. JXTA is policy agnostic and does not specify
how the service provided by a protocol will be implemented.
Table VIII shows a mapping between the JXTA protocols and
the reference architecture elements. Peer Resolver Protocol
(PRP) defines the structure of XML request and response
messages which are exchanged between peers. The rest of
the protocol messages are embedded within a PRP message.
The client and server component in the common runtime can
use this as the format of the messages exchanged between

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

peers. A peer can advertise and discover resources and services
on the overlay network using Peer Discovery Protocol (PDP).
The ServiceDiscovery and ServiceAdvertisement elements can
exchange messages using the format specified in PDP protocol.

There is no direct mapping possible between the next three
protocols and the reference architecture elements. These JXTA
protocols can be used by application servents in the reference
architecture. The Peer Information protocol (PIP) in JXTA,
can be used to inquire the status of a peer. In the reference
architecture an application servent which provides the status
of a peer can use this protocol. In JXTA the client may use
Rendezvous Protocol (RVP) to find peers if the message has
to be propagated over the overlay network. The reference
architecture does not provides a dedicated servent to find
peers that can propagate a message on the overlay network.
This has been done to keep the list of core servents minimal.
In the reference architecture a servent can use the servent-
cache or the ServiceDiscovery servent to find peers which
can propagate a message over the overlay network. If a direct
connection to a destination peer cannot be found then Endpoint
Routing Protocol (ERP) is used to find intermediate hosts
which can route the information to the destination peer. In
the reference architecture routing is the responsibility of the
servent handling the message. The reference architecture does
not stipulate a specific service that is responsible for finding
peers which can be used to route messages and suggests
using the ServiceDiscovery component to find peers which
can route the message. If the application requires a specific
service that can be used to find peers which can be used to
propagate messages on the network or find peers which can
route a message, then the service has to be implemented as
an application servent.

D. Jabber

Jabber [29], [4], [30] provides specifications for developing
instant messaging (IM) applications. Jabber implementations
provide a realization of these specifications. Jabber is intended
for IM applications, but the infrastructure provided by it can
be used for developing other types of P2P applications.

Table IX shows the application servents that Jabber pro-
vides and describes how Jabber implements the core servents.
Jabber uses a hybrid P2P architecture. The Jabber server is
used for authenticating peers and resolving id to a physical
network address. However, peers can exchange data directly
by establishing a connection which is brokered using Jabber
servers. A new peer connects to the central server to join the
overlay network. The peers inform the central server when
they leave the overlay network. The central server provides the
connecting peer with information (e.g., availability of peer and
peer address) about other peers in which the connecting peer
is interested. The Jabber server provides three presence related
services: subscribeToPresenceInformation(...) which can be
used to tell the Jabber server about interest in a peer’s (with
id peerId) availability information, getSubscribedPeers() gives
a list of all the peers in which the peer invoking this service
is interested and getPresenceInformation(...) can be used to

Application Servents
void receiveMessage(String mesg)
boolean subscribeToPresenceInformation(String peerId)
String[] getSubscribedPeers()
boolean getPresenceInformation(String peerId)

Core Servents
Name Policy
OND central server
MM(Join) online peers
MM(Leave) central server
SA none
SD none
N(ID) central server
N(ID) central server
TA none

TABLE IX
THE APPLICATION SERVENTS PROVIDED BY JABBER AND THE POLICIES

USED BY JABBER TO IMPLEMENT THE DIFFERENT CORE SERVENTS. THE

SERVENTS IN JABBER DO NOT USE A SERVENT CACHE. THE SERVENT

IMPLEMENTATIONS IN JABBER DO NOT HAVE ROUTING CAPABILITY.

receive presence information about a peer (with id peerId)
on the network. All the peers implement a service called
receiveMessage(...) which can be used to send a chat message
to them.

VI. FUTURE WORK AND CONCLUSION

The paper presents a taxonomy of core concerns that a
P2P application needs to address. Despite the popularity of
P2P applications there is no reference architecture for the P2P
domain. The paper presented a reference architecture for the
P2P domain. The reference architecture uses a service-oriented
approach that facilitates the development of a software im-
plementation (e.g. a P2P file-sharing application) using the
reference architecture because the software implementation
can use the support for service-oriented architecture provided
by the existing middlewares. The paper validates the reference
architecture by describing four prominent P2P applications and
middlewares using the reference architecture. The authors are
currently working on implementing a customizable middle-
ware based on the reference architecture that allows control
over the core servents policies. Future work could involve
developing a catalogue of policies for the core servents.

ACKNOWLEDGMENT

The work described in this article is funded by the Irish
Research Council for Science, Engineering and Technology
(IRCSET) under the Basic Research Grants Scheme.

REFERENCES

[1] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy, “An analysis
of internet content delivery systems,” in Proc. of the Fifth Symposium
on Operating Systems Design and Implementation (OSDI), 2002.

[2] [Online]. Available: http://www.bittorrent.com
[3] “Kaza,” http://www.kazaa.com/us/index.htm.
[4] D. Adams, Programming Jabber, C. Toporek, Ed. O’Reilly and

Associates, 2002.
[5] J. Edwards, Peer-to-Peer Programming On Groove. Addison-Wesley,

2002.

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

[6] P. C. Len Bass and R. Kazman, Software Architecture In Practise.
Addison Wesley, 2000.

[7] R. N. Christine Hofmeister and D. Soni, Applied Software Architecture.
Addison-Wesley, 2000.

[8] B. P. Gallagher, “Using the architecture tradeoff analysis method to
evaluate a reference architecture: A case study,” CMU/SEI, Tech. Rep.,
2000.

[9] R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd, “SAAM: A method
for analyzing the properties of software architectures,” in International
Conference on Software Engineering, 1994.

[10] A. E. Hassan and R. C. Holt, “A reference architecture for web servers,”
in Seventh Working Conference on Reverse Engineering (WCRE’00),
2000.

[11] “Napster,” http://www.napster.com, 1999 version, 1999.
[12] [Online]. Available: http://en.wikipedia.org/wiki/Peer-to-peer
[13] M. Henning and S. Vinoski, Advanced CORBA Programming with C++.

Addison Wesley, 1999.
[14] [Online]. Available: http://www.w3.org/TR/soap/
[15] P. A. Bernstein, “Middleware: A model for distributed system services,”

Communications of the ACM, no. 39(2), pp. 86–98, 1996.
[16] A. Singhai, “Quarterware: A middleware toolkit of software risc com-

ponents,” Ph.D. dissertation, Dept. of Computer Science, University of
Illinois, 1999.

[17] W. Grosso, JAVA RMI. O’Reilly, 2001.
[18] B. T. Scott Oaks and L. Gong, JXTA In a Nutshell. O’Reilly and

Associates Inc., 2002.
[19] Microsoft, “Introduction to windows peer-to-peer networking,” Mi-

crosoft Corporation, Tech. Rep., 2003.
[20] H. He, “What is service-oriented architecture?” xml.oreilly.com.
[21] M. S. Pallos, “Service-oriented architecture: A primer,” eAI Journal,

2001.
[22] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented comput-

ing,” Communications of the ACM, October 2003.
[23] J. R. Grady Booch and I. Jacobson, The Unified Modeling Language

User Guide. Addison-Wesley Pub Co, 1998.
[24] D. Soni, R. L. Nord, and C. Hofmeister, “Software architecture in indus-

trial applications,” in Proceedings of the 17th international conference
on Software engineering, 1995.

[25] C. Hofmeister, R. Nord, and D. Soni, “Describing software architecture
with uml.” in Proceedings of the First Working IFIP Conference on
Software Architecture, 1999.

[26] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. R. O. Silva,
“Documenting component and connector views with uml 2.0,” Carnegie
Mellon Software Engineering Institute, Tech. Rep., 2004.

[27] D. S. e. a. Milojicic, “Peer-to-peer computing,” HP Labs, Tech. Rep.,
2002.

[28] A. Singh and M. Haahr, “A survey of p2p middlewares,” submitted to
EURO-PAR 2005.

[29] “What is jabber?” http://www.jabber.org/about/overview.php.
[30] C. Dodson, “Jabber technical white paper,” http://xml.coverpages.org/,

Aug 2000.
[31] R. Laddad, AspectJ In Action. Manning Publications Co., 2003.
[32] [Online]. Available: http://www.eclipse.org/aspectj/doc/progguide/index.html
[33] “Making p2p interoperable: The jxta story,” http://www-

106.ibm.com/developerworks.
[34] [Online]. Available: http://www.gnutella.com/
[35] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in

First International Conference on Peer-to-Peer Computing (P2P2001),
2001.

[36] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley, “Pro-
tecting free expression online with freenet,” IEEE Internet Computing,
2002.

[37] [Online]. Available: http://freenetproject.org/
[38] “Jxta v2.0 protocols specification,”

http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html.
[39] “Project jxta 20 superpeer virtual network,”

http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf.

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on February 2, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

