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Abstract

In metals, during high cycle fatigue on plain specimens, almost the entire fatigue life is
spent asshortcrack initiation and propagation. The fatigue short crack life can be schemat-
ically divided into two subsequent phases:microstructurally short crack andphysically
short crack. Recently, Chapetti proposed a physically short crack threshold and propaga-
tion driving force model [1]. In his model the physically short crack behavior is obtained
from the long crack propagation, just introducing the reduced threshold due to unsaturated
closure. In the present paper the physically short crack propagation is similarly modeled
by means of a driving force equation, but independent from the long crack propagation. In
this way, a better description of the short crack behavior isprovided, however short crack
propagation data is required. Physically short crack propagation model parameters were
obtained, by fitting experimental data drawn from the literature, for two Aluminum alloys
and a Titanium alloy at two different heat treatment conditions and load ratios.
By calculating the physically short crack plus long crack propagation, and assuming mi-
crostructurally short crack as part of theinitiation stage, a purer information about crack
initiation can be drawn from theS−N curves, and it is shown in the paper for the investi-
gated materials. A precise crack initiation size and the number of cycles just for initiation
are then provided. This information is useful to accuratelypredict fatigue life for blunt
notched and for thick components, where the propagation is much higher than in the small
plain specimen.
A validation of the model was obtained by predicting the fatigue life of a notched speci-
men. An accurate prediction was obtained both when the initiation was much smaller than
propagation and when almost the entire fatigue life was initiation.

Key words: Microstructurally short cracks. Physically short cracks.Fatigue crack
initiation. Fatigue crack propagation. Notched componentfatigue life.
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Notation

σa Stress amplitude.

∆σ Stress range (= 2σa).

∆K Stress intensity factor range (full range, even for negative load ratio).

∆Kth Long crack threshold stress intensity factor range.

∆σth Threshold stress range.

da/dN Crack propagation rate.

a Semielliptical surface crack depth.

w Semielliptical surface crack width.

σ0 plain specimen fatigue strength amplitude at high number ofcycles to failure.

∆σ0 plain specimen fatigue strength range (= 2σ0).

Nf Number of cycles to failure.

N0 Number of cycles to failure at which the fatigue strengthσ0 is based on.

Ni Number of cycles for initiation.

Np Number of cycles for propagation.

CP Paris law constant.

mP Paris law exponent.

σ ′
f , b Basquin’s law parameters.

β Shape factor for crack stress intensity factor.

Ds Specimen diameter.

∆Kth,a Crack size dependent physically short crack threshold.

∆Kth,d Smallest physically short crack threshold.

∆KC Stress intensity range threshold closure term.

k Exponential factor in Chapetti model.

a0 Critical distance.

aD Critical defect size.

d Material microstructurally strongest barrier or largest non damaging crack.

d2 Smallest long crack.

rn Notch radius

Dn Notch depth

dn Notch inner diameter.

kt Notch stress concentration factor.
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1 Introduction

The fatigue strength of metal components without any pre–existing crack or de-
tectable defect has to be explained by theshortcrack mechanisms. After the nucle-
ation the fatigue crack is obviously short. While a crack is short the non propagating
condition∆K < ∆Kth could be satisfied even for very high cyclic stress∆σ , much
larger than actual values that cause fatigue failure. In other words the Linear Elastic
Fracture Mechanics (LEFM) fundamental parameterK loses its meaning while the
crack is shorter than some characteristic material length.
There is more than one type of short crack [2]. A fatigue crackthat nucleates from
an approximately flat surface (such as a plain specimen, or a blunt notch), in ambi-
ent air and room temperature, grows through three phases [3]:

• MicrostructurallyShort Crack (MSC), where the continuum mechanics itself is
questionable, since the crack size is similar to the grain size, or less;

• PhysicallyShort Crack (PSC), where crack growth is increased due to reduced
crack closure and other effects;

• LongCrack (LC), where Paris law holds, up to the final fracture.

Large scientific literature exists on mechanistic descriptions of MSC and PSC.
Main contributions were given by Miller [4,5], Miller and O’Donnell [6], Riemel-
moser and Pippan [7], and finally a very clear description of the plasticity induced
crack closure mechanisms are available in Pippan and Riemelmoser [8] (crack plas-
tic wake closure mechanism under plane strain conditions) and Pippan et al. [9]
(asymmetric crack plastic wake as the reason for roughness induced closure). The
lack of fully developed closure is broadly accepted to be themain mechanistic rea-
son for the physically short crack’s faster growth. Recently, Chapetti proposed a
PSC propagation model based on the reduced closure concept [1]. In the present
paper the physically short crack propagation Chapetti model is followed, however
some modifications / improvements are provided and motivated.
Usually, the crack initiation is assumed as the existence ofa detectable crack size
that depends on the inspection technique. Obviously, this definition has a valid
experimental meaning. In his recent paper Chapetti suggested as initiation / prop-
agation boundary the transition from MSC to PSC. Indeed, the∆K is basically
meaningless for the fatigue crack in the MSC regime, while italready has a mech-
anistic soundness in the PSC regime. In the present paper theMSC to PSC crack
initiation is quantitatively obtained from theS−N curves by subtracting the PSC
and LC propagation portions from the entire fatigue life, and the PSC propagation
is obtained integrating the proposed equation.

2 Materials

Materials investigated in the present paper, are aluminum alloys: 2024–T3, 7075–
T6 and titanium alloy (α + β ) Ti–6Al–4V. S−N curves were drawn from Boller

3
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and Seeger materials data book under cyclic loading [10], for load ratioR= −1.
For the Titanium alloy the load ratioR= 0.1 is also considered. Data for Ti–6Al–
4V alloy loaded atR= 0.1 are from Peters et al. [11].
The main material properties are reported in Tab.1.

SY SUTS R σ ′
f b N0 σ0

Alloy MPa MPa MPa MPa Ref.

2024–T3 378 486 -1 1 044 -0.114 5×106 166 [10]

7075–T6 512 572 -1 776 -0.095 5×106 168 [10]

Ti–6Al–4V 1 188 1 236 -1 1 797 -0.085 5×106 457 [10]

Ti–6Al–4V 915 965 0.1 429 -0.0325 108 230 [11]
Table 1
Static and fatigue material properties.

where:SY is the static Yield strength,SUTS is the Ultimate Tensile Strength,σ ′
f and

b are the two constants defining Basquin’s relationship:σa = σ ′
f (2Nf)

b, andσ0 is
the fatigue strength amplitude (i.e. half the full range:∆σ0 = 2σ0) based on a rea-
sonably high number of cycles to failureN0 (higher than 106).
Even though compositions of Ti–6Al–4V reported in Ref.[10]and Ref.[11] are very
similar, the mechanical properties of the two Ti alloys werequite different (higher
strength for the alloy reported in Ref.[10]). Apparently, different heat treatments
induced different microstructures and then different mechanical properties. To dis-
tinguish the two different Titanium alloys in the present paper, the load ratioR
is mentioned since alloy from Ref.[10] was loaded atR = −1, while alloy from
Ref.[11] was loaded atR= 0.1.

3 Long crack propagation models

Long crack propagation rate can be described accurately by the Paris law, where
two material parameters are required only:CP and mP, to be deduced by fitting
to experimental data. Several generalizations of the Parislaw are available in the
literature, that can be easily found in textbooks, e.g. Ref.[12]. Most of them are
derived to allow for a unique set of material parameters to take into account load
ratioR sensitivity. Other generalizations of the Paris law are designed to model the
smooth transition at the near threshold condition. Severalmodels are available, see
for example the advanced textbook by Ellyin [13]. However, the two most popular
ones assume as an effective parameter the difference between the stress intensity
factor range and the threshold stress intensity factor range, but in a slightly different
way:

• Zheng and Hirt [14]

da
dN

= CP(∆K −∆Kth)
mP (1)

4



 

 

 

ACCEPTED MANUSCRIPT 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

• Klesnil and Lukáš [15]

da
dN

= CP(∆KmP−∆Kth
mP) (2)

Mechanistic explanations for Eqs.1 and 2 may be questionable and discussion about
their validity can be found in many papers, however, even theParis law finds its
main justification just in its fitting experimental data success. Eqs.1 and 2 agree in
terms of asymptotes: they give rise to the same threshold andthe same crack prop-
agation rate at high driving force∆K ≫ ∆Kth but in the intermediate region they
differ significantly, sinceCP(∆K −∆Kth)

mP < CP(∆KmP−∆Kth
mP).
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Fig. 1. Long crack near threshold propagation: (a) 2024–T3 (R= −1), experimental data
from Ref.[16]. (b) 7075–T6 (R= −1), Ref.[17,18]. (c) Ti–6Al–4V (R= −1), Ref.[19]. (d)
Ti–6Al–4V (R= 0.1), Ref.[20]. Predictions using the Klesnil–Lukáš approach (Eq.2).

Eq.2 was fitted to the data, drawn from the literature, for thematerials mentioned
above, and it is reported in Fig.1 where it is clearly effective in describing the near
threshold propagation (Eq.2 is termed as “Klesnil–Lukas” in Fig.1). Eq.2 parame-
ters, obtained by fitting materials data just shown, are reported in Tab.2.
From Fig.1 it is clear that Eq.2 offers a good description of the near threshold re-
gion, since it captures experimental data quite well for allmaterials. Eq.1 gave
poorer predictions in all cases (not shown here).
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R ∆Kth mP CP

Alloy MPa
√

m m/cycle
(MPa

√
m)mP

Ref.

2024–T3 -1 4.8 3.20 1.5×10−11 [16]

7075–T6 -1 4.0 3.14 1.1×10−11 [17,18]

Ti–6Al–4V -1 5.6 4.26 6.7×10−14 [19]

Ti–6Al–4V 0.1 4.2 4.05 9.0×10−13 [20]
Table 2
Eq.2 fitting parameters for considered materials.

4 Short crack threshold models

The most effective tool to describe the short crack threshold is the Kitagawa–Takahashi
(KT) diagram, Fig.2.
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Fig. 2. Kitagawa–Takahashi diagram. El Haddad [21] and Chapetti [1] short to long crack
threshold models.

There are some models available to describe the shape of the KT diagram. Among
them the El Haddad model is both accurate and simple. Indeed,it just requires the
two asymptotes:∆σ0 and∆Kth as material parameters.

∆Kth,a = ∆Kth

√

a
a+aD

(3)

whereaD is the size of the critical defect:

aD =
a0

β 2 (4)

anda0 is the material critical distance:

a0 =
1
π

(

∆Kth

∆σ0

)2

(5)

Actually, the El Haddad model was originally formulated usinga0 in Eqs.3 instead
of the critical defect sizeaD [21]. The introduction ofaD is explained by consid-
ering a self similar fatigue crack which keeps its aspect ratio during propagation.

6
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Then the long crack asymptote in the KT diagram is shifted, due to the shape fac-
tor β , which in turn gives the intersection, with the fatigue strength∆σ0, in aD. A
deeper discussion about the meaning ofaD, and its relation toa0, can be referred to
Refs.[22,23].
During early fatigue crack propagation, at a plain specimensurface (and at a blunt
notch surface too) crack dimensions are much smaller than surface curvature radius
and specimen (or component) thickness. It is a reasonable assumption to consider a
crack that nucleates from a flat surface in a semi-infinite body, with the crack orien-
tation perpendicular to the uniaxial normal stress direction. In such a situation the
typical observed surface crack aspect ratio isa/w= 0.8, wherea is the crack depth
andw is the crack surface half-length. During fatigue crack initial propagation, its
aspect ratio can be either higher or lower than 0.8. In particular for sub–surface
initiations the crack aspect ratio can temporarily be larger than unity [24], anyway
an average aspect ratioa/w = 0.8 can be assumed. For this basic crack geometry
configuration, the stress intensity factorK at the deepest point of the crack is [25]:

∆K = β∆σ
√

πa, β = 0.746 (6)

When the fatigue crack grows and its dimensions become comparable with any sig-
nificant specimen (or component) geometry dimension, the shape factorβ changes.
Despite this geometry shape factor sensitivity, the surface crack starting from a
semi-infinite body flat surface is here considered as reference geometry, then shape
factorβ = 0.746 is also assumed in Eq.4.
The El Haddad model does not explain the different regimes ofshort cracks, be-
cause it is a unique equation that covers the entire scale of crack size. On the
contrary, the Chapetti model [1] distinguishes between microstructurally and phys-
ically short crack regimes. It considers a transition sized (material dependent only)
which is the strongest microstructural barrier of the material. Any crack smaller
thand is microstructurally short and its behavior can not be modeled by means
of the stress intensity factor. Any crack larger thand is initially physically short,
until its closure is saturated as it grows. However, the stress intensity factor can be
already used to predict PSC crack propagation rates, provided that the Paris law is
modified to consider the reduced closure and the resulting higher propagation rate.
Chapetti proposed the following model, to define threshold stress intensity factor
range for PSC:

∆Kth,a = ∆Kth,d +∆KC (7)

where∆Kth,d is the smallest physically short crack threshold (a = d):

∆Kth,d = β∆σ0
√

πd (8)

and∆KC is the closure term:

∆KC = (∆Kth−∆Kth,d)(1−e−k(a−d)) (9)

7
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in which k is a material constant and a good estimate of it is given by theequation:

k =
1
4d

∆Kth,d

∆Kth−∆Kth,d
(10)

Obviously∆KC is null asa = d, and∆Kth,a tends to the LC threshold∆Kth whena
is much larger thand.
As already pointed out, the Chapetti model (Eqs.7–10) is notvalid in the MSC re-
gion; the resistance curve shown in the MSC region in Fig.2 isqualitative only. The
Chapetti model requires a material lengthd, that should be obtained by means of
microstructure observation. The microstructure lengthd has been observed to be
either the average grain size or any microstructural barrier spacing, depending on
the material microstructure. For example,d is the ferrite grain size in ferrite-perlite
microstructure, or laths spacing in bainite-mertensite steels [1,26], or primaryα
phase size in bimodal Ti–6Al–4V alloy [27].
The concept of largest non propagating crack was initially introduced several years
ago by Taylor and Knott [28]. If a crack shorter than the largest non propagating
crack is present in a plain specimen it does not reduce the fatigue strength. Clearly
from Fig.2 it follows that the largest non propagating crackis coincident to the
Chapetti model’s strongest barrierd.
Comparing the Chapetti and El Haddad threshold models, it follows that the El
Haddad one is not able to predict the existence of any non damaging crack, though
the two lines remain very close.
Values of material lengthsd, a0, aD, drawn from the literature, are reported in Tab.3.

d a0 aD

Material mm mm mm Ref.

2024–T3 (R= −1) 0.027 0.066 0.111 [1]

7075–T6 (R= −1) 0.018 0.045 0.076 [29]

Ti–6Al–4V (R= −1) 0.010 0.012 0.020 [30]

Ti–6Al–4V (R= 0.1) 0.020 0.027 0.044 [1]
Table 3
Materials characteristic lengths.

The material lengthd is the grain size for the two aluminum alloys, whiled is the
primary α phase size for the bimodal Ti alloy. Critical distancea0 was obtained
from data reported in Tabs.1,2, and Eq.5. To obtainaD, from critical distancea0,
the shape factorβ = 0.746 was assumed, as discussed above.
Materials KT diagrams are reported in Fig.3, for the considered materials, and the
characteristic lengths are marked on the graphs.
A further material length, shown on the KT diagrams, is the smallest long crack
d2. Both the two models here compared show a smooth transition at d2 and then
they meet the LC threshold. For all the materials investigated in the paper a good
estimate ofd2 is: d2 = 10d, also in agreement with Taylor and Knott paper [28]. In
the present paper this estimate will be considered throughout.

8



 

 

 

ACCEPTED MANUSCRIPT 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10
−6

10
−5

10
−4

10
−3

10
−2

10
1

10
2

10
3

defect size [ m ], (log)

Chapetti
El Haddad
d1
aD
d2

[ m ], (log)a

th
[
M

P
a

],
(l

o
g

)

d

Da

2d

10
−6

10
−5

10
−4

10
−3

10
−2

10
1

10
2

10
3

defect size [ m ], (log)

Chapetti
El Haddad
d1
aD
d2

[ m ], (log)a

th
[
M

P
a

],
(l

o
g

)

d

Da

2d

(a) (b)

10
−6

10
−5

10
−4

10
−3

10
−2

10
1

10
2

10
3

defect size [ m ], (log)

Chapetti
El Haddad
d1
aD
d2

[ m ], (log)a

th
[
M

P
a

],
(l

o
g

)

d

Da

2d

10
−6

10
−5

10
−4

10
−3

10
−2

10
1

10
2

10
3

defect size [ m ], (log)

Chapetti
El Haddad
d1
aD
d2

[ m ], (log)a

th
[
M

P
a

],
(l

o
g

)

d

Da

2d

(c) (d)

Fig. 3. Kitagawa–Takahashi diagrams and characteristic lengths: d, aD, d2, for investi-
gated materials: (a) 2024–T3,R = −1. (b) 7075–T6,R = −1. (c) Ti–6Al–4V, R = −1.
(d) Ti–6Al–4V, R= 0.1.

The Chapetti model threshold stress range is slightly higher the El Haddad predic-
tion. This is particularly true for both the two Ti alloys whereaD is around twiced.
The condition ofaD not much larger thand has to be interpreted as little stress in-
tensity factor closure component∆KC. For the Ti alloy loaded at load ratioR= 0.1
the small amount of closure can be addressed to the high load ratio itself, while
for the Ti alloy loaded at load ratioR= −1, the reason can be the very high yield
strengthSY, Tab.1, which in turn reduces the wake mechanisms responsible for the
crack closure [8,9]. For the two aluminum alloys the critical defect sizeaD ranges
from 3 to 4 times the material microstructural sized.

5 Physically short crack propagation model

To model the PSC propagation rate, Chapetti considered the use of Eq.1, in which
he replaced thelong crack threshold stress intensity factor range∆Kth with the
short crackthreshold∆Kth,a (defined in Eq.7) that is a function of the crack sizea.
The crack propagation driving force parameter is the difference between the stress
intensity factor range and the threshold stress intensity factor range. Following this

9
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approach the stress intensity full range∆K is considered instead of the positive por-
tion of the range∆K+, or the effective portion of the range∆Keff (positive portion
minus opening stress intensity factor) that are suggested in different approaches.
The crack closure during a portion of the fatigue cycle is theintrinsic component
of the threshold stress intensity range. The threshold stress intensity factor range
increases, as the crack grows, due to the closure saturation. The difference between
the full range and the threshold term (Eq.1) correctly considers the crack closure
and then it is assumed a physically relevant propagation driving force parameter.
However, the same author also proposed the use of the other equation: Eq.2 to
model the short crack propagation, in papers Refs.[27,31].
In the present paper long crack propagation is modeled by means of Eq.2, while
Eq.1 is used for physically short crack propagation only, introducing the short crack
threshold which is a function of the crack size. Eq.1 is then re–issued here to be ded-
icated uniquely to the PSC propagation:

da
dN

= CS(∆K−∆Kth,a)
mS (11)

In the following, the term∆Kth,a is evaluated by means of the El Haddad short crack
threshold Eq.3. By considering Chapetti short crack threshold (Eq.7) in Eq.11, in-
stead of El Haddad, negligible difference would result since the two models are
quite similar, Fig.2,3. This difference is much smaller than the inherent short crack
propagation data scatter. More importantly, modeling the PSC propagation with
Eq.2, and substituting the PSC threshold∆Kth,a, limits the PSC propagation rate to
be lower than the Paris straight line (CP(∆KmP−∆KmP

th,a) < CP∆KmP), Fig.4, while
experimental data shows that the PSC propagation rate can behigher (see data re-
ported later, in Fig.5).
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Fig. 4. Crack propagation models.

A similar approach was followed by Navarro et al. in a fretting fatigue application
[32]. They found the crack propagation fatigue life portionintegrating a growth
rate equation proposed by the NASA/FLAGRO software. That equation has a more
complex form than the Eq.11, however it contains the term∆K−∆Kth. They intro-
duced the El Haddad short crack correction for∆Kth to obtain higher propagation
rate while the crack is short, and then properly model their experimental results.
The short crack propagation rate experimental data are drawn from the literature
for all the materials investigated, Fig.5. Eq.11 parametersCS andmS were found by
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fitting Eq.11 and results are summarized in Tab.4.
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Fig. 5. Short crack propagation prediction given by Eq.11 and El Haddad threshold. (a)
2024–T3,R = −1, experimental data from Ref.[33]. (b) 7075–T6,R = −1, Ref.[34]. (c)
Ti–6Al–4V, R= −1, Ref.[35]. (d) Ti–6Al–4V,R= 0.1, Ref.[11].

R mS CS

Alloy m/cycle
(MPa

√
m)mS

2024–T3 -1 1.76 9.75×10−10

7075–T6 -1 1.57 2.20×10−9

Ti–6Al–4V -1 1.58 6.03×10−10

Ti–6Al–4V 0.1 1.54 2.70×10−9

Table 4
Eq.11 material parameters.

Obviously, it follows thatmS < mP for all materials. This condition implies that
short crack propagation line crosses the long crack propagation line at some crack
size. This behavior is well known from short crack propagation experimental obser-
vation.
Fig.5(a) reports short crack propagation data for 2024–T3 aluminum alloy [33].
Eq.11 with El Haddad threshold is shown for a short cracka ranging fromd to d2,
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exactly the physically short crack size range.
Fig.5(b) shows short crack propagation data for 7075–T6 aluminum alloy. In Ref.[34]
two series of short crack propagation data are reported at two quite similar cyclic
stress ranges, then in the present paper model the average cyclic stress was assumed
∆σ = 610 MPa. Moreover, short crack data in Ref.[34] are distinguished between
Stage I and Stage II propagation. It is possible to observe that Stage I / Stage II
transition is slightly later that MSC / PSC transition, indeed some points in the PSC
regime are still in the Stage I propagation. Obviously this result is not general, but
it is restricted to this particular alloy at this loading condition. The present paper
model (Eq.11, dashed line) was obtained simulating a short crack a ranging from
d to 5d2. The PSC higher rate propagation does not cross the long crack behavior
at exactlyd2 but for a larger crack size. Other short crack fatigue data were avail-
able in the literature for this (quite common) aluminum alloy. In particular, short
crack data reported in Ref.[17], showed a higher rate than long cracks, even at quite
large crack size, in the order of millimeters. As discussed above, Eq.11 allows for
PSC higher propagation rate than LC even for a crack larger thand2. However, data
reported in Ref.[17] was not completely coherent with the short crack model here
obtained, because PSC higher propagation rate than LC was extended to very large
crack size.
Fig.5(c) shows short crack propagation data for Ti–6Al–4V (R= −1). In Ref.[35]
several cyclic stress series are reported, not very different among them. The average
cyclic stress∆σ = 1271 MPa was considered and short crack material parameters
obtained. In the reported model short cracka ranges from 2d to 2d2. Unfortunately,
short crack data are not available in the very short crack threshold region (with
at least some points lower than 10−9 m/cycle) limiting the accuracy check of the
proposed model. For the same material, and loading condition, a very similar pre-
diction was obtained from data in Ref.[36] (for brevity not reported here).
Finally, Fig.5(d) shows short crack propagation data for Ti–6Al–4V (R= 0.1). In
Ref.[37] short crack propagation data is reported for cyclic stress∆σ = 450 MPa.
The reported models were obtained for a short cracka ranging from 1.3d to 6d2.
For this material and loading condition, the short / long crossing point is obtained
for a = 6d2, i.e. for a crack size which definitely should be already ‘long’. This
apparent model inconsistency was already found for materials 7075–T6 and Ti–
6Al–4V (R=−1). It is worth stressing that the short / long crack size transition for
crackpropagationrate can be much higher than the short / long crack size transi-
tion at threshold(d2).
An experimental evidence is that the stress intensity factor does not completely
describe the short crack behavior, but the short crack propagation is also sensi-
tive to the stress level∆σ . In other words two short cracks, different in size, but
loaded by the same∆K, do not show same propagation rate; in particular the shorter
one grows faster than the other because it is loaded by a higher cyclic stress level.
This experimental evidence is acknowledged in the present PSC propagation model
Eqs.11,3, indeed the threshold term is sensitive to the crack size. Fig.6(a) shows
short crack propagation data, previously presented about the 7075–T6 aluminum
alloy, where two data series were produced at different stress levels∆σ (previously
considered as a unique test series) [34]. Eq.11 was calculated with the two different
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stress levels∆σ that the experimental series were obtained. At the same∆K, the
higher the stress level, the higher the propagation rate, coherently with the experi-
mental results. However, Fig.6(a) data was obtained with very similar cyclic stress
levels and then the two lines are almost overlapped, indeed the two experimental
series are very near. A clearer comparison is given by Fig.6(b) that shows same
material short crack propagation, under a lower cyclic stress. This other short crack
series was drawn from the paper by Bu and Stephens, Ref.[17].The present model
reproduces a slower propagation rate, especially near the threshold, in agreement
with the experimental results.
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Fig. 6. Short crack propagation sensitivity to load level∆σ : (a) high cyclic stress level, data
from Tokaji et al. 1990 [34], (b) low cyclic stress level, data from Bu and Stephens 1986
[17].

In the PSC regime the small scale yielding condition can be atthe limit of its va-
lidity. For example, assuming the simple Irwin’s model to esteem the plastic size
for a semielliptical crack (β = 0.748) with a crack sizea = 0.100 mm, in a thick
7075–T6 aluminum alloy component (yield strengthSY = 500 MPa), loaded by
σ = 300 MPa, stress intensity factorK = 4.0 MPa

√
m, the plane strain plastic size

is rp = 0.004 mm, i.e. 25 times smaller the crack size. Miller [4] pointed out that
the small scale yielding condition is valid for a crack size to plastic size ratio at
least 50 or higher. So, in the PSC regime the stress level is below the yield limit
(otherwisemechanicallyshort crack would be the case) but the small scale yield-
ing validity can be not fully satisfied. Therefore, the not saturated crack closure
it is not the only reason of physically short crack faster propagation, but also the
large crack tip plastic region can play its role. This is hereconsidered the reason
of a PSC propagation equation (Eq.11) independent from the long crack propaga-
tion equation (Eq.2), while the Chapetti model derived the PSC equation from the
LC equation because he considered the not saturated crack closure condition as the
unique reason of PSC faster growth.
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6 Fatigue crack initiation from S–Ncurves

Finite life HCF testing is usually obtained from plain specimens under cyclic axial
load. The number of cycles to failureNf is considered at the complete fracture of
the specimen, or sometimes, at the occurrence of a visible crack, or a crack large
enough that reduces specimen stiffness perceptibly. In allthese three conditions the
final crack size is already long.
Assuming initiation / propagation transition atd crack size, it is possible to predict
the number of cycles for propagation and then subtract the propagation portion to
find the number of cycles just for initiation. The propagation phase is given by the
PSC propagation plus the LC propagation, up to the final failure (or one of the
conditions above). To find the number of cycles for PSC propagation it suffices to
integrate Eq.11 starting fromd up to the short / long crack crossing point. After
that, physically short crack becomes long crack and then propagation prediction is
given by Eq.2. A purerinitiation information is then drawn from theS−N curves:
the number of cyclesNi to nucleate thed crack size, as function of the cyclic load
amplitudeσa, in the HCF regime.
The idea of subtracting the propagation portion from theS−N curve was also re-
cently proposed by McClung et al., [38]. They did not suggesta precise initiation
size, they just proposed a crack size much shorter than 1 mm (which is traditionally
considered the initiation from an engineering point of view) but not shorter than the
material grain size.
To back calculate the plain specimen crack growth some assumptions were intro-
duced. As the crack propagates through a round specimen bar,the crack shape
factorβ increases, mainly because the ligament area reduces. The round bar crack
through stress intensity factor problem has been widely investigated, even recently,
through Finite Element (FE) [39–43,24]. In these papers particular attention was
devoted to the crack shape evolution, when the crack propagates inside the round
bar, for different initial elliptical crack aspect ratios.While the crack size is equal
to (or not much larger than) the material lengthd, the crack is very smaller than the
specimen diameterDs (usually around 10 mm). This geometrical configuration is
equivalent to the semielliptical flat surface crack in a seminfinite body. The aspect
ratio evolution, as the crack grows inside the specimen, is not considered in the
present paper because almost the entire propagation is spent as the crack is much
smaller thanDs. The initial preferential aspect ratioa/c = 0.8 is assumed through-
out the entire life of the fatigue crack. However, the dependency of the shape factor
β to a/Ds (assuming constant aspect ratio), has been taken into account following
the results published in Ref.[39].
In Fig.7 the propagation portionNp is compared to the entire fatigue lifeNf and
the initiation portionNi results as difference. The HCFinitiation S−N curves were
found for all the investigated materials.
It is evident that the despite materials scatter, the predicted propagation life was al-
ways lower than the entire fatigue life for all materials, inthe HCF regimeNf > 104.
Among the four investigated materials, the Ti alloy loaded at R= 0.1 shows a much
lower propagation fraction, and then almost the entire fatigue life is initiation, even
for high stress levels.
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Fig. 7. Predicted propagation fatigue life portion, against entire fatigue life: (a) 2024–T3,
R = −1, fatigue data is from Ref.[10]. (b) 7075–T6,R = −1, Ref.[10]. (c) Ti–6Al–4V,
R= −1, Ref.[10]. (d) Ti–6Al–4V,R= 0.1, Ref.[11].

7 Application

In a notched component the fatigue crack propagation is a large portion of the entire
fatigue life. The stress at the notch root is high, then the fatigue crack easily initiates,
but as the crack grows the stress intensity factor trend is lower than in the plain spec-
imen geometry, due to the stress gradient. The crack propagation emanating from
a notch can experience a retardation or the crack can even stop propagating. The
present model focuses on thephysicallyshort crack only, the mechanically short
crack fatigue life can not be predicted with the proposed model. A finite radius
notch specimen fatigueS−N curve was considered to validate the model. Mac-
Gregor and Grossmann [44,12] published un–notched and notched fatigue data for
the main aeronautical structural materials. In particularthey published aluminum
alloy 2024–T4 round notched fatigue test results, with notch depthDn = 1.59 mm,
notch inner diameterdn = 7.62 mm, and notch radiusrn = 0.25 mm, Fig.8(a). In the
present paper, the literature data was found for the aluminum alloy 2024–T3. The
T4 heat treatment means no plastic deformation during the treatment, while the T3
heat treatment means plastic deformation before the aging.Though the slightly dif-
ferent heat treatments the two materials showed very similar mechanical properties,
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indeed the plain specimenS−N fatigue curve, reported by MacGregor and Gross-
mann [44] (not reported here for brevity) and theS−N curve reported by Boller
and Seeger showed very similar mean lines.
The crack initiation number of cycles can be obtained from the materialinitiation
S−N curve that was found in the previous section, Fig.7(a). At the blunt notch root
the stress distribution is approximately uniaxial and uniform, up to a depth equal to
d, so in similar conditions than that reproduced by the plain specimenS−N testing,
Fig.8(b). After the initiation, the subsequent PSC plus LC propagation phases were
evaluated by assuming a semielliptical crack growing from the notch root, calcu-
lating the stress intensity factor at the deepest point on the crack front and using
the proposed propagation model. FE simulations were performed to calculate the
stress intensity factor for different crack sizes. A solid three–dimensional analysis
was performed first, followed by a plane strain analysis submodel simulation [45],
obtaining the stress intensity factor using the parabolic quarter–point elements [25].
A numerical fit was then used to find the stress intensity factor as a function of the
crack size.

n
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crack

Initiatial

crack size d
pPropagation,

PSC + LC

N

410 510 610 710

iN
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(a) (b)

Fig. 8. Blunt notch under fatigue loading: (a) geometry, (b)fatigue crack initiation and
propagation predictions.

The comparison between the experimental and the model prediction results are re-
ported in Fig.9(a). The notched specimen initiation curve was obtained from the
plain specimen initiation curve, divided by the notch stress concentration factor
kt. The initiation stress range divided the notched tests intothree groups: the tests
above the initiation stress range (from the highest stress test, labeled ‘H’, to the test
labeled ‘P’); the tests inside the initiation range (from test ‘I’ to ‘D’); and finally
the test ‘R’ below the initiation stress range, Fig.9(a).
The prediction of the first group of tests was propagation only, because the initiation
is small in comparison to the PSC and LC propagation. For eachtest the predicted
fatigue life was very similar to the experimental, Fig.9(a).
The prediction of the second group was initiation plus propagation. Again the ex-
perimental results were accurately reproduced by the prediction, see for example
test ‘A’. However, the model overestimated the fatigue lifeof test ‘B’, and failed
to predict tests ‘C’ and ‘D’. Fig.9(b) shows the short crack stress intensity factor
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Fig. 9. Notched geometry results: (a) prediction fatigue life compared with the experimental
results, (b) non propagating crack prediction.

range as function of the crack size at the notch root∆K(a), and the El Haddad resis-
tance curve∆Kth,a, Eq.3. The driving force is the difference of the two, according
to Eq.11. In test ‘A’, the short crack experiences a retardation but does not stop. In
test ‘B’, the∆K(a) curve almost collapses on the resistance curve, and then thepre-
dicted propagation is very high, due to the strong retardation at the crack size where
two curves are very near. This critical condition is very sensitive to many factors
that are here approximated, such as the actual resistance curve, and also the crack
aspect ratio that is here assumeda/c = 0.8 as in the plain specimen, but that can
be smaller for a notch crack, and then the∆K(a) would be higher. About the tests
‘C’ and ‘D’, after the initiation, the model predicts the nonpropagating condition
when the∆K(a) curve crosses the El Haddad resistance curve. On the contrary, the
experimental evidence is failure instead of crack arrest. It is difficult to provide a
precise explanation of this, because again many factors canplay a role. A possible
mechanism of coalescence of multiple initiated cracks can generate a wide crack
front. The actual∆K would be quite higher than that predicted assuming a single
crack leading to propagation up to the final failure, insteadof crack arrest.
Finally, the test ‘R’ was predicted as not initiated crack, because the stress level
was below the initiation stress range, indeed, it was a run out test.

8 Discussion

This study offers a link between fatigue stress and fatigue fracture mechanics ap-
proaches. The stress approach can be used to predict the number of cycles just for
initiation, and a precise initial propagation crack size isgiven. After that, the frac-
ture mechanics can be used and the entire fatigue life obtained. This initiation /
propagation separation is useful especially when the propagation phase is expected
to be larger than that in theS−N plain specimen tests. If the fatigued component
is thick the propagation phase is much longer than during small plain specimen
testing. An other example of application of the present paper procedure is a blunt
notched component, as the validation case presented in the Application. If the plain
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and the notched specimens are compared in terms of the peak stress at the notch root
(σn in Fig.8) the notched component fatigue strength would be underestimated. This
is usually expressed by the fact that the fatigue notch factor is lower than the stress
concentration factor. However, the information given by the plain specimen fatigue
S−N curve and the material short crack propagation allowed to reproduce notched
fatigue strength calculating the initiation and the further propagation, taking into ac-
count the stress gradient below the notch root surface. In principle, this approach is
an extension of the Theory of Critical Distances, because a generic notched geom-
etry fatigue strength is obtained combining the two material pieces of information
drawn from the two extreme conditions: the fatigue strengthof theplain specimen:
no stress concentration; and the fatigue behavior of thecrack: strongest stress con-
centration.
In the paper, the short crack propagation materials data andtheS−N curves were
drawn from independent testing for all investigated alloys, except for Ti alloy Ti–
6Al–4V, R= 0.1. Some inaccuracy of the results here shown, can be ascribedto
the fact that crack propagation and fatigue life were drawn from just nominally
same materials. In the Application case study, the discrepancy between the model
prediction and the experimental finite fatigue life for tests ‘C’ and ‘D’ (Fig.9) can
also be addressed to the not perfectly equal materials heat treatments, especially in
the critical condition of almost arrested crack, where the model discrepancy was
higher. It was also found (details are not reported for brevity) that the aspect ratio
plays a very important role especially if a small differenceof the predicted stress
intensity factor generates large difference of the predicted propagation number of
cycles, or even discriminates the propagating or arrest condition. However, the er-
rors in predicting specimens B, C and D are quite small and fall within the scatter
in the experimental results.
The size of the microstructure strongest barrier should be determined from the
crack growth rate data, while it is here suggested to esteemd from the material
microstructure direct observation, looking for differentmetallic microstructure fea-
tures depending on the alloy and heat treatment. Obtainingd from the material
observation it is simpler than from crack growth rate and it is enough accurate to
provide an indicative length that can be used in the proposedmodel.
The present physically short crack model can also be used forextending damage
tolerant approach. If the experimental crack inspection resolution is adequate to de-
tect cracks in the physically short crack regime, the remaining fatigue life can be
calculating, offering larger inspection periods.

9 Conclusions

(1) A physically short crack model was proposed, based on thedriving force con-
cept. Materials parameters were obtained by fitting experimental data drawn
from the literature.

(2) The present approach differentiates from Chapetti model by considering phys-
ically short crack propagation driving force equation independent from long
crack propagation. Indeed, physically short cracks can show higher propaga-
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tion rate, than expected according to long crack behavior, even when the crack
size is already quite larger than the minimum long crack threshold size. The
proposed model does not explain the mechanistic reason for that, but it of-
fers a phenomenological tool to describe this behavior. Moreover, El Haddad
threshold was assumed instead of Chapetti threshold. El Haddad equation is
simpler and the values are quite similar.

(3) By subtracting physically short, and long, crack propagation cycles from the
entire fatigue life, it is then possible to extract the initiation number of cycles
from theS−N curves.

(4) Aluminum alloys 2024–T3, 7075–T6 and Ti alloy Ti–6Al–4VS−N curves,
load ratioR= −1, showed that propagation portion is actually negligible ap-
proaching to the fatigue strength, but nearNf = 104 propagation is already a
large portion of the entire fatigue life. On the contrary, Tialloy Ti–6Al–4V,
load ratioR = 0.1, showed physically short crack rate so high that even at
Nf = 104 propagation is still a small portion of the entire fatigue life.

(5) A validation of the model was provided by predicting the fatigueS−N curve
of a notched specimen and comparing the calculated fatigue life to the exper-
imental result. The model was able to predict the number of cycles to failure
quite accurately both when the initiation was smaller than the propagation and
when the initiation was predominant.
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