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The similarity between Skyrmions and Bogomolny-Prasad-Sommerfield (BPS) mono-
poles has often been remarked. In this talk I will illustrate this similarity by reviewing the
rational map ansatz and by discussing the specific example of D2-symmetric 3-solitons.

The Skyrme model is a nonlinear Lagrangian for a SU2-valued pion field U . It was
proposed by Skyrme as a theory of nuclear interactions: the classical B-nucleon nucleus
is a B-Skyrmion, that is, a minimum energy Skyrme field with topological charge B. U
is required to attain its vacuum value, the identity, at spacial infinity and so it is a map
between topological 3-spheres. This is the origin of the topological charge B.

The 1-Skyrmion is spherical, it is given by the hedgehog ansatz

U1(x) = exp(if(r) n̂ · σ) (1)

where n̂ is an outward pointing unit normal and σ = (σ1, σ2, σ3) are the Pauli matrices.
f(r) is a profile function which is normally determined numerically and is very well ap-
proximated by the kink profile [1]: f(r) = 4 arctan exp(−r). The 1-Skyrmion has six zero
modes: three translational modes and three isospin modes corresponding to global SU2

transformation.

Figure 1: Two Skyrmions attract-
ing. The different arrow types
correspond to different dipoles.

The product ansatz approximates a configuration
of well-separated 1-Skyrmions by the multiplication of
individual 1-Skyrmion fields. A Skyrmion has three dis-
tinct orthogonal dipoles which are rotated by the global
SU2 transformation. Two well-separated Skyrmions at-
tract or repel depending upon the mutual orientation of
these dipoles. Two Skyrmions maximally attract if the
difference of orientation of their dipoles is a rotation of
π about an axis orthogonal to the line of separation.
The product ansatz and the attractive orientation are
reviewed in [2, 3]. An attractive orientation is pictured
in Figure 1.

For B from three to nine the B-Skyrmion has been calculated numerically by evolving
an attractive configuration, [4, 5]. The energy of the 3-Skyrmion, for example, is .92 times
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the energy of three 1-Skyrmions. The 3-Skyrmion is tetrahedrally symmetric in the sense
that tetrahedral rotations in space are equivalent to isospin rotations.

In [6] a simple ansatz for B-Skyrmions is introduced. It is similar to the hedgehog
ansatz (1). In the hedgehog ansatz the outward pointing unit normal maps a 2-sphere
identically to a 2-sphere. The ansatz of [6] replaces that map with a more general map,
n̂R, from 2-sphere to 2-sphere. The 2-sphere has a complex structure given by stereographic
projection, it is assumed that n̂R is holomorphic with respect to that complex structure.
This ensures the ansatz space is finite dimensional.

The ansatz is usually called the rational map ansatz and is

U(r, z) = exp(if(r) n̂R · σ) (2)

where

n̂R =
1

1 + |R|2 (2Re(R), 2Im(R), 1 − |R|2) (3)

and R(z) is holomorphic map of degree B: R(z) = p(z)/q(z) where p(z) and q(z) are
polynomials of degree at most B with at least one of them of degree B. z is the inho-
mogenous angular coordinate in space and R is the inhomogeneous angular coordinate in
SU2 = S3. SU2 Möbius transformation of z corresponds to spatial rotation, SU2 Möbius
transformation of R corresponds to isospin rotation.

Figure 2: A surface of baryon
density for the rational map ap-
proximation to the 3-Skyrmion

The rational map ansatz reduces the field theoretic
problem of minimizing the Skyrme energy function to
the finite dimensional problem of choosing the rational
map R. By substituting the ansatz (2) into the Skyrme
energy functional an energy functional on the space of
rational maps, usually called I, is derived. The ratio-
nal map is chosen to minimise I. After R(z) is chosen
the profile function f(r) is calculated numerically. In
[6] rational maps for the known B-Skyrmions are cal-
culated and the ansatz fields are found to have energies
only a few percent higher than the true, numerically
determined, minima.

The rational map approximation to the 3-Skyrmion
is pictured in Figure 2. The corresponding rational map
is

R3(z) =

√
3iz2 − 1

z(z2 −
√

3i)
. (4)

This rational map is tetrahedrally symmetric in the sense that a tetrahedral transformation
of z is equivalent to a SU2 Möbius transformation of R3:

R3(−z) = −R3(z)

R3

( iz + 1

−iz + 1

)
=

iR3(z) + 1

−iR3(z) + 1
(5)
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R3(z) is thought to minimize I for degree three and the corresponding ansatz field is a good
approximation of the 3-Skyrmion. More general degree three rational maps give Skyrme
fields with rather high energy.

A BPS monopole is a solution to the Bogomolny equation: DiΦ = 1

2
ǫijkFjk, where Fij

is an su2 field strength and Φ is an su2 scalar field. Φ is required to have unit length at
spatial infinity and because of this it maps the large 2-sphere at infinity to a 2-sphere in su2.
The degree of this map gives a topological classification of the solution and a k-monopole
is a solution with degree k. There is a (4k − 1)-dimensional space of gauge inequivalent
k-monopoles. Solutions to the Bogomolny equation are minimal energy solitons in a Yang-
Mills-Higgs theory, the full Lagrangian gives a metric for the space of k-monopoles and
the corresponding geodesic flow is known to approximate low-energy dynamics in the full
Yang-Mills-Higgs theory [7, 8].

The striking thing is that that gauge inequivalent monopoles are classified by ratio-
nal maps, or, more precisely, a k-monopoles is classified by an SU2 orbits in the space
of degree k rational maps [9]. This relationship between monopoles and rational maps
is natural under rotation and so the tetrahedrally symmetric map R3 corresponds to a
tetrahedrally symmetric monopole. Furthermore, the space of D2 symmetric degree three
maps is two dimensional. D2 is generated by π rotations about orthogonal axes taken to
be the Cartesian axes. The rational map that is symmetric under these transformations is

R(z) =
αz2 − 1

z(z2 − α)
, (6)

where α is complex. This rational map degenerates when α = ∞ or α = ±1. At these
points, one monopole is infinitely far along each direction of a Cartesian axis and the third
is at the origin.

There are exceptional values of α where the symmetry is larger than D2. The obvious
example is α = 0 where R has axial symmetry about the x3-axis. There is axial symmetry
about the x1-axis if α = −3 and about the x2-axis if α = 3.

If α is real, the rational map is symmetric under inversion and since this is a one-
parameter fixed point set of a group action it is a geodesic. In this case, the 3-monopoles
have the same symmetries as 2-monopoles. The point α = ∞ is the same as α = −∞ and
the one-parameter family is represented by the equator in Figure 3. Around the equator
are three points with axial symmetry and three degenerate points. Geodesics run from one
degenerate point, through a point with axial symmetry and then on to another degenerate
point. The geodesics correspond to π/2 scattering mimicking the classic 2-monopole head-
on scattering except with an an extra monopole at the origin [10, 11].

If α is imaginary, the rational map is symmetric under S4 rotary-reflection in the x3-
axis. This transformation is a rotation of π/2 about the x3-axis followed by a reflection
in the x1x2-plane. This geodesic intersects the α real geodesic at the torus α = 0. If
α = ±

√
3i, then there is the additional C3 symmetry about x1 = x2 = x3 which, along

with the D2 symmetry, generates the tetrahedral group. This geodesic is one of the twisted
line scattering geodesics discussed in [12]. Monopoles approach along the x3-axis, coalesce
to form a tetrahedron, then a torus and finally the dual tetrahedron, before separating
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again along the same axis. These are also twisted line scattering geodesics in the x1-axis
with |α|2 + 2Re(α) = 3 and in the x2-axes with |α|2 − 2Re(α) = 3.

   =α 3 i

3 i

α=

α=

   =-α

0
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Figure 3: The α-sphere of D2

symmetric rational maps. Cros-
ses denote degenerate maps, dots
denote axially symmetric maps
and triangles denote the tetrahe-
dral maps.

In Figure 3, α is represented by a sphere and the
various exceptional values are marked. The real α circle
of inversion symmetry is the horizontal equator. The
other great circle is the geodesic of twisted line scatter-
ing in the x3-axis.

The rational map (6) only approximates the 3-
Skyrmion when α = ±

√
3i. The ansatz probably gives

good approximations to any D2 B = 3 Skyrmion ly-
ing in the descent manifold from the axially symmetric
saddle-point of the energy functional. For general α,
however, the rational map ansatz does not give Skyrme
fields which resemble the corresponding 3-monopole.
Nonetheless there are Skyrme fields resembling these
monopoles.

Three Skyrmions, superimposed so that they are
equally spaced along a line, move towards each other
if the two outlying Skyrmions maximally attract the
middle one. The relative orientation of the outlying
Skyrmions does not affect the fact of overall dipole at-
traction. However, the orientation is significant in the
interaction region where the product ansatz is not valid.
If the outlying Skyrmions are in the same orientation,
Figure 4a, they form a pretzel configuration [13]. If
there is a relative rotation of π about the separation axis, Figure 4b, they form the tetra-
hedral configuration, [14].

The similarities of this behaviour to that of D2 symmetric 3-monopoles is apparent.
It is imagined that the unstable manifold of three well-separated D2 Skyrmions is two
dimensional. When the three Skyrmions are well-separated these two dimensions corre-
spond to separation and a relative dipole orientation. In the monopole analogue, the two
dimensions are also imagined to correspond to separation and relative phase orientation.
The important feature of the analogy is that attraction partially fixes the relative dipole
orientation of the individual Skyrmions.
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Figure 4: Three equally spaced collinear Skyrmions.
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