
The Omega Architecture:
Towards Adaptable, Self-Managed Networks

Javier Baliosian, Françoise Sailhan, Ann Devitt, Anne-Marie Bosneag
Network Management Research Centre, Ericsson Ireland

Athlone, Ireland
Email: {javier.baliosian, francoise.sailhan, ann.devitt, anne-marie.bosneag}@ericsson.com

Abstract— The tremendous growth in ubiquity and diversity of
wireless networks render the exploitation of highly heterogeneous
next generation networks more challenging. This complexity is
compounded by the highly dynamic nature of many of these
network types and exacerbates the demands on the network
management system to ensure robust service delivery. Various
centralised, distributed or cooperative management systems have
been proposed to address these demands. However, an inability
to scale in some cases, or weak support for automation and lack
of control for operators in others render existing approaches
unsuitable for managing networks in a cost-effective way. For
this reason, we introduce Omega, a distributed and policy-based
network management system with self-configuration capabilities.
Every self-ware entity (i.e. network element) in the system is
potentially a manager for a set of local (re)configuration tasks or
for a sector of the network. The system may dynamically delegate
management tasks that are beyond its remit (but necessary
in order to achieve its goals) to other entities, re-evaluating
this delegation of tasks according to changing topology and
connectivity. The scalability of our platform comes from both
(i) the minimisation of the traffic generated by management
messages (e.g. events and configuration requests) and (ii) the
use of a fully distributed discovery mechanism. Similarly, its
adaptability is attributed to its capacity to react dynamically and
in a timely way to network changes. This capability is provided
by a resource discovery protocol that maintains an up-to-date
overview of the network and a policy-based manager that exploits
static knowledge about network configuration constraints and
procedures, learnt information about network behaviour patterns
and operators’ strategic business objectives to trigger, execute
and adapt configuration tasks to current network conditions.

I. INTRODUCTION

Recent advances in wireless technologies coupled with
an abundance of portable devices are opening up exciting
opportunities for the future of wireless networking. The
proliferation of radio access technologies will lead to the
emergence of a heterogeneous and complex communication
system spanning a broad spectrum of hardware and software
and suffering from increasing signal interference, connectivity
variability and changing topology. In this context, robust
service provisioning must be supported by powerful network
management capabilities. However, given the specific char-
acteristics of next generation systems, it appears that the
centralised or hierarchical paradigms widely adopted to handle
FCAPS (Fault, Configuration, Accounting, Performance and
Security) functionality [1] cannot adapt to the demands of
future networks. With a constant demand for high availability,
centralised approaches are incapable of delivering an ever-

increasing number of management functions from a central
entity due to the physical limitations of resources. Early
attempts at decentralisation, represented by hierarchical net-
work management systems, are inflexible and cannot facilitate
dynamic restructuring or reallocation of management tasks to
meet network needs.

The inadequacies of these existing approaches have driven
a demand for strongly distributed and flexible systems, such
as the multi-agent-based systems. The trend is toward fully
distributed network management strategies. However, specific
challenges are to be overcome. These strategies are resource
and bandwidth intensive, complex to implement, and, from
the network operator’s perspective, do not provide sufficient
network control. Commercial deployment of such systems has,
therefore, been very low. The inefficiencies that characterise
all existing network management systems, aggravated by the
heterogeneity, dynamism and potentially vast dimensions of
wireless networks of the future, remain a major obstacle to
a more cost-effective exploitation of networks by telecom
operators. It is therefore essential to devise management
solutions which address existing operator commitments to
provide services to users, within a framework that allows
greater flexibility and the ability to react in a timely fashion
to predictable or unpredictable failures.

This paper introduces a scalable, self-configuring and adap-
tive platform to address these requirements. Section II de-
scribes the distribution and discovery components of this
system from the network perspective. Section II-A introduces
a semi-distributed event service that is structured around a
backbone of nodes selected to collect and aggregate events
generated in the vicinity, while restricting traffic volumes to
a minimum. These backbone nodes cooperate with each other
so as to handle events over the overall network. Section II-
B presents a fully distributed discovery service that detects
available resources (e.g. nodes, data and computing services)
on the fly in a scalable and efficient way. The underlying
discovery protocol is based on the last generation of struc-
tured P2P discovery protocols using Distributed Hash Tables
(DHTs). Section III describes the self-configuring capability
of this system from the node perspective. This is governed
by a policy-based manager which controls the triggering
and execution of configuration tasks. Section III-A outlines
how these tasks are modelled and executed using ontologies.
Section III-B describes the policy engine which triggers these

tasks, according to constraints imposed by operators’ strategic
policies. Section III-C sets out a machine learning module
which logs, correlates and summarises over events locally and
globally to derive patterns of event activity that can be used
to influence policy choices. Section III-D goes on to describe
how policy conflicts are resolved and how the stability of this
system is enforced by interaction between the policy engine
and the behaviour learning module. Finally, in Section IV, a
detailed scenario is explored to illustrate the capabilities of the
system, while Section V presents our conclusions and future
work directions.

II. NETWORK ARCHITECTURE

Given the inefficiency (e.g., lack of flexibility, inability to
scale, bandwidth gluttony) of existing organisational structures
for network management systems, it is mandatory to devise
new alternatives that maximise the delegation of management
tasks over network elements. However, it is obviously not
realistic to assume that a unique organisational structure,
whether centralised, hierarchical or fully distributed, could
address all the requirements of the wide range of generic
network management tasks (e.g., event management, resource
discovery and data dissemination). To this end, our approach
relies on the three aforementioned basic organisational struc-
tures while trying to maximise the distribution of tasks over the
nodes. More precisely, we restrict the number of management
tasks that are carried out in a centralised way. Then, only
the tasks that inherently require an underlying centralised
organisation (such as accounting) or those tasks which perform
better given a weakly distributed structure (e.g., event and data
aggregation) are carried out using an approach which is not
fully distributed (Section II-A). Other management tasks, e.g.,
on-demand discovery of resources (e.g. policies, ontologies)
follow a fully distributed approach (Section II-B.3). As cen-
tralised network management is a well known approach, in
this paper we focus on the semi and fully distributed network
management approaches and illustrate our presentation with
two case studies: event notification and resource discovery.

A. Semi-Distributed Event Monitoring

The proposed event monitoring service is responsible for
detecting, capturing, aggregating and correlating events from
distinct sources (e.g., networked devices, distributed applica-
tions or services). These detected events (i.e., notifications
and alarms) are classified, filtered and analysed for archiving
for further off-line or on-line analysis (see section III-C),
for root cause analysis of any critical problem (e.g., fault,
security, performance threats) and for triggering reactions (see
Section III-B). From a communication point of view, this event
monitoring service continuously collects event notifications
and control information from monitored agents (also called
agents, sources, or producers) and sends them to remote
monitoring agents (also called managers, event consumers or
listeners). The routing of these generated events is performed
by intermediate nodes, called routers, that, besides forwarding
event notifications and control messages (e.g. event registration

Fig. 1. Distributed Event Notification

and de-registration), also aggregate primitive or composite
events so as to reduce the number of transmitted events.

1) Event Communication Model: The proposed event com-
munication scheme, illustrated in Figure 1, derives from the
well known publish/subscribe paradigm which is composed of
three key steps:
• event subscription, made by consumers to agents;
• local event collection;
• external notification which consists of transferring a rel-

evant message, containing a description of the occurred
event, from an agent to a consumer through intermediate
routers.

Typically, two approaches can be followed to handle sub-
scription and notification. The first consists of publishing
events in named channels whereas the second lies in using
the contents of the events to allow routers to make forwarding
decisions. The flexibility of subject-based systems induced
by the absence of agreement between consumers and sources
concerning the channel(s) to use, dictated our decision to use
a subject-based system in which subscriptions identify a class
(also called type) of events belonging to a given subject and
are used to forward messages intelligently by routers.

2) Subscription Management: Event monitoring starts
when a consumer expresses its interest in receiving particular
types of events. In practice, this consumer (e.g., a network
management application) specifies its monitoring demand by
sending a subscription that encompasses a set of primitive
event specifications. When an event occurs, this event is
caught locally and then disseminated based on the instructions
provided during registration.

3) Local Event Notification: Event collection and notifi-
cation is performed locally and globally by a notification
service. In order to accommodate the broad range of event
sources and the resulting control and monitoring information
(e.g., host, application, hardware, machine, network, link), this
notification service derives from two distinct standards:
• the de facto SNMP standard that typically supports

the management of low level resources, e.g., physical
host, links. Indeed the universal admittance of SNMP
provides a significant level of interoperability among het-
erogeneous event sources. Central to the notion of event

notification is the SNMP agent that is responsible for (i)
collecting and storing the network management related
information that is expressed in the MIB (Management
Information Base) model and (ii) originating SNMP traps
(i.e., event notifications) and passing them to the local
notification service through an adaptor;

• the traditional java component event model that propa-
gates locally the events issued by any local java object
included in the application in question.

In practice, an event notification is generated locally whether
by a SNMP agent or a java object and is transformed
into a common format before being disseminated over the
network. This notification object incorporates the following
key components: (i) an identifier of the event,1 (ii) a reference
to the object and to the host that generated the event so
as to guarantee the uniqueness of event signatures across
objects belonging to the computing network, (iii) an event
type and sub-type(s) followed by a collection of attribute-
value pairs2 that characterise the event. The events expressed
in the above format are then disseminated based on the event
communication model described below.

Our approach to route notifications between consumers,
routers and producers in a scalable way relies on a grouping
protocol that clusters subscribers interested in a particular class
of event with the publishers that generate it. To ensure a
fair distribution of the routing tasks while supporting minimal
event propagation, event classes (and the related filters) may
be decomposed into sub-classes and assigned to alternative
groups for routing. Conversely, in order to limit the number
of groups created, transient or long-lived sub-groups may be
created. In this case, the event notifications are not propagated
to the overall group. Indeed, to support efficient event forward-
ing into these sub-groups, each intermediate router manages
a routing table that contains information concerning the event
messages that should be forwarded to neighbouring routers
and consumers. To address scalability and performance issues,
agents rely on group communication to exchange both event
and control information over these sub-groups or groups.

4) Group Communication for Event Routing: As illustrated
by Figure 2, our semi-distributed organisation structure is
based on a backbone of nodes that are selected so as to perform
routing, storage or control functionalities on local nodes and
therefore keep to a minimum the traffic induced by self-
management tasks. These backbone nodes are also responsible
for cooperating with each other to perform distributed event
management over the whole network. The backbone creation
and maintenance is dynamically carried out by a group man-
agement strategy that (i) includes a clustering algorithm that
locally groups nodes under the responsibility of a particular
node called cluster-head or super-peer and (ii) connects the
cluster-heads in a distributed and scalable way so as to form

1This identifier refers to the Object IDentifier (OID) of a MIB variable or
event identifier provided by the java platform.

2This set of attribute-value pairs derives from the selection and extraction
of the corresponding variables from either the MIB tables or the java-object
state.

Fig. 2. Underlying Organisational Structure for Event Notification

an overall backbone. Nodes communicate symmetrically (i.e.,
as peers) over a routing backbone structured as an undirected
acyclic graph. One of the key benefit of this organisation, in
contrast with a hierarchical approach, is the fair distribution
of load among routers and the low impact of a router dis-
connection on event delivery. Network management tasks are
executed on top of this self-configurable group management
service that deals with network characteristics, such as dynam-
icity, network element connectivity. A similar strategy is used
to deal with deployment of policies and ontologies and the
routing of events and remote actions.

B. Resource Discovery

The resource discovery methods employed take into account
the properties of the system: very large size, dynamicity, and
heterogeneity. As noted above, centralised approaches are not
suitable for such systems. Therefore, we propose a discovery
mechanism based on Distributed Hash Tables (DHTs), which
offers a scalable and efficient way of locating nodes and
services in the system.

DHTs [2], [3], [4], [5] have appeared as a structured
mechanism for locating data in peer-to-peer systems, when it
became clear that flooding is neither an efficient mechanism,
nor a reliable one as it is bandwidth intensive and does
not guarantee that the required data will be found. They
create an overlay on top of the physical network, and have
a built-in efficient mechanism for scalable routing. DHTs
offer many beneficial properties, such as load-balancing, self-
configuration, adaptivity in response to nodes leaving and
joining the system, fault-tolerance and ease of deployment.
There exist many variations of DHTs, but most of them offer
routing/location algorithms of complexity O(log N), where N
is the number of nodes in the system. The cost in terms of state
data that must be stored at each node is also O(log N). The
routing algorithm relies on a converging mechanism, which
ensures that the routing messages get one step closer to the
target at each routing step, by matching increasingly longer
prefixes between the visited nodes and the target node.

The resource discovery mechanisms proposed in this paper

are based on Pastry [3]. Pastry is one implementation of
DHTs that offers increased routing efficiency due to the fact
that it takes into account node distance (as provided by the
underlying layer) when creating the overlay, and it provides
very good load-balancing properties. Three types of resource
discovery are provided to the management system:
• discovering individual nodes,
• discovering sets of nodes that have a common property

(e.g., abide by the same policy),
• discovering sets of nodes offering a specific set of ser-

vices.
1) Discovery of individual nodes: This type of discovery

is used by administrators and other nodes, when they know
which node they need to contact. Similar to Pastry, each node
in the network is assigned an ID, which is the result of
applying a hash function on its unique device ID in the telecom
network. The Pastry routing protocol ensures that any node in
the network can be quickly located from any other point in the
network, by sending a routing message to the corresponding
nodeID. This provides administrators and other nodes the
facility to efficiently locate nodes whose IDs they know. This
in turn facilitates administrative tasks that are already in place
today, such as checking for data inconsistencies between two
nodes selected from the network.

2) Discovery of sets nodes with common properties: For
discovering nodes with common properties, such as nodes that
abide by a common policy, the nodes are structured into a
multi-layer DHT, each layer being organized as one DHT and
containing nodes with a common property. This method is
based on previous work [6], in which sets of nodes that provide
the same consistency are grouped into a common DHT. The
nodeID is extended to contain an additional part, which
encodes the various properties of interest to us. The multiple
DHTs are linked together through consistency neighbour links,
and an adequate protocol exists for dynamically refreshing
these links. It has been shown in [6] that the discovery
and self-configuration protocols are scalable, fault-tolerant and
efficient.

3) Discovery of services: A different type of functionality
is required for locating services in the network. To provide
this function, nodes must advertise the services they offer.
Advertising means associating an ID with the service (e.g.,
a hash on the service name), and sending a record of the form
{nodeID, serviceID} to serviceID. This will ensure that the
node whose ID most closely matches the serviceID will store
the record. For fault-tolerance reasons, the record will also be
cached on the leafset of the node. The leafset contains nodes
that are close to the current node in the overlay, i.e., they have
IDs that are numerically close to the ID of the current node.

When a query is issued, it is first decomposed into a set of
queries for individual services. Then messages are sent through
the network to discover the IDs of the nodes that offer each
service. Finally, an intersection over the individual sets of node
IDs is performed – the result contains the nodeIDs of the nodes
that offer the required set of services. These nodes can then
be contacted to provide the services needed.

The method proposed for service discovery is similar to the
one used in [7]. Its application to the management of telecom
networks is novel, and future work includes the combination of
this protocol with protocols for caching along the route and
for agreement between replicas [8], [9], which will prevent
overloads of nodes storing records for popular services and
will ensure fault-tolerance in face of frequent joining/leaving
events, respectively. Future work also includes optimisations
that take into account the large number of records that may
have to be stored at nodes or processed during the query
process.

III. NODE ARCHITECTURE

Current trends to reduce OPEX for network management
illustrate that the network cannot rely on human intervention
for all configuration and maintenance activity for reasons both
practical (the size of the task is becoming insurmountable)
and monetary (the cost of the activity does not justify the
returns). The distributed network organisation outlined above
presupposes a degree of autonomy in the network nodes to
manage themselves in a fully or partially distributed environ-
ment. From a node perspective, the nodes must be empowered
to perform at least some configuration and maintenance tasks.
The ability to perform these tasks comprises several aspects:
• a node must be capable of carrying out the actions that

the task implies;
• a node must decide when it is appropriate or necessary

to carry out such a task;
• a node must continue to make appropriate decisions even

if the context of its deployment changes, that is, it must
adapt to changes in its environment.

The first two aspects are acknowledged necessary components
of any even partially autonomous system. The third aspect,
adaptability, is very important in the highly dynamic world
of wireless communication, perhaps less important for less
dynamic fixed line networks.

Automation of tasks and decisions is not a new phe-
nomenon. Existing rule engines and finite state machines
were designed to provide such functionality. The self-ware
node architecture proposed here, however, expands on existing
technology in several respects. Firstly, task automation and
current node status are coupled in a single ontology model,
a semantically enriched Management Information Base (MIB)
(section III-A). Hence, the MIB not only tracks current config-
uration but provides the workflows to change that configura-
tion. Secondly, the decision making capability (section III-B)
is provided by a policy engine which allows decision criteria
to be modelled at a higher level, based on operator preferences
rather than object constraints. The finer granularity checks
and balances of the rule engine are provided by the ontol-
ogy model MIB which specifies the constraints on possible
configuration actions imposed by the nature and current status
of a node. Released from this low-level checking functionality,
the policy engine can impose strategic operator–driven choices
on configuration activity. Finally, the approach proposed here
addresses the stability of this self-configuring functionality

Fig. 3. Node Architecture

by monitoring the effects of configuration actions over long
timescales (section III-C) and adapting policy decisions on the
basis of observed effects (section III-D).

We propose the self-ware node architecture, presented in
Figure 3, to provide this adaptive self-configuring functional-
ity. The following sections outline the components of this self-
ware architecture and how the components interact to achieve
stable, adaptive self-management. 3

A. Automating actions: Local Network Model

The Network Model, based on work presented in [10], is
an ontology-based enhanced Management Information Base
(MIB). A formal ontology is a taxonomy of concepts and
their attributes in a given domain together with a formal
representation of domain assumptions which is semantically
rich and based on a well-defined logical paradigm, such as
Frame Logic [11]. The purpose of employing an ontological
representation is to capture concepts in a given domain in
order to provide a shared common understanding of this
domain, enabling interoperability and knowledge reuse but
also machine-readability and reasoning about information
through inferencing. The Local Network ontology model
stores a node’s current configuration, its relationships with
other objects in the network and constraints on its possible
configuration imposed by the hardware and software deployed
on the network element. It also stores the workflows associated
with configuration tasks, i.e., the sequence of actions affecting
a network element that need to be completed in order to fulfil a
given task. Once a workflow is triggered by a policy decision,

3The Event Bus component in the figure is the local realisation of the semi-
distributed event management component discussed in Section II-A and will
not be discussed further in this section. The Enforcement Point component
is the interface to the Network Element itself and will also not be elaborated
upon here.

the inference engine begins to execute the actions of the work-
flow sequence in turn. These actions can be events triggering
other workflows, updates to the current configuration model or
the action may be to wait for other events with information or
acknowledgements required for the completion of the original
configuration task. The Network Model therefore is both a
passive information repository and an active propagator of
change to this repository.

Each node in an Administrative Domain has its own Local
Network Model instance storing its own current configuration,
constraints and relationships. The sum of these local models
is a Global Network Model. Since the Local Network Model
instances are not necessarily consistent with each other, the
Global Network Model instance may be internally inconsis-
tent. Nodes will continuously interact to store and update
shared entities, such as links and VPNs, by means of events
and event subscription in order to converge their views without
any requirement to achieve complete consistency. The trade-off
between perfect consistency and traffic overhead is governed
by consistency mechanisms that are outside the scope of this
paper.

B. Taking decisions: Policy Decision Point

Within this framework, policies are implemented as
condition-action rules where the condition may be the oc-
currence of some events (e.g.,an alarm or a service request),
in a certain network state and the action is the desired
response to that condition event, as defined by the operator.
The Policy Model in this self-ware architecture is based on
a classic Policy Decision Point (PDP) [12], which subscribes
to events through the event notification service and evaluates
the policy conditions using the information stored in the
Network Model. Based on this, the PDP decides whether a
policy condition has been met and therefore the attendant
reconfiguration action(s) must be performed. In practice, if
the conditions of a given policy are met, the PDP instigates
the necessary changes by issuing a workflow-triggering event
to the Local Network Model which then begins to execute
the relevant workflow propagating the necessary changes in
the Local Network Model and to the Network Element itself.
The reconfiguration action may also involve other network
elements, in which case the node may be the manager of the
activity and delegate responsibility for some actions to other
nodes or it may delegate management of the task to another
node. Section IV outlines how this functions for a standby-link
configuration task.

The ensemble of local policies is modelled using a special
kind of finite state machine, presented in [13], called a
Finite State Transducer extended with Tautness Functions and
Identities (TFFST). These machines are graphs with two labels
on each edge, one expressing an input symbol and another
specifying an output symbol. For a simple if-then rule:

if|jitter| > 20 ms then
re-route Video-class connection;

this may be expressed as a transducer that receives information

Fig. 4. Correspondence between if-then constituents and FST elements.

about jitter for one connection and, depending on this value,
produces a certain re-routing action. This is illustrated in
Figure 4. The TFFST has only one edge, its input label
represents the type of event the rule is expecting (i.e., jitter)
and the condition that this must fulfil (i.e., the jitter value) and
the output label the output action that must be performed.

This model exhibits good performance for policy evaluation.
It is also oriented to the resolution of policy conflicts as
each condition and action has an associated Tautness Function
which can be applied to select between two conflicting poli-
cies. Tautness Functions are generally based on criteria, such
as specificness of the policy condition or cost of the policy
action, and provide a means of evaluating the appropriateness
and effectiveness of applying a given policy. In fact, the
concept of a tautness function for conflict resolution provides a
very flexible means of influencing policy choices in the PDP.
The PDP provides the ability to take decisions. The ability
to adapt these decisions to current network conditions is a
more complex task which involves maintaining awareness of
network context and providing a point of interaction between
this context awareness and the policy decision point. The
context awareness component, i.e., the Behaviour Model, is
outlined in the following section. The point of interaction,
the dynamic conflict resolution component, is outlined in
section III-D.

C. Learning from experience: Behaviour Model

In a distributed self-managed network such as this one,
the network devices perform independent actions, i.e. exhibit
individual behaviour, in order to fulfil services and meet
user requirements. This individual, independent behaviour may
affect the network as a whole. Therefore, in order to detect
and possibly predict behaviour that will adversely affect the
provision of services and the experience of end users, it
is critical to observe the behaviour of individual nodes and
aggregate this to observe the behaviour of the network as a
whole. Performance and fault monitoring, monitoring how a
network is doing, are standard network management tasks in
any current network. In addition to monitoring the node or
network status (i.e. how it is doing), a management system
may also monitor the node or network activities (i.e. what
it is doing). In order to be useful, the management system
should infer how what the node or network is doing impacts
on how it is doing. Ideally, the management system should
also extrapolate what may happen in the network based on

knowledge about what has happened in the network in the
past. The Behaviour Model component of this Self-Ware
Node architecture is designed to carry out these monitoring,
correlation and prediction functions.

The internal representation of the Behaviour Model is a
Dynamic Bayesian Network (DBN) [14]. Bayesian Networks
(BN) [15] are state-of-art technology for monitoring different
types of behaviour, for example power consumption of ma-
chines [16] or fault diagnosis in industrial processes [17] by
specifying the dependencies (and independencies) that hold
between aspects of a system, in this instance, events in a
network. BNs consists of a Directed Acyclic Graph (DAG)
structure, where the nodes represent variables from an appli-
cation domain, in this case events in a network (parameters,
alarms, configuration requests), and the arcs represent the
influential relationships between them, for example a drop in
parameter X triggers alarm Y. Additionally, there is an asso-
ciated conditional probability distribution over these variables
which encodes the probability that the variables assume their
different values given the values of their parent variables in the
BN. For example, the probability of alarm Y being triggered
when parameter X is above a given threshold is 1. The
probability distribution can be assigned by an expert or learnt
off-line from historical data or learnt on-line incrementally
from a live feed of data. In the Behaviour Model described
here, the probability distribution is learnt incrementally on-line
for each network device from the event activity of that network
device. Figure 5 shows part of a sample Bayesian Network
for the telecommunications network domain. It consists of a
network Key Performance Indicator (KPI), the performance
counters which contribute to that KPI and a service workflow
which is triggered by degradation in the KPI levels.

Time in Bayesian Networks is implicitly represented by the
arcs of the model which denote a causal relationship. Dynamic
Bayesian Networks add an explicit temporal dimension to
traditional BNs. They are a generalisation of Bayesian Net-
works that explicitly model changes in the model over time
with additional temporal arcs. The Behaviour Model described
here exploits this temporal dimension to ensure the sequential
nature of events is explicitly captured in the model.

The Behaviour Model Dynamic Bayesian Network is an
on-line machine learning component. It is designed to learn
the probabilities of sequences of events occurring. More
specifically, it subscribes to events of interest and over time
fine tunes the probabilities of events occurring given the
occurrence of other events. This amounts to a log of the
effects of events which occur in the network, for example,
a particular configuration action increases the probability of
the degradation of a particular key performance indicator. In
order to be useful, this information which has been learnt from
experience must be fed back into the policy decision making
process so that future decisions are made with reference
to the effects of past decisions. Section III-D outlines how
this interaction takes place in the dynamic conflict resolution
component.

Fig. 5. Sample Bayesian Network composed of network event types

D. Adapting to change: Dynamic Conflict Resolution

The interaction between the decision-making PDP and the
event-monitoring BM occurs at the Dynamic Conflict Reso-
lution component. As the name suggests, this component is
designed to resolve any conflicts that arise between policies
at run-time. The TFFST-based policy model is the union of
multiple individual policies and any static conflict between
these policies will have been resolved at compilation of the
TFFST, most of them automatically and when this is not
possible by a human. However, at run-time, other conflicts
may occur between policies which could not be detected at
compilation time as they arise from the current status of the
network. In such instances, the policy engine has evaluated
the conditions of its local policies and two or more policies
could be triggered by the same recent events. The PDP must
decide between these policies and apply the most appropriate
to current circumstances. In a classic PDP, the engine applies
a system of priorities associated with each policy in order
to select between them. Tautness functions, as discussed in
Section III-B, are a more dynamic way of prioritising policies,
but they are still defined as functions encoded off-line (before
policies are deployed) and may not encode the experience
of the working system. The Dynamic Conflict Resolution
component of this self-ware node architecture, is designed to
adapt these Tautness Functions to current network conditions
by incorporating the probabilities of event occurrences derived
from the Behaviour Model component. Tautness Functions are
metric functions defined over policy conditions and actions;
given a network state, they evaluate to a value between -1 and
1; positive values correspond to the condition evaluated as
true and negative values to conditions evaluated as false.
When the PDP evaluates a TF for a specific policy condition
it does it using the network state encoded in the Network
Model (NM). Once the set of possible actions to trigger is
identified (because their respective conditions have positive
TFs) the Dynamic Conflict Resolution component computes

Fig. 6. Condition TF and Action TF are Computed using the Network Model
and the Behaviour Model Respectively

the probability for the system’s goal4 encoded in the Bayesian
network and uses that value as the TF for the actions. In
this way, each conflicting policy is associated with a final
numerical value based on the condition TF computed using
the network state represented by the NM and a predicted
estimate of policy effects expressed by the action TF computed
using the knowledge in the BM (see Figure III-D), then the
conflict can be resolved as usual. This process maximises
the probability of reaching the system goal given policies of
varying specificity.

IV. AN EXAMPLE: DYNAMIC STANDBY LINK

In a 3G network, a Radio Network Controller (RNC) node
is connected to many Radio Base Station (RBS) nodes in a
“parent-son” relationship by a primary link and a secondary
standby link. Traditionally the standby link is a second physical
connection which is configured when the network is rolled
out. The scenario described here represents a hypothetical
network management function in a 3G telecommunications
network to configure standby links dynamically according to
network demands rather than statically at network roll-out

4One system goal might be, for example, to have a balanced network
processing load. For the sake of simplicity, we are assuming the system has
a single goal. In the case of several goals, they should not be numerous and
should be explicitly prioritised.

Fig. 7. Standby Link Scenario Network Schema

time. This function is potentially very useful as standby links
reserve specific resources in the nodes they connect and also
in any node that cross-connects the link. In this scenario,
network nodes which are experiencing high traffic can free
up resources by dropping one or many standby links which
they cross-connect. Dynamic reconfiguration of standby links
would allow nodes to free up these reserved resources at need
for revenue-producing traffic.

Figure 7 illustrates this scenario for four network nodes:
one RNC, one RBS (also known as Node-B) and two devices
acting as network routers (Routers A and B). The standby link
between the RNC and the RBS is originally deployed through
Router-A. This standby link therefore has reserved resources
in the RNC, the RBS and also Router-A. In this example,
Router-A can drop the standby link between the RNC and the
RBS if it is experiencing high-traffic levels and requires the
reserved resources to meet user demand. The network device
which governs the standby link configuration, in this instance
the RNC, will then try to reconfigure a new standby link using
other entities in the network. This very simple scenario is
intended to illustrate how some of the basic control procedures
work in this system and how conflicting decisions and stability
are managed. This scenario assumes that in the future, the
transport network between the Radio Access Network (RAN)
nodes will be IP, based on MultiProtocol Label Switching
(MPLS) tunnels as suggested by 3GPP R5 [18] and a standby
link will be composed of two directed MPLS tunnels, one
forwards and another backwards.

A. Workflows

Management actions are implemented as services offered
by each self-ware entity. When a node requests an action to
be performed, it is asking for a particular service from a node
(possibly itself) or a set of nodes. The services involved in the
current example are:

ConfigureStandbyLink
DropStandbyLink
ConfigureMPLSTunnel
ComputeRoute

The workflow of the system is driven by messages that are
interchanged or broadcasted between the managed nodes.
These messages may be events, meaning messages informing

that something has happened, or service requests made by one
node to another. The relevant messages for this example are:

SustainedOverload
SBLAcceptReq
SBLAcceptAck
ConfStandbyLinkReq
DropStandbyLinkReq
RouteReq

Bootstrap: When a device boots up, it follows a predefined
workflow modelled in the device’s Local Network Model. This
section describes the workflow for the autonomous configura-
tion of a dynamic standby link for an RBS as discussed above.

1) The RBS needs its standby link to be configured, this re-
quirement is encoded as a task in its bootstrap workflow
stored in its Local Network Model.

2) A policy defines that the RBS’s parent RNC must
manage this operation.

3) The RBS locates its parent and the standby link con-
figuration service (StandByLink service) using the
discovery techniques described in II-B.

4) The RBS asks its parent RNC to setup the standby link
with certain QoS parameters also stored in the local
network model. The RNC then becomes the manager
for this particular task.

5) The RNC computes a route for the Standby Link. The
resulting route for the standby link is [RNC, Router-
A, RBS]. We must stress that this approach does not
specify how this route is computed, be it using low
level mechanisms or a QoS routing algorithm on top
of a network inventory, but rather addresses the task as
a traffic engineering problem which is policy-driven.

6) The RNC sends a request of acceptance
(SBLAcceptReq message) to every node along
the computed standby link path (in this case only
Router-A) to know if they can host this link. Resource
checking and reservation for MPLS transport between
the RAN nodes is managed by the ReSerVation
Protocol (RSVP). However, there are several reasons
to motivate required acceptance of higher levels in
the node architecture. For example, strategic traffic
engineering preferences in the form of policies may
contradict the use of bandwidth resources for a Standby
Link on a particular situation (e.g. a critical router in an
ongoing emergency operation) even if there are plenty
available.

7) Once every node has accepted to host the (bidirectional)
standby link (SBLAcceptAck message), the RNC has
to configure two MPLS tunnels to support it; one for-
ward from the RNC to the RBS and another backwards
from the RBS to the RNC. The first tunnel is configured
by the RNC itself and the configuration of the second
one is delegated to the RBS. Thus,

8) the RNC asks the RBS to configure the backwards
MPLS tunnel (ConfigureMPLSTunnel service).

9) The RBS configures the backwards tunnel locally and
confirm this to the RNC.

Dynamic Re-configuration: Once the device is working
normally the main objective of self-configuration is to react to
changes in the networking context, adapting the configuration
of one or several nodes to the new network state. In this simple
example, the context of Router-A will change. Lets assume
this router serves to switch user traffic for an RBS near a
stadium and on Saturdays, when popular football matches are
played, a massive peak of traffic must be handled, the bandwith
resources reserved for the standby link during the bootstrap
phase are not being used and will be needed for user traffic.
The following are the steps that are carried out for adapting
the system to the new situation:

1) The PDP in Router-A receives a sustained overload
event (SustainedOverload).

2) A policy active in the PDP, states that, when a sus-
tained overload is present, the node must drop idle
standby links (since the resource allocated to the standby
link is reserved but not used) and the PDP triggers a
StandByLinkDrop message.

3) The RNC receives this event/message because
it provides the service DropStandbyLink
and it is subscribed to listen for events of type
StandByLinkDrop.

4) The RNC initiates a procedure analogue to the one
described during the bootstrap to configure a standby
link ignoring, this time, the routes containing Router-
A.

5) After setting the new standby link, RNC calls the
DropStandbyLink at RBS.

B. Conflict Resolution

As described in Section III-D, the system implements a
novel conflict resolution mechanism supported by the mor-
phology of the transducer-based model which exploits the
learnt knowledge of the system’s behaviour. In order to il-
lustrate this process, the following section outlines a simple
policy conflict during the bootstrap procedure and how the
combination of these two models dynamically resolves the
situation.

In this hypothetical example, the administrator has stated
that the overall goal of the distributed management system is
to balance the network processing load.5 In measurable terms,
this is expressed as:

Goal 1: The standard deviation of
the nodes’ CPU-load should be
under 10%.

During the bootstrap workflow, one of the actions the RNC
must perform is to request a path for the standby link. The
RNC has three policies relevant to this request. A general
routing policy rule:

Rule 1: When configuring any link,
compute the shortest path.

5For simplicity, this paper disregards the issue of how to aggregate and
represent this global information locally at the RNC. However, this data is
made available with some degree of certainty from the network state stored
in the Network Model.

A more specific policy rule aimed at setting standby links in
links with good bandwidth:

Rule 2: When configuring a standby
link, compute the shortest-widest
path.

Finally, a policy rule added to deal with the situation where
a specific router experiences CPU overload during football
matches:

Rule 3: When configuring a standby
link use a path without the
router serving the stadium.

The condition in Rule 2 (configuring a standby
link) is a specific case of the condition in Rule 1
(configuring any link). Thus, the TF for the condition
in Rule 2 will be closer to zero than the TF for the condition
in Rule 1 and therefore Rule 2 has priority over Rule 1 with
the result that the shortest-widest path will be requested. In
this hypothetical scenario, during the RBS’s bootstrap the
shortest-widest path between it and RNC is [RNC, Router-A,
RBS] but Router-A is the one serving the stadium. Therefore,
a new dynamic policy conflict arises. In this scenario, the
mean CPU-load for RNC, RBS and Router-A is 50% and for
Router-B is 75%, the CPU-load standard deviation for these
devices is 12.50%. According to the learnt probabilities of the
Bayesian network in the Behaviour Model, there is evidence
to suggest that the choice of routing strategy is correlated
with the CPU-load standard deviation as using the shortest-
widest path strategy increases the probability of having a CPU-
load standard deviation lower than 10%. On the other hand,
there is no evidence to support the theory of any correlation
between the use of the router serving the stadium and the CPU-
load balance. Therefore, in order to maximise the probability
of reaching the system goal of balanced CPU load, Rule
2 is selected. In this scenario, hosting a standby link use
an hypothetical 10% of Router-A’s CPU giving a new load
standard deviation of 11.80% which brings the system much
closer to its Goal 1. Using this technique the two dynamic
conflicts between the three policies are solved autonomously
using a combination of operator preferences, general goals and
learnt patterns of behaviour.

V. CONCLUSION

The demands of increasingly large-scale distributed telecom
networks are continuously challenging the current network
management systems and are driving the creation of a new
set of requirements for next generation management systems.
The research presented in this paper identifies four key issues
that must be addressed in order to realise the potential of such
networks in real-world commercial settings: scalability (i.e.,
capacity to deal with a large number of distributed NEs), abil-
ity to react dynamically and in promptly to network changes,
automation of management activities (to some extent), and
stability of such a (partially) autonomous system. Confronted
with these issues, we proposed a novel distributed policy-
based management system. This distributed system relies on

a P2P resource discovery protocol and a semi-distributed
event notification service, which together create two distinct
overlay layers that hide routing complexity while enabling the
system to scale. More precisely, the Distributed Hash Table
(DHT) discovery protocol reactively handles the discovery
of data and computing resources while the event notification
service dynamically retrieves changes occurring across the
network enabling more proactive network management. Based
on this information retrieved in a distributed fashion, network
elements can be empowered to make management decisions
and handle (some) network management activities. For this
purpose, network elements have three planes of knowledge:
(1) expert knowledge in the form of policies, (2) knowledge of
O&M procedures modelled as ontologies and (3) behavioural
knowledge learnt on-line from the managed network and the
system managing it. The main advantage of this system is the
interaction of these three planes to drive network management
decisions. Thanks to this novel interaction, the system can:

1) perform complex network management tasks that previ-
ously were not possible without human intervention;

2) predict the impact of its decisions based on knowledge
learnt from the working system;

3) change those decisions at run-time to avoid adverse
effects of autonomous activities;

4) solve policy conflicts that previously had to be solved by
human intervention or based on static priorited ordering;

We are currently working on a full implementation of the
middleware. Regarding the event distribution layer, it appears
that the subscription language directly constrains the event
notification by heavily impacting on the amount of notification
unnecessarily propagated. A research direction we are cur-
rently investigating lies in the provision of a more expressive
and sophisticated subscription language. Another challenging
concern, orthogonal to all the issues discussed so far, refers
to the investigation of the performance of protocols and al-
gorithms that constitute the management platform. Simulation
will be the primary tool to evaluate the scalability, robustness
and congestion control of the system. This will lead to the
full implementation of the system over a simulator. Specific
challenges to be overcome are obtaining representative and
credible workloads and the difficulty to quantify the impact
of any instability in a large-scale network. As regards the
autonomous adaptive configuration functionality, this function-
ality will be implemented for a small testbed, as the focus for
evaluation is on the efficiency and stability of the dynamic
conflict resolution component.

ACKNOWLEDGEMENT

Javier Baliosian, Françoise Sailhan and Anne-Marie
Bosneag are funded by the European Community’s Marie
Curie Host Fellowships.

REFERENCES

[1] ITU-T, “Recommendation M.3000 Telecommuniactions management
network,” February 2000.

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM 2001, 2001.

[3] A. Rowstron and P.Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale distributed systems,” in Proceedings
of the IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001, pp. 329–350.

[4] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, January 2004, special Issue on Service Overlay Networks.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proceedings of the ACM
SIGCOMM 2001, 2001.

[6] A. Bosneag and M. Brockmeyer, “Grace: Enabling enabling collabo-
rations in wide-area distributed systems,” in Proceedings of the 3rd
IEEE International Workshop on Distributed and Mobile Collaborations,
2005.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “One ring
to rule them all: Service discovery and binding in structured peer-
topeer overlay networks,” in Proceedings of the 2002 SIGOPS European
Workshop, 2002.

[8] A. Bosneag, Y. Xi, X. Li, and M. Brockmeyer, “Adaptive congestion
control for hotspot management in structured peer-to-peer systems,” in
Proceedings of the 4th IEEE/ACM International Workshop on Global
and Peer-to-Peer Computing, 2004.

[9] B. Temkow, A. Bosneag, X. Li, and M. Brockmeyer, “PaxonDHT:
Achieving consensus in distributed hash tables,” in Proceedings of the
2006 International Symposium on Applications and the Internet, 2006.

[10] D. Cleary and B. Danev, “Using ontologies to simplify wireless network
configuration,” in Proceedings of the 1st International Workshop Formal
Ontologies Meet Industry, FOMI 2005, 2005.

[11] J. Angele and G. Lausan, Handbook on Ontologies. Springer, 2004,
ch. Ontologies in F-logic.

[12] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Termi-
nology for policy-based management,” RFC, vol. 3198, Nov. 2001.

[13] J. Baliosian and J. Serrat, “ Finite State Transducers for Policy Eval-
uation and Conflict Resolution ,” in Proceedings of the Fifth IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks
(POLICY 2004), June 2004, pp. 250–259.

[14] A. E. Nicholson, “Monitoring discrete environments using dynamic
belief networks,” Ph.D. dissertation, Department of Engineering, Oxford,
1992.

[15] K. Korb and A. E. Nicholson, Bayesian Artificial Intelligence. Chapman
& Hall/CRC, 2004.

[16] C. Harris and V. Cahill, “Power management for stationary machines
in a pervasive computing environment,” in Proceedings of the Hawaii
International Conference on System Sciences, 2005.

[17] G. Arroyo-Figueroa and L. Sucar, “A temporal bayesian network for
diagnosis and prediction,” in Proceedings of the 15th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-99). San Francisco, CA:
Morgan Kaufmann Publishers, 1999, pp. 13–20.

[18] 3rd Generation Partnership Project, “Technical Specification Group Ra-
dio Access Network, IP transport in UTRAN (Release 5),” 2003.

