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The inertial rotational Brownian motion and dielectric relaxation of an assembly of noninteracting
rodlike polar molecules in a uniaxial potential are studied. The infinite hierarchy of
differential-recurrence relations for the equilibrium correlation functions is generated by averaging
the governing inertial Langevin equation over its realizations in phase space. The solution of this
hierarchy for the one-sided Fourier transforms of the relevant correlation functions is obtained using
matrix continued fractions yielding the longitudinal dipole correlation function, the correlation time,
and the complex polarizability, which are calculated for typical values of the model parameters.
Pronounced inertial effects appear in these characteristics in the high-frequency region for low
damping. The exact longitudinal correlation time is compared with the predictions of the Kramers
theory of the escape rate of a Brownian particle from a potential well as extended by Mel’nikov and
Meshkov �J. Chem. Phys. 85, 1018 �1986��. In the low temperature limit, the universal Mel’nikov
and Meshkov formula for the inverse of the escape rate provides a good estimate of the longitudinal
correlation time for all values of the dissipation including the very low damping, very high damping,
and Kramers turnover regimes. Moreover, the low-frequency part of the spectra of the longitudinal
correlation function may be approximated by a single Lorentzian with a halfwidth determined by
this universal escape rate formula. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3074330�

I. INTRODUCTION

The rotational Brownian motion of rodlike molecules in
a double-well uniaxial �Meier–Saupe� potential

V��� = − �kBT cos2 � , �1�

where � is the dimensionless anisotropy parameter, kB is
Boltzmann’s constant, T is the temperature, and � is the
polar angle, is almost invariably used to describe molecular
reorientations in nematic liquid crystals �see, e.g., Refs. 1–8�
and biological membranes �e.g., Refs. 9 and 10�. However,
the vast majority of treatments have been confined to the
noninertial or very high damping �VHD� limit due to the
mathematical difficulties associated with the rotation of a
rigid body in space. The dynamics of the system in this limit
have been extensively studied by using the associated
Smoluchowski equation �see, e.g., Refs. 2–6 and references
cited therein�. In dielectric relaxation, the inertial effects of
molecules are unimportant at low frequencies. However, ne-
glect of the molecular inertia leads to incorrect predictions of
the behavior of dielectric spectra at high frequencies �e.g.,
infinite integral absorption�.8 Existing treatments accounting
for inertial effects have been given either by numerical
simulation11,12 or under the rather unrealistic assumption of
rotation about a fixed axis.13,14 We remark that mathemati-

cally speaking the dielectric response of polar molecules in a
mean field potential closely resembles magnetic relaxation of
uniaxial single domain ferromagnetic particles8,15,16 and the
dynamic Kerr effect of nonpolar polarizable molecules.8,17

Now, the theoretical treatment of inertial rotational
Brownian motion has been usually based on the associated
Fokker–Planck equation.18–20 That equation, in the present
context, is a partial differential equation for the time evolu-
tion of the joint distribution function of orientations and an-
gular momenta of a molecule in phase space. It is derived by
calculating the drift and the diffusion coefficients from the
inertial Euler–Langevin equation which governs the time be-
havior of the set of random variables describing the rota-
tional Brownian motion of a molecule in a fluid. The solution
of the Fokker–Planck equation is usually obtained by sepa-
rating the variables. A comprehensive discussion of that
equation and its applications to orientational relaxation in
fluids is given, e.g., in Refs. 18–20. However, an alternative
approach has been given by Coffey21 and Coffey et al.8 They
developed a method of solution of the Langevin equations
for the inertial Brownian rotation without recourse to the
Fokker–Planck equation. The key step in applying the
method is first to convert by appropriate transformation the
Langevin equation into an equation for the quantity the sta-
tistical average of which is desired, i.e., the observable. That
equation is then averaged over its realizations yielding
differential-recurrence relations for the time behavior of thea�Electronic mail: kalmykov@univ-perp.fr.
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statistical averages from which the equilibrium correlation
functions may be deduced. Now, the transformed Langevin
equation contains not only the desired average but also the
next higher order average and so on. It is thus the generating
equation of a hierarchy of averages which can be solved by a
variety of methods. This procedure entirely eliminates the
excessive step in the theory of constructing and solving the
corresponding Fokker–Planck equation. The advantage in
computational labor that the direct averaging method based
on the Langevin equation has over the solution by the
Fokker–Planck method is considerable because neither the
derivation of that equation nor a knowledge of the intricate
transformations used to effect separation of the variables in it
is required. These advantages have been highlighted in a
recent paper22 in the context of the three-dimensional rota-
tional Brownian motion in a potential.

Here we shall use a recently developed method22 for the
evaluation of the inertial response of systems of polar mol-
ecules in a double-well uniaxial potential, Eq. �1�, with dy-
namics described by the inertial Langevin equation, which is
based on an exact solution of the associated recurrence rela-
tions for the spectra of the statistical moments using matrix
continued fractions and which also allows one to derive ap-
proximate analytic solutions by utilizing the concepts of the
integral relaxation �correlation� time, escape rate, and the
effective eigenvalue. In particular, we shall present a detailed
comparison of Mel’nikov and Meshkov’s universal turnover
formula for the longest relaxation time with the matrix con-
tinued fraction solution for the longitudinal dipole correla-
tion function, the correlation time, and the dynamic suscep-
tibility.

II. RECURRENCE RELATIONS FOR STATISTICAL
AVERAGES

We consider the three-dimensional rotational diffusion of
a thin rod, or rotator, representing a typical linear polar mol-
ecule in the Meier–Saupe uniaxial anisotropy potential Eq.
�1�. In the molecular coordinate system oxyz fixed in the
rotator, the angular velocity �= ��x ,�y ,�z� and the angular
momentum M= �I�x , I�y ,0� of the rotator are defined as1

� = ��̇,�̇ sin �,�̇ cos ��, M = �I�̇,I�̇ sin �,0� ,

where � is the azimuthal angle. The rotational Brownian
motion of the rotator is governed by the Euler–Langevin
equations,8,18

I�̇x�t� = I�y
2�t�cot ��t� − ��x�t� − ��V���t�� + �x�t� , �2�

I�̇y�t� = − I�x�t��y�t�cot ��t� − ��y�t� + �y�t� , �3�

where −��V���t�� is the torque due to the external potential
V, −��x�t� and −��y�t� are the components of the frictional
torque ���t�, and �x�t� and �y�t� are the components of the
white noise torque ��t� due to the Brownian motion of the
surroundings having the following properties:

� j�t� = 0, � j�t��m�t�� = 2kBT�� j,m��t − t�� .

Here j, m=x ,y ,z, and the overbar means the statistical aver-
age over an ensemble of rotators that all start at the instant t

with the same sharp values of the angular velocity and the
orientation.

Our goal is to evaluate the longitudinal dipole correla-
tion function C�t� defined as

C�t� =
�cos ��0�cos ��t��

�cos2 ��0��
, �4�

where the angular brackets mean the statistical average over
the equilibrium distribution function W0 of �, �, �x, and �y,

��·�� = �
−�

� �
−�

� �
0

2	 �
0

	

�·�W0 sin �d�d�d�xd�y .

Here W0�� ,�x ,�y�=Z−1e−
2��x
2+�y

2�+� cos2 � is the Maxwell–
Boltzmann distribution associated with the set of rotators,

=�I / �2kBT�, I is the moment of inertia of a rotator, and Z is
the partition function. Having determined C�t� from Eq. �4�,
one may calculate the correlation �or integral relaxation�
time � defined as the area under the curve of the correlation
function, viz.,

� = �
0

�

C�t�dt , �5�

and the longitudinal complex susceptibility ����=�����
− i����� defined as8

����
���0�

= 1 − i�C̃��� , �6�

where ���0�= �
2N0 /kBT��cos2 ��0�� is the static susceptibil-
ity and N0 is the number of dipoles per unit volume.

By averaging the inertial Langevin Eqs. �2� and �3�, we
have derived in Ref. 22 the infinite hierarchy of differential-
recurrence relations for the correlation functions cn

l,m�t�
= �cos ��0�fn

l,m�t�� describing the relaxation of the system in
an arbitrary axially symmetric potential V���. Here

fn
l,m�t� = Pl

m�cos ��t��sn
m��x�t�,�y�t�� ,

Pl
k�z� are the associated Legendre functions,23 the orthogonal

functions sn
m��x ,�y� �Refs. 8 and 22� are expressed as finite

series of products of Hermite polynomials Hn�z� �Ref. 23� in
the components of the angular velocity �representing the
generalization by induction of a method described in Ref.
21�, viz.,

sn
2m+M��x,�y� = 	

q=0

n
r2m+M

n,q

q ! �n − q�!
H2n−2q+M�
�x�H2q�
�y� ,

where M =0,1 and the coefficients r2m+M
n,q are to be deter-

mined from the following recurrence relations:

r2m
n,q = 
n − q +

1

2
�
1 −

2q + 1

2m − 1
�r2m−1

n,q

+ �n − q�
2q + 1

2m − 1
r2m−1

n,q+1,
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r2m+1
n,q = 
1 +

q

m
�r2m

n,q −
q

m
r2m

n,q−1,

with r0
n,q=r1

n,q=1; thus one has8 r2
n,q=n−2q, r3

n,q=n−4q,
r4

n,q=n�n−1�−8q�n−q�, etc. For the uniaxial anisotropy
�Meier–Saupe� potential, Eq. �1�, these differential-
recurrence equations become for m=0,



d

dt
cn

l,0 = − 2n��cn
l,0 +

1

2
cn

l,1 + 
2 +
4�

�2l − 1��2l + 3��cn−1
l,1

−
4�

2l + 1

 l

2l − 1
cn−1

l−2,1 −
l + 1

2l + 3
cn−1

l+2,1� , �7�

and for m�1, M =0,1,



d

dt
cn

l,2m−M = − �2n + M���cn
l,2m−M + cn−1+M

l,2m+1−M +
1

4
cn+M

l,2m+1−M − �l + 2m − M��l − 2m + 1 + M�

��n − m + 1 + M

4
cn+M

l,2m−1−M + �n + m�cn−1+M
l,2m−1−M
 + 2�� �l + 1 − 2m + M�

�2l + 1��2l + 3�
cn−1+M

l+2,2m+1−M +
�4m − 2M + 1�
�2l − 1��2l + 3�

cn−1+M
l,2m+1−M

−
�l + 2m − M�

�2l − 1��2l + 1�
cn−1+M

l−2,2m+1−M − �n + m�� �l − 2m + 1 + M��l − 2m + 2 + M��l − 2m + 3 + M�
�2l + 1��2l + 3�

cn−1+M
l+2,2m−1−M

−
�4m − 2M − 1��l − 2m + 1 + M��l + 2m − M�

�2l − 1��2l + 3�
cn−1+M

l,2m−1−M

−
�l + 2m − 2 − M��l + 2m − 1 − M��l + 2m − M�

�2l − 1��2l + 1�
cn−1+M

l−2,2m−1−M
� , �8�

where ��=�
 / I is the dimensionless damping parameter.
Equations �7� and �8� can be solved by taking the one-

sided Fourier transform and then using matrix continued
fractions8 �see Appendix�. Having determined the one-sided
Fourier transform c̃0

1,0�i��=�0
�c0

1,0�t�e−i�tdt, we can calculate

the spectrum of the correlation function C̃��� as

C̃��� =
c̃0

1,0�i��
c0

1,0�0�
, �9�

and the correlation time �, viz.,

� = C̃�0� =
c̃0

1,0�0�
c0

1,0�0�
. �10�

Equations �7� and �8� can also be derived after lengthy
calculations from the inertial Fokker–Planck equation for the
distribution function W�� ,�x ,�y , t�, which is18

�W

�t
= LFPW , �11�

where the Fokker–Planck operator LFP is defined as

LFP = − �x�� − �y cot ���y��x
− �x��y

� + I−1��V��x

+
��



���x


�x +
1

2
2��x
� + ��y


�y +
1

2
2��y
�
 .

�12�

III. ASYMPTOTIC FORMULAS FOR � IN THE LOW
TEMPERATURE LIMIT

In the present context, which involves a symmetric
double-well potential the correlation time � is essentially the
inverse of the smallest nonvanishing eigenvalue �1 of the
Fokker–Planck operator Eq. �12�. In other words, �1

−1 is the
lifetime of the slowest relaxation mode of the system. How-
ever, �1 is not, in general, available in closed form because it
is invariably the smallest nonvanishing root of a very high
order polynomial equation, namely, the secular equation of
the system. Fortunately, a way of overcoming this difficulty
is to utilize an ingenious method originally proposed by
Kramers24 in connection with thermally activated escape of
particles out of a potential well. Kramers24 evaluated the
prefactor 
 in an Arrhenius-type equation for the escape rate
� over the potential barrier �V, viz.,

� = 
�TST, �13�

where �TST���0 /2	�e−�V/kBT is the transition state theory
�TST� escape rate and the attempt frequency �0 is the angu-
lar frequency of a particle executing oscillatory motion at the
bottom of a well �for reviews of applications of Kramers’
method see Refs. 25–27�. Now if the escape rates for me-
chanical Brownian particles are calculated by the Kramers
method, three regimes of damping appear, viz., �i�
intermediate-to-high damping �IHD� containing within it the
VHD region, �ii� very low damping �VLD�, and �iii� a turn-
over region. Kramers24 mentioned in his paper, however, that
he could not find a general method of attack for the purpose
of obtaining a formula which would be valid for any damp-
ing regime. This problem known as the Kramers turnover
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problem was resolved nearly 50 years later by Mel’nikov and
Meshkov.28,29 By solving the Fokker–Planck equation con-
verted to an energy-action diffusion equation by the Wiener–
Hopf method, they28,29 evaluated the longest relaxation time
� in the high barrier limit for all values of the dissipation, in
terms of a depopulation factor �which is a function of the
ratio of the energy loss per cycle of a particle moving on an
escape trajectory to the thermal energy�, which heuristically
interpolates between the VLD and IHD regions. In other
words, they effectively solved the Kramers turnover prob-
lem. Moreover, Mel’nikov29 extended the depopulation fac-
tor method to take into account quantum effects in a semi-
classical way. Later, Grabert30 and Pollak et al.31 presented a
comprehensive solution of the classical Kramers turnover
problem, showing that the Mel’nikov and Meshkov universal
formula can be obtained without their ad hoc interpolation
between the weak and strong damping regimes. We remark
that the calculation of Pollak et al.31 also applies to an arbi-
trary memory friction and not only to the “white noise”
�memoryless� limit. Later their calculation was extended to
the quantum regime in the semiclassical limit by Rips and
Pollak.32

The universal turnover formula of Mel’nikov and Mesh-
kov as applied to the present problem has been obtained by
Pastor and Szabo12 as follows. In order to estimate the pref-
actor 
 in Eq. �13�, they averaged the exact inertial Fokker–
Planck Eq. �11� over the angular velocity component �y,
which allowed them to transform Eq. �11� to a simpler
Fokker–Planck equation for the reduced distribution function
W��� ,�x , t�, viz.,

�W�

�t
+ �x

�W�

��
−

1

I

�V�

��

�W�

��x

=
��




�

��x

�xW� +

1

2
2

�W�

��x
� , �14�

where

W���,�x,t� = 
	−1/2 sin ��
−�

�

e−
2�y
2
W��,�x,�y,t�d�y

and V����=V���−kBT ln sin � is an effective potential �see
Fig. 1�. Here the potential V���� is infinite at 0 and 	, has a
maximum at �=	 /2, and so resembles a typical one-
dimensional bistable potential in the range 0���	. The
reduced Fokker-Planck equation Eq. �14� describes one-
dimensional Brownian rotation about a fixed axis in the ef-
fective potential V�. Thus, the Mel’nikov–Meshkov depopu-

lation factor method is directly applicable, and one obtains
for the longest relaxation time �M,12

�M �

�bA�2��S�
�TSTA2���S�

��4
2�b
2 + ��2 − ���−1. �15�

Here, �b=����
2 V��	 /2�� / I=
−1��−1 /2 is the barrier fre-

quency, S is the dimensionless action variable defined as

S = 4�
�1

	/2
�� cos2 � + ln sin �d� , �16�

�1 is the smallest root of the separatrix � cos2 �+ln sin �
=0 �trajectory on which escape may take place�, and the
depopulation factor is

A�d� = exp� 2

	
�

0

	/2

ln�1 − e−d/�4 cos2 x��dx� . �17�

Furthermore, for a double-well potential the TST escape rate
�TST is12

�TST �
e−V��	/2�/kBT

2
�	�0
	/2e−V����/kBTd�

=
� − 1/2


�	
e−�. �18�

The depopulation factor A�d� as may be deduced from Eq.
�17� has the following asymptotic properties:

A�d� → 1 as d → � and A�d�/d → 1 as d → 0,

where d is the ratio of the energy loss per cycle of a particle
moving on the escape trajectory to the thermal energy.
Hence, it follows that, in the low damping ���→0� and
VHD ���→�� limits, Eq. �15� predicts

�VLD � ��TST��S�−1 �
�	


4���� − 1/2�3/2e� �19�

and

�VHD �
�	
��

2�� − 1/2�3/2e�. �20�

We remark that in the low temperature limit, ��1, Eq. �20�
coincides with the estimate of the longest relaxation time,

�VHD � 
���	�−3/2e�/2 �21�

obtained in Ref. 8 from the Smoluchowski equation govern-
ing the probability density function W�� , t� of the orienta-
tions of rotators in a uniaxial potential, viz.,8

2�D
�

�t
W =

1

sin �

�

��
�sin �
 �

��
W + � sin 2�W�
 , �22�

where �D=
�� is the Debye relaxation time for isotropic
noninertial rotational diffusion. The noninertial Smolu-
chowski Eq. �22� follows directly from the inertial Fokker–
Planck Eq. �11� by integrating over the angular momenta and
proceeding to the VHD limit.

IV. ANALYTIC FORMULA FOR � IN THE VHD LIMIT

In principle, since it involves a weighted sum over all
the eigenvalues, the accurate calculation of the correlation
time � for all barrier heights is a much more complicated

−12

−8

−4

0

4

ππ / 2

V
'(ϑ

)/
k B

T ϑ

1

2

3

4

1: σ = 15
2: σ = 10
3: σ = 5
4: σ = 0.5

FIG. 1. Effective potential V���� /kBT=−� cos2 �−ln sin �.
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problem than the evaluation of the smallest nonvanishing
eigenvalue in the low temperature limit. In the present prob-
lem, however, an accurate method of estimating � in the
VHD limit exists. This method based on the mean first pas-
sage time was suggested by Szabo33 in the particular context
of the theory of polarized fluorescent emission in uniaxial
liquid crystals. Nevertheless, it may be used for all other
systems with dynamics governed by single variable Fokker–
Planck equations because one may then calculate in integral
form the correlation time �A of a dynamical variable A�x�
defined as the area under the curve of the normalized auto-
correlation function CA�t�= �A�x�0��A�x�t���, viz.,

�A =
1

�A2��x1

x2 1

Wst�x�D�2��x���x1

x

A�z�Wst�z�dz
2

dx . �23�

Here � � designates the statistical averages over the stationary
�equilibrium� distribution function Wst�x�0�� with x�0� de-
fined in the range x1�x�0��x2 and it is assumed that �A�
=0. Thus all that is required to evaluate � is a knowledge of
the diffusion coefficient D�2��x� and Wst�x� �see, e.g., Ref. 8,
Chap. 2, Sec. 2.10, for details�. The advantage of Eq. �23� is
that it yields a VHD asymptote, valid for all barrier heights
including very low barriers, where the Mel’nikov–Meshkov
method does not apply.

Since the dynamics of the system of planar rotators in
the VHD limit are governed by a single variable, we can then
obtain an accurate �that is, valid for all barrier heights� VHD
asymptote by applying Eq. �23� to the present problem. In
the high damping limit ����1�, the appropriate single vari-
able Fokker–Planck �Smoluchowski� equation for the prob-
ability density function W�� , t� of the orientations of rotators
is Eq. �22�. The correlation time � can then be calculated
from the following equation:8

� =
2
��

Z�z2� �−1

1 e−�z2

1 − z2��
−1

z

xe�x2
dx
2

dz

=
3e�
��

�2M�3/2,5/2,���0

1 cosh���1 − z2�� − 1

1 − z2 dz , �24�

where Z=�−1
1 e�z2

dz=2M�1 /2,3 /2,�� is the partition func-
tion, M�3 /2,5 /2,�� and M�1 /2,3 /2,�� are confluent hy-
pergeometric �Kummer’s� functions,23 and z=cos �. In the
low temperature limit, ��1, Eq. �24� can be approximated
by Eq. �21�. In the opposite high temperature limit of small
barriers, ��1 �where, of course, the Mel’nikov–Meshkov
universal formula is not applicable�, Eq. �24� may also be
used to estimate � in the high damping limit, ���1 �see Fig.
2�.

V. RESULTS AND DISCUSSION

In Fig. 2, we compare the longest relaxation time �M as
a function of the barrier height � calculated from the
Mel’nikov–Meshkov Eq. �15� with numerical solutions of
Eqs. �7� and �8� for the correlation time � for low ���
=0.02,0.2�, intermediate ���=1.0�, and high ���=10,100�
values of damping. In Fig. 3, we compare �M as a function of
the damping parameter �� with the numerical solution for �

and with the VLD and VHD asymptotes, Eqs. �19� and �24�,
respectively. Apparently, in the high barrier limit, say ��3,
Eq. �15� provides a good approximation to the exact corre-
lation time for all values of the friction parameter �� includ-
ing the VHD, VLD, and the Kramers turnover regions. In
spite of very good overall agreement between numerical re-
sults and the universal Eq. �15�, a marked difference between
numerical and analytical results exists in the VLD region at
moderate barriers �this difference decreases with increasing
��. This difference has already been noted for other systems
�see, e.g., Refs. 14 and 34�. In order to improve the accuracy
of the universal turnover formula in this region, Mel’nikov35

suggested a systematic way of accounting for finite-barrier
corrections. If such a correction is included, the accuracy of
the universal formula is improved �see, e.g., Ref. 34�.

The real and imaginary parts of the spectra of the dipole

correlation function C̃��� for various values of the barrier
height � and the friction coefficient �� are shown in Figs. 4
and 5. Clearly one relaxation process dominates the low-
frequency part of the spectra and is due to the slow overbar-
rier relaxation of the molecules in the double-well potential.

0 4 8 12

100

101

102

103

104

105

τ
/η

σ

1: β ' = 100
2: β ' = 10
3: β ' = 1
4: β ' = 0.2
5: β ' = 0.02

1

2

3

4

5

FIG. 2. �Color online� Normalized relaxation time � /
 vs the barrier height
�inverse temperature� parameter � for ��=100 �curve 1�, ��=10 �curve 2�,
��=1 �curve 3�, ��=0.2 �curve 4�, and ��=0.02 �curve 5�. Solid lines: Exact
matrix continued fraction solution for the correlation time, Eq. �10�, dashed
lines: The universal Mel’nikov–Meshkov Eq. �15�; filled circles: Eq. �24� for
��=10 and 100.
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FIG. 3. �Color online� � /
 vs the damping parameter �� for barrier height
parameters �=1, 5, and 10. Solid lines 1: Exact matrix continued fraction
solution for the correlation time, Eq. �10�; filled circles: The universal
Mel’nikov–Meshkov Eq. �15�; straight dashed lines: The VHD Eq. �24�;
dotted line 3: The VLD Eq. �19�.
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Clearly as may be seen from Figs. 4 and 5, the low-
frequency part of the spectrum may be approximated by a
single Lorentzian,

C̃D��� =
�M

1 + i��M
. �25�

The characteristic frequency �R��M
−1 and the half-width

��R��M
−1 of this low-frequency band strongly depends on �

as well as on the friction parameter ��. Regarding the barrier
height �, the frequency �R decreases exponentially as � is
raised. This behavior occurs because the probability of es-
cape of a dipole from one well to another over the potential
barrier exponentially decreases with increasing �. As far as
the dependence of the low-frequency part of the spectrum for
high damping �small inertial effects� ���10 is concerned,
the frequency �R decreases as �� increases as is apparent by

inspection of curves Im�C̃���� and Re�C̃���� in Fig. 5. For
low damping �large inertial effects� ���0.1 the frequency
�R decreases with decreasing �� for given values of �. A
very high-frequency resonance band due to the fast inertial
librations of the dipoles in the potential wells is also visible
in Figs. 4–6. For ��1, the characteristic frequency of libra-
tion �L increases as ��� /2
−1 with increasing �. As far as
the behavior as a function of �� is concerned, the amplitude
of the high-frequency band decreases progressively with in-
creasing ��, as one would intuitively expect. On the other
hand, for low damping �large inertial effects� ���1, a fine
structure appears in the high-frequency part of the spectra
�due to resonances at high harmonic frequencies of the libra-
tions in the �anharmonic� potential�. This is the dielectric
analog of the comblike structure discernible in the high-
frequency ferromagnetic resonance of a superparamagnet
arising from the Larmor precession in a uniaxial potential.8

Finally, it is apparent that between the low-frequency relax-
ation and very high-frequency resonance bands, a third band
can appear in the spectra. This band is due to the high-
frequency relaxation or decay modes of the dipoles in the
potential wells which will always exist in the spectra even in
the noninertial limit.8 Such relaxation modes are generally
termed the intrawell relaxation modes.

10−6 10−4 10−2 100 102
10−5

10−3

10−1

101

103

10−6 10−4 10−2 100 102
10-8

10-6

10-4

10-2

100

102

~

β' = 0.2
1: σ = 1
2: σ = 5
3: σ = 10

2

1

−I
m

[
C

]
/η

3

2

1

~
R

e[
C

]
/η

ωη

3

FIG. 4. �Color online� Real and imaginary parts of the spectra of the dipole

correlation function C̃��� for various values of the barrier height �
=1,5 ,10, and the damping parameter ��=0.2. Solid lines 1: Exact matrix
continued fraction solution, Eq. �9�; filled circles: The single Lorentzian Eq.
�25�; straight dashed lines: The high-frequency asymptote Eq. �27�.
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FIG. 5. �Color online� Real and imaginary parts of the spectra of the dipole

correlation function C̃��� for various values of the damping parameter ��
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fraction solution, Eq. �9�; filled circles: The single Lorentzian Eq. �25�;
straight dashed lines: The high-frequency asymptote Eq. �27�.
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By utilizing general properties of Fourier transforms, we

can also obtain an asymptotic expansion for C̃��� in the
high-frequency limit, �→�, viz.,

C̃��� = �
0

�

C�t�ei�tdt �
i

�
−

iC̈�0�
�3 +

C��0�
�4 ¯ �26�

so that Im�C̃������−1+¯ and

Re�C̃���� � C��0��−4 + ¯ �27�

�here we have noted that C�0�=1 and Ċ�0�= ċ0
1,0�0� /c0

1,0�0�
=0�. The high-frequency asymptote Eq. �27� is also shown in
Figs. 4 and 5 for comparison. We remark that for �=0, the
calculated spectrum of the normalized correlation function

C̃��� coincides with that obtained by Sack36 for inertial ro-
tational diffusion of free linear molecules and is given by the
infinite continued fraction,

C̃��� =



i�
 +
1

�� + i�
 +
1

2�� + i�
 +
2

3�� + i�
 +
2

4�� + i�
 + ¯

.

Thus we have demonstrated how the matrix continued
fraction approach for the solution of nonlinear Langevin
equations27 may be successfully applied to the rotational
Brownian motion of a linear molecule in a uniaxial potential,
Eq. �1�, for wide ranges of the barrier height parameter � and
the damping parameter ��. We have shown that in the low-
temperature limit, the Mel’nikov–Meshkov formula, Eq.
�15�, for the longest relaxation time yields satisfactory agree-
ment with the numerical results for all values of damping.
Moreover, the Mel’nikov–Meshkov Eq. �15� allows one to
estimate accurately the damping dependence of the low-
frequency parts of the spectra of the equilibrium dipole cor-
relation function C�t�. We have given exact, as well as
simple, approximate analytic formulas for the correlation
time � and the spectra of the dipole correlation function

C̃���. The model may be used to interpret broadband �0
THz� dielectric spectra of nematic liquid crystals. These are
related to the microscopic parameters �damping � and the
barrier height ��, which are closely associated with the mo-
lecular dynamics. The noninertial rotational diffusion model
is only applicable to the low-frequency range ����1, where
� is the dipole moment relaxation time�. The model of the
inertial rotational diffusion in a mean field potential may,
however, also be used in the high-frequency range �up to �5
THz�. At low frequencies the model describes the relaxation
�Debye� spectrum just as the noninertial rotational diffusion
model. In particular, the results are in agreement with the
available experimental data �e.g., Ref. 19� where the longi-
tudinal relaxation time � increases in nematic liquid crystals
in comparison to the relaxation time in the isotropic phase. In
the far infrared range, the model predicts the characteristic
frequency of the librational �Poley� absorption band.8 How-
ever, for a quantitative comparison with experimental data

one will also need to evaluate the transverse component of
the complex susceptibility which may again be accomplished
using the Langevin equation method.
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APPENDIX: MATRIX CONTINUED FRACTION
SOLUTION OF EQS. „7… and „8…

The hierarchy of the differential-recurrence Eqs. �7� and
�8� for cn

l,m�t� can be transformed into the matrix three-term
differential-recurrence equation,



d

dt
Cn�t� = Qn

−Cn−1�t� + QnCn�t� + Qn
+Cn+1�t� . �A1�

Here we have introduced the vectors

Cn =�
cn−1

1

cn−1
2

]

cn−1
lmax
�

�lmax+1�lmax

, . . . cn
l =�

cn
2l−1,0

cn
2l−1,1

]

cn
2l−1,2l−1

�
2l

,

with C0=0 and the matrices
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Qn =�
qn−1,1 pn−1,1

+ 0 ¯ 0

pn−1,2
− qn−1,2 pn−1,2

+
¯ 0

0 pn−1,3
−

� � ]

] ] � qn−1,lmax−1 pn−1,lmax−1
+

0 0 ¯ pn−1,lmax

− qn−1,lmax

� ,

Qn
+ =�

qn−1,1
+ 0 0 ¯ 0

0 qn−1,2
+ 0 ¯ 0

0 0 � � ]

] ] � qn−1,lmax−1
+ 0

0 0 ¯ 0 qn−1,lmax

+
� ,

Qn
− =�

qn−1,1
− rn−1,1

+ 0 ¯ 0

rn−1,2
− qn−1,2

− rn−1,2
+

¯ 0

0 rn−1,3
−

� � ]

] ] � qn−1,lmax−1
− rn−1,lmax−1

+

0 0 ¯ rn−1,lmax

− qn−1,lmax

−
� ,

where qn,l, qn,l
� , rn,l

� , and pn,l
� ,

�qn,l�i,j=1
2l,2l =�

− ��2n�i,j +
1 + �i,1

4
�i,j−1 −

1

4

n + 1 −

i − 1

2
��2l + i − 2��2l − i + 1��i,j+1 �i:odd�

− ���2n + 1��i,j + �1 +
2��2i − 1�

�4l − 3��4l + 1�
�i,j−1

− 
n +
i

2
��2l + i − 2��2l − i + 1��1 −

2��2i − 3�
�4l − 3��4l + 1�
�i,j+1 �i:even�

� ,

�qn,l
+ �i,j=1

2l,2l =
1

4

�i,j−1 − 
n −

i

2
+ 2��2l + i − 2��2l − i + 1��i,j+1� �i:even� ,

�qn,l
− �i,j=1

2l,2l = �1 + �i,1��1 +
2��2i − 1�

�4l − 3��4l + 1�
�i,j−1 − 
n +
i − 1

2
��2l + i − 2��2l − i + 1��1 −

2��2i − 3�
�4l − 3��4l + 1�
�i,j+1 �i:odd� ,

�pn,l
+ �i,j=1

2l,2�l+1� =
2��2l − i + 1�

�4l − 1��4l + 1���i,j−1 − 
n +
i

2
��2l − i + 2��2l − i + 3��i,j+1
 �i:even� ,

�pn,l
− �i,j=1

2l,2�l−1� = −
2��2l + i − 2�

�4l − 3��4l − 1���i,j−1 − 
n +
i

2
��2l + i − 3��2l + i − 4��i,j+1
 �i:even� ,

�rn,l
+ �i,j=1

2l,2�l+1� =
2��2l − i + 1�

�4l − 1��4l + 1���1 + �i,1��i,j−1 − 
n +
i − 1

2
��2l − i + 2��2l − i + 3��i,j+1
 �i:odd� ,

�rn,l
− �i,j=1

2l,2�l−1� = −
2��2l + i − 2�

�4l − 3��4l − 1���1 + �i,1��i,j−1 − 
n +
i − 1

2
��2l + i − 3��2l + i − 4��i,j+1
 �i:odd� .

064110-8 Kalmykov, Titov, and Coffey J. Chem. Phys. 130, 064110 �2009�

Downloaded 09 Jun 2009 to 134.226.1.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



All other matrix elements are zero. In calculations, the value
of lmax was determined in such way that a further increase in
lmax did not change the result �lmax depends on the dimen-
sionless barrier � and damping �� parameters and must be
chosen taking into account the desired degree of accuracy of
the calculation�.

The exact solution of Eq. �A1� for the Laplace transform

C̃1�s�=�0
�C1�t�e−stdt is then given in terms of matrix contin-

ued fractions as8,37

C̃1�s� = 
�1�s�C1�0� , �A2�

where �1�s� is the infinite matrix continued fraction defined
as

�1�s� =
I1


sI1 − Q1 − Q1
+ I2


sI2 − Q2 − Q2
+ I3


sI3 − Q3 − �

Q3
−

Q2
−

�here the fraction lines denote matrix inversions and In are
the identity matrices�. The initial value vector C1�0� in Eq.
�A2� is given by

C1�0� =�
c0

1�0�
c0

2�0�
]

c0
lmax�0�

�
�lmax+1�lmax

, . . . c0
l �0� =�

c0
2l−1,0

0

]

0
�

2l

,

where

c0
2n−1,0 = �P1P2n−1� =

2n

4n − 1
�P2n� +

2n − 1

4n − 1
�P2n−2�

and �P2n� are the equilibrium averages of the Legendre poly-
nomials. Here we have noted that cn

l,m�0�=0 for n�0 and
m�0. The equilibrium averages �P2n� satisfy the following
recurrence equation:8


1 −
2�

�4n − 1��4n + 3���P2n� −
2��2n − 1�

�4n − 1��4n + 1�
�P2n−2�

+
2��2n + 2�

�4n + 3��4n + 1�
�P2n+2� = 0

and can be calculated as8 �P2n�=� j=1
n S2j, where the scalar

continued fraction Sn is defined by the recurrence equation8

Sn =
2��n − 1�
4n2 − 1

�1 −
2�

�2n − 1��2n + 3�

+
2��n + 2�

�2n + 1��2n + 3�
Sn+2
−1

.

We remark the initial value C��0�=c�0
1,0�0� /c0

1,0�0� appear-

ing in Eq. �27� can be found from vectors C�1�0� and C1�0�.
Noting that Cn�0�=0 for n�1, one can show that


3C�1�0� = �Q1�Q1Q1 + Q1
+Q2

−� + Q1
+�Q2

−Q1 + Q2Q2
−��C1�0� .
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