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Quantum effects in the Brownian motion of a particle in the symmetric double well potential
V(x)=ax?/2+bx*/4 are treated using the semiclassical master equation for the time evolution of the
Wigner distribution function W(x,p,t) in phase space (x,p). The equilibrium position
autocorrelation function, dynamic susceptibility, and escape rate are evaluated via matrix continued
fractions in the manner customarily used for the classical Fokker-Planck equation. The escape rate
so yielded has a quantum correction depending strongly on the barrier height and is compared with
that given analytically by the quantum mechanical reaction rate solution of the Kramers turnover
problem. The matrix continued fraction solution substantially agrees with the analytic solution.
Moreover, the low-frequency part of the spectrum associated with noise assisted Kramers transitions
across the potential barrier may be accurately described by a single Lorentzian with characteristic
frequency given by the quantum mechanical reaction rate. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2759486]

I. INTRODUCTION

Dissipation and fluctuation of an assembly of particles in
a potential under the influence of a heat bath is very often
modeled'? by the Brownian motion which is a particular
Stosszahlansatz (essentially collisions are frequent but weak)
for the Boltzmann equation describing the time evolution of
the single particle distribution function in phase space. The
Brownian motion is treated either by the Langevin equation,
which is the equation of motion of the canonical variables
(position x and momentum p) specifying a particle in phase
space supplemented by stochastic terms representing all the
other bath degrees of freedom or by the equivalent Fokker-
Planck equation describing the evolution of the probability
density function of the realizations of the canonical variables
in phase space, which in the present context are of course
random variables. A theory of dissipation so based may,
however, fail particularly at low temperatures because quan-
tum effects are excluded. Examples of these are quantum
fluctuations in nanoscale and biological systems,3 flux quan-
tum transitions in a superconducting quantum interference
device," etc. Hence it is desirable to develop a theory of
quantum Brownian motion preferably via a quantum master
equation analogous to the classical Fokker-Planck equation
which will allow one to study5 the semiclassical limit and so
determine the role played by quantum effects in the Brown-
ian motion. Ideally, such an equation would allow dynamical
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parameters such as escape rates, correlation times, suscepti-
bilities, etc., to be calculated in a manner similar to that of
the Fokker-Planck equation. The concept of a diffusion equa-
tion in phase space in the context of quantum mechanics
encounters difficulties, however, because the uncertainty
principle6’7 immediately precludes one from defining a prob-
ability that the particle has a particular position and a par-
ticular momentum as in classical mechanics. In spite of this,
quasiprobability density functions®? in phase space, such as
the Wigner distribution function,” which essentially repre-
sents quantum mechanics as a statistical theory on classical
phase space, are very useful in quantum statistical mechan-
ics. The first of these quasiprobability distributions was in-
troduced by Wigner6 in 1932 in order to study in semiclas-
sical fashion quantum corrections to the Maxwell-Boltzmann
distribution of classical statistical mechanics, which inter
alia elucidated the role played by tunneling effects at high
temperatures in reaction rate theory. The Wigner distribution
function was meant to be a reformulation, using the concept
of a quasiprobability distribution in phase space, of
Schrodinger’s wave mechanics which describes quantum
states of functions in configuration space. Thus the Wigner
function is of particular use in the statistical mechanics of
closed systems as it effectively allows one to consider quan-
tum corrections to the classical distribution function up to
any desired order of Planck’s constant 7. Indeed, the Wigner
distribution function is central to the purpose (namely, quan-
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tum effects in the double well potential) of the present paper
as it allows one via a quantum master equation to consider
quantum corrections up to O(£%") (% is Planck’s constant) to
the classical distribution function using methods familiar in
the solution of the Fokker-Planck equation.

We continue by remarking that in applications to quan-
tum Brownian motion in an external potential V(x), the phase
space formalism has been applied to a harmonic oscillator by
Agarwal13 and others (see, e.g., Refs. 14-19, and references
cited therein). Furthermore, some other aspects of the quan-
tum Brownian motion in anharmonic potentials have also
been treated in the literature (see, e.g., Refs. 20-26). In par-
ticular, Garcia-Palacios and Zueco>> have indicated how
Risken’s' efficient method of solving the classical Fokker-
Planck equation by matrix continued fractions' may be
adapted to the solution of the master equation for the quan-
tum Brownian motion in an anharmonic potential. Inspired
by these ideas we have recently proposed a quantum master
equation for the Brownian motion of a particle in a general
potential Vi(x). 2 Specifically we have demonstrated how
the Wigner stationary distribution for closed systems can be
used to formally establish a semiclassical master equation
allowing one to study the quantum-classical correspondence.
Furthermore we have shown in Ref. 26 how this master
equation can be solved in the case of quantum Brownian
motion in a periodic cosine potential. As a second example
of solving the master equation for the Wigner quasiprobabil-
ity distribution in a particular problem, we now study the
Brownian motion of a particle in a double well potential,
viz.,

V(x) = ax*/2 + bx*/4, (1)

where a and b are constants. We remark that diffusion in the
potential given by Eq. (1) is almost invariably used to model
noise driven motion in bistable physical and chemical sys-
tems. Examples are diverse subjects such as simple isometri-
zation pI‘OCCSSCS,27_3l chemical reaction rate theory,32—40
bistable nonlinear oscillatorsfu_43 second order phase
transitions,44 nuclear fission and fusion,45’46 stochastic
resonance,”’*® etc.

The dissipative barrier crossing process we have men-
tioned is characterized by the (Kramers) escape rate I" which
may be calculated in closed form using ingenious asymptotic
methods devised by Kramers® to approximately solve the
Fokker-Planck equation governing the Brownian motion in
the potential in the limits of very high and low dissipations to
the heat bath. These limits (which constitute a benchmark
providing a check on the accuracy of numerical solutions of
both Fokker-Planck and quantum master equations) are de-
fined via a loss parameter A introduced by Kramers.® The
loss parameter A is the ratio of the energy loss per cycle yS
of the almost periodic motion very near or at the top of a
well of a (potentially escaping) particle of mass m to the
mean thermal energy k7T, where y={/m is the damping pa-
rameter, {x=yp is the viscous drag on the Brownian particle
arising from the heat bath, § is the action of a particle in the
well along the saddle point energy trajectory, and p is the
momentum of the particle. The saddle point energy com-
prises the energy trajectory on which the particle may or may
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not escape, i.e., it defines the separatrix between the
bounded motion in the well and the unbounded motion out-
side. High dissipation corresponds to A>1, vice versa A
<1 corresponds to low dissipation. Kramers®> was, however,
unable to find asymptotic solutions for I' in the turnover
region where the energy loss is of the order of the thermal
energy, i.e., A=1. The Kramers idea was later elaborated
upon by Mel’nikov*’ and Mel’nikov and Meshkov.” They
proposed a universal formula (that is valid for all values of
the dissipation A) for I', i.e., they solved the so called Kram-
ers turnover problem. This was accomplished in terms of the
product of an integral called the depopulation factor involv-
ing A and the Kramers high damping rate which as it’s lower
limit of applicability contains the transition state theory re-
sult (which unlike the Kramers treatment ignores the distur-
bance to the Maxwell-Boltzmann distribution in the wells
due to escape of particles over the barrier), and the particular
case is called intermediate damping. The depopulation factor
corrects the intermediate-to-high damping (IHD) asymptote,
namely, ['jyp (the prefactor of which is essentially inversely
proportional to the friction coefficient for A>1) in the re-
gion A=1 so that it joins smoothly onto the very low damp-
ing asymptote (VLD) I'y; p (which is characterized by a pref-
actor proportional to the friction y). The different frictional
behavior of the prefactor for A>1 and A<<1 has given rise
to the term Kramers turnover region characterizing A= 1.
Later Grabert™ and Pollak et al.’ presented a complete so-
Iution of the classical Kramers turnover problem deriving
Mel’nikov’s turnover formula for I without his ad hoc inter-
polation between the weak and strong damping regimes. We
remark that the theory of Pollak et al>* also applies to an
arbitrary memory friction and not just in the white noise
limit. Furthermore, Mel’nikov* and Rips and Pollak™ have
extended the solution of the Kramers turnover problem to
account for quantum tunneling in a semiclassical way. The
asymptotic solutions of Kramers and their extension to all
values of the damping given by Mel’nikov and Meshkov and
others constitute important analytic benchmarks. In the clas-
sical case, they have been exhaustively verified for the
double well potential by calculating the smallest nonvanish-
ing eigenvalue of the Fokker-Planck equation (known in this
instance as the Klein-Kramers equation) for the phase space
distribution function W(x,p,f) by continued fraction
methods.**™’ The quantum Mel’nikov universal formula for
the double well potential has been tested, on the other hand,
by a comparison with numerical simulation results for quan-
tum rate constants by Topaler and Makri™**’ (by using the
path integral approach) and Barik er al.® (by solving numeri-
cally the underlying quantum Langevin equation), the latter
being based on the Wigner phase space distribution function.

Proceeding, we now consider the semiclassical master
equation for the quantum Brownian dynamics in the double
well potential. Specifically, we shall apply the matrix contin-
ued fraction method of Voigtlaender and Risken® and Coffey
et al.>® (developed for the solution of the corresponding clas-
sical problem) to ascertain how quantum effects modify the
behavior of the quantum equilibrium position correlation
function C(1)=8"Y[ gf(—i)\h))ﬁ(t)d)\)o, its spectrum, and cor-
relation time, which essentially yields the escape rate. Here
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the symbol ( ), denotes the equilibrium ensemble averages
and B=1/(kT). This calculation will illustrate how to evalu-
ate observables in the familiar classical manner. Moreover,
the continued fraction results for the damping dependence of
the quantum escape rate I" will be compared with those
yielded by the Mel’nikov universal equation for I" so that the
range of validity of the semiclassical master equation ap-
proach may be ascertained.

Il. MASTER EQUATION IN PHASE SPACE

Wigner6 showed that quantum mechanics can be refor-
mulated using a phase space (x,p) quasiprobability distribu-
tion function

W(x,p,1) = wa p<x+ ly X - ly)e_"”y/ﬁdy
LY &) 2ﬂ'ﬁ = 2 s 2 B

where p(x,x')=(x|p|x') is the density matrix. Thus the
Wigner distribution function establishes a connection be-
tween the density matrix and a quasiprobability distribution
in classical phase space. Moreover, one can calculate all
quantum mechanical averages by pure c-number procedures,
that is, by evaluation of averages just as in classical statisti-
cal mechanics. A detailed discussion of Wigner distribution
functions is given in Refs. 8§—12.

Here the semiclassical master equation for the transla-
tional Brownian motion of a particle in a potential V(x)
based on Wigner’s phase space formulation can be derived
by proceeding to the high temperature limit, where the quan-
tum parameter 723%/24m <1, and using the approximation
of frequency independent damping. The resulting equation to
order A2 is™+*

aW pw avaW h%ﬁvfﬁw

+
ot m ox

ox dp 24 x> ap?
9 m g v oW
=y—[pW+—11+ + (|, (2)
ap B 12m ox* ap

where m is the mass of the particle, 7y is a friction parameter
measuring the strength of the coupling to the heat bath. The
left hand side of Eq. (2) is the quantum analog of the classi-
cal Liouville equation for the closed system while the right
hand side accounts for effects due to the coupling to the bath,
i.e., dissipation and fluctuations being the analog of the col-
lision kernel (stosszahlansatz) in Kinetic theory. Equation (2)
is a partial differential equation for the evolution of the qua-
siprobability distribution W in phase space akin to the
Fokker-Planck equation immediately suggesting how the fa-
miliar powerful computational techniques developed for that
equation1 may be extended to the quantum domain as we
have previously demonstrated for a cosine periodic
potential.25 The master equation [Eq. (2)] is written down
explicitly up to O(%%). Higher order quantum correction
terms to the master Eq. (2), may be calculated in like
manner.”** For example, the explicit form of the master
equation up to O(A*) is given in Refs. 24 and 25. That equa-
tion can be given, in principle, to any desired degree r of A",
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We recall in passing that the corresponding master equa-
tion for the quantum Brownian oscillator in the weak cou-

pling limit, B#y<<1, originally studied by Agarwal13 is®
oW p W , OW J /4
o —m ox—=7— pW+PH— |, 3
Jdt  m ox dp dp

where @, is the oscillator frequency and (p?),
=(mhwy/2)coth(Bhwy/2). Here, Eq. (3) has the same math-
ematical form as the Fokker-Planck equation for a classical
Brownian oscillator,1 however, the diffusion coefficient D,,
=y(p?), is altered so as to include the quantum effects. This
simple result essentially arises because the dynamical equa-

tion for the Wigner function for a quadratic Hamiltonian H
=p*/ 2m+mw§)€2/ 2 in the absence of dissipation (y=0) coin-
cides with the corresponding classical Liouville equation.17

lll. SOLUTION OF THE MASTER EQUATION

In order to solve the master equation for the double well
potential given by Eq. (1) (which is accomplished by pertur-
bation theory in %> with the perturbation expansion truncated
at the terms linear in #2) we begin by introducing dimension-
less variables as in the classical model™®

X = b
V<x2>(c)l ’ <x2>d s

=ty A=hBUAST),

Y=uy., V)=Ax?+Bx' A=Ba(2,

B = Bb((x*)¢)/4,
where 7=1+/Bm(x?)§'/2 is a characteristic time and (x?)§' is

the classical value (A—0) of the mean squared displace-
ment. For A>0 and B>0, the potential V(x’) has only one
minimum. For A <0 and B>0 (which is the case of interest,
i.e., distinct double wells), the potential V(x') has two
minima separated by a maximum at x’ =0 with potential bar-
rier AV=0=A?/4B. The normalization condition (x’z)d—l
implies that the constants A and B are not independent and
are related via™>°

1D2;,(sgn(A)\2Q)
8 D2 (sgn(4)\2Q)”
where D,(z) is Whitaker’s parabolic cylinder function of or-

der v.%" For A<0 and 0> 1, B~Q due to asymptotic prop-
erties of Dv(z).61 Thus Eq. (2) becomes

B(Q) = (4)

d W 1gW 9V A PW FV
WAt s
or' ox" 2dp'ox" 4 dp’ox
d 1 PV
=y — p’W+|:—+A—,21|— +0(AY. (5
ap 2 0. ap’

The stationary solution of Eq. (5) is the equilibrium
Wigner distribution function Wo(x p') restrlcted to the term
linear in the quantum parameter A and given by
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ax/2

. (‘W(”f'))z} + O(AZ)}, (6)
ox

where Z is the partition function in accordance with our first
order perturbation ansatz given by

_p/2_V(x/) azv '
WO p') = ef{l +A[(2p'2—3> &)
N2

=f J WO(x',p")dx'dp' = Zy+ AZy + O(A?),

V&')dyx' is the classical partition function in
configuration space and Z,=[*,[V’(x")2=2V"(x")]e~V* dx'.

According to linear response theory, ~ in order to calcu-
late a position correlation function C(f), one must evaluate
the decay transient of the system of Brownian particles fol-
lowing instantaneous switch-off of an external field of small
magnitude e. Thus when the field is suddenly switched off at
time =0 we shall be interested in the relaxation of a system
starting from an equilibrium state I with the potential V(x')
—ex' and the distribution function W (r<0) to a new equi-
librium state I with the potential V(x") and the distribution
function W(S’t(t—> ) given by Eq. (6). In linear response the
distribution function W¢, is given by

where Z,=[" e

Wi’ .p') = W' .p) + eW(x',p") + O(&?), (7)
where
o'V
W' .p") =x' Wo(x'.p') - 2NE—— TnZa QV(x’)
+O(A?). (8)

Note that the transient response so formulated is truly linear
because the change in amplitude & of the external field is
assumed to be very small, e —0. Hence we seek a general
solution of Eq. (5) in the form

W(x',p',t') = Wolx',p') + eW (x",p",1') + O(e?),  (9)

where W, (x’,p’,t") can be represented as the Fourier series
just as the classical case™*®

Wix'.p'.t")

’ ’ H (kx" )H
= ke P IRV )]/22 2 ( *nz 0') Cug(t")
n=0 g=0 T\N2""nlq!

(10)

where H,(z) are the orthogonal Hermite polynomials,” «
=aB", and « is a scaling factor chosen to ensure optimum
convergence of the continued fractions involved as suggested
by Voigtlaender and Risken™ (all results for the observables
are independent of «). The initial condition for W(x',p’,t")
at t'=0 is W(x',p’,0)=Wg(x',p’) which in linear response
becomes

Wix',p’,0) = W' ,p"). (11)
By substituting Eq. (9) into Eq. (5) and noting that®'
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d

d_ZHn(Z) =2nH,_,(z), H,(2)=2zH,(z) - 2nH,_(2),
we have the differential recurrence relations for the Fourier
coefficients ¢, ,(t),

dt o nq(t )+ Y [}’lqu(t ) A\/n(}’l— 1)(hq 2y -2,q-2

+8Cnaq+ hyCun g = N+ 1egc 4ia(t')

+ d;cn+l,q+1(t’) + d;—lcn+l,q—l(t,) + e, 3Cn41,4-3(1")]
e yCrt giat) + dient g (1) + dp ey g (1)
+ eq—3cn—],q—3(t,)] + AV/m[fq—lcn—S,q—l

+ fqCnos, q+l]+0(A2)’ (12)

where all the coefficients d‘, e, fq, &g and hq are defined in
Appendix A. Now Eq. (12) reduces by first order perturba-
tion treatment in A to a matrix three-term differential recur-
rence relation forced by the quantum term. Thus by invoking
the familiar general matrix continued fraction method for
solving classical recurrence relations generated by the
Fokker-Planck equation,l’2 we have in a similar manner the
solution of the quantum differential recurrence equation [Eq.
(12)] (details of this solution are given in Appendix A).

IV. CALCULATION OF OBSERVABLES

We recall now that the expectation value of a quantum

operator Q may be calculated using the Wigner function
W(x,p,t) from the corresponding classical variable (Weyl
symbol) Q(x,p) as’

(0)(1) = f W(x,p,t)Q(x,p)dxdp.

Noting that x" corresponds to the operator £',” we have the

averaged displacement (X')(z') as

<£’>(t’)=f f x'W(x',p',t")dx'"dp’

=8f f x'W,(x',p',t")dx'dp’ . (13)

By using the orthogonality properties of the Hermite polyno-
mials, we have from Egs. (10) and (13) (£')(¢') in terms of
the Fourier coefficients czq_](t)

a’ZC]

E(") = e—F=— E C024-1(0)C.24-1(2). (14)

According to linear response theory,”> (£/)(t') is related

to the linear response after-effect function C(¢)
=B KB (=iNk)R (1)dN), via
&)t =eC(). (15)

This may be verified in the quantum case by independently
calculating both the after-effect function and the autocorrela-
tion function from the Fourier coefficients. The one-sided

Fourier transform C(w)= [ oC(He™'“'dt, i.e., the spectrum of
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the equilibrium correlation function C(z) is related to the
dynamic susceptibility x(w)=x'(w)-ix"(w) via

(@) =C(0) - iowC(w). (16)

One may also determine the correlation time 7,, which is a
global characteristic of the relaxation process involved and is
defined as the area under the curve of C(¢)/C(0), because”

1 ( C(0)
T,.= EJ‘O C([)dt=T0). (17)

In the high barrier limit (9> 1), the correlation time T,
closely approximates the inverse Kramers escape rate, i.e.,

the greatest relaxation time for the double well potential.1

V. MEL’NIKOV’S UNIVERSAL FORMULA FOR THE
ESCAPE RATE

We have mentioned that Mel’nikov*’ extended his solu-
tion of the classical Kramers turnover problem to include
quantum effects in a semiclassical way. He accomplished
this by simply inserting the quantum mechanical transmis-
sion factor for a parabolic barrier (which assumes that tun-
neling transitions near the top of the barrier predominate)
into the classical integral equation for the energy distribution
function yielded by the Wiener-Hopf method based on the
Green function of an energy/action diffusion representation
of the Klein-Kramers equation in the Kramers turnover re-
gion where the loss parameter A~ 1. In the approximation of
Ohmic damping, he derived a universal formula valid for all
values of damping for the quantum rate I"), above the cross-
over temperature between tunneling and thermal activation,
namely,

FM:YFIHD' (18)

Here Y is the quantum depopulation factor, I'jyp is the quan-
tum escape rate for the double well potential in the THD
region where y' =1 and”

1—‘IHD = EFfII{D (19)

Here I}, is the classical IHD escape rate for the double
well potential given by56

QO
Y g-pav, (20)
w

a

cl
I‘IHD -

where BAV=Q is the normalized barrier height, o,
= \rE?y‘l(QB)”4 and o,=27"'(QB)"* are, respectively, the
well and barrier angular frequencies, Q=7"'(\y'%/4+ nzwg
—7'/2) is the eigenvalue associated with the unstable barrier
crossing mode in the notation of the present paper, and the
quantum correction factor = is

w, sinh(fBw,/2)

o, sin(hBws2) @D

I

The quantum depopulation factor Y for a symmetric double
well potential can be written as®

J. Chem. Phys. 127, 074502 (2007)

Y(A,y) =A"4(A,y)/A'(24,y). (22)

Here A’ is the quantum depopulation factor for a single well,
y=2V6AVOB is a dimensionless parameter, depending on
the ratio of the quantum parameter A to the barrier height
parameter, and A is the loss parameter as defined in Sec. I,
namely,

A=Bvy'SIy, (23)

where S=¢\/-2mV(x)dx is the action associated with the
path along the top of barrier given by
8\67](Q3/B)”4

X
S=2 J V=2mV(x)dx = ———— (24)
0 3B

[x;=V-2a/b is one of the roots of the equation V(x)=0]. On
this path, a particle starts with zero velocity at the top of the
barrier and, having descended into the well, returns again to
the top of the barrier. For 0> 1, S~ (8/38)\2Q. The quan-

tum depopulation factor for a single well A’(A,y) is given
by*

siny [ In[1 - e 2RO g\
A'(A,y) = expl T f oo dh L o)
T » cosh(2y\) —cos y

The expression for R(\,y) depends on the precise form of
the well p()tential49 and has been given explicitly in Ref. 49
for cubic and periodic potentials. The derivation of this func-
tion for the double well potential is given in Appendix B [Eq.
(B5)]. Thus one may evaluate the escape rate [from Egs.
(18)—(25) and (B5)] which may then be compared with the
semiclassical solution obtained from Eq. (12) using matrix
continued fractions. It should be noted that the universal Eq.
(18) for the escape rate can be used only for high barriers
(say Q=3) with, however, no limitation on the quantum pa-
rameter A.

VI. RESULTS AND DISCUSSION

In Figs. 1 and 2 we show the spectrum of Im[C(w)] and

Re[é(w)] as calculated from the series of Fourier coeffi-
cients Eq. (14) by the matrix continued fraction method for
barrier height parameters Q=5 and 10 and various values of
v'=1, 10, and 100. The low-frequency part of the spectra
6'(w) is due to the slow overbarrier relaxation of the particles
in the double well potential. Just as in the classical case,56
this low-frequency part may by approximated by a simple
Lorentzian,

1

Cw) = :

(26)

where Ty, is the escape rate rendered by Melnikov’s univer-
sal quantum rate, Eq. (18). It is apparent from Figs. 1 and 2
that the simple equation [Eq. (26)] accurately describes the
quantum effects in the relaxation phenomenon at low fre-
quencies (w<T",). It is also apparent from Fig. 1 particu-
larly in the high barrier case that tunnelling near the top of
the barrier increases the frequency of the maximum wg

=T'), of the low-frequency peak in Im[C(w)] and decreases
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Im[C(a)]

FIG. 1. The imaginary part of the spectrum C(w) vs the normalized fre-
quency nw for various values of the damping parameter ', quantum pa-
rameter A=0 (classical limit, dashed lines) and A=0.004 (solid lines), and
barrier height Q=5 and Q=10. Solid and dashed lines are the continued
fraction solution [Eq. (14) and Appendix A]. Open circles are the Lorentzian
spectra [Eq. (26)] for A=0.004.

the low-frequency side of Im[C(w)]; a phenomenon which
can be ascribed to effective lowering of the potential barrier
due to the tunneling which increases the escape rate. Further-
more, the quantum effects decrease as the frequency in-
creases above the peak frequency, where barrier crossing is
no longer the dominant relaxation process. As far as the de-
pendence of the low-frequency part of the spectrum is con-
cerned, the frequency wy decreases as the damping param-
eter ' increases. For small damping (9’ <0.1), the
frequency wy decreases with decreasing y' for given values
of Q. A very high-frequency band is visible in the spectrum
of Re[C(w)] in Fig. 2 at moderate damping (y'=1) due to
the fast oscillations of the particles in the potential wells. For

Re[C(w)]

Re[C()]

1
2

—_
(=)

i

ol s sund

nw

FIG. 2. The real part of the spectrum C (w) vs nw for various values of v/,
A, and Q. Key as in Fig. 1.
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107" 0, 10 10°
v
1:A=0. 0=10 s
100 2: A =0.002 P i
. 3: A =0.004 A
10" 10° , 10 10°
/4

FIG. 3. Correlation time 7,/ 7 [Eq. (17), symbols] vs damping parameter y’
as compared with the universal Mel’nikov-Meshkov formula [Eq. (18),
dashed lines] for high barriers Q=5 and various values of the quantum
parameter A. The THD relaxation times 7igp/ 7=(7'yp) " [Eq. (20), dotted
lines 1] are also shown for comparison.

smaller damping, ¥’ <1, two sharp peaks appear in the high-

frequency part of the spectra Re[C(w)] just as in the classical
case.”® These peaks occur at the fundamental and second
harmonic frequencies of the almost free periodic motion of
the particle in the double well potential V(x). We should
remark that description of the quantum effects in the high-
frequency response in the double well potential via the
Wigner formalism applies only when the conditions
nAE/fi<7y and AE/hA<w, are satisfied. Here AE is the
energy difference between the two lowest energy levels in
the potential well and w,~ \V2Q**/ 5 is the characteristic fre-
quency of the nonlinear oscillator. Under these conditions,
the discrete spectral lines corresponding to the transitions
between the energy levels in the wells are indistinguishable

in the spectrum Re[C(w)]. For moderate barriers, the in-
equality »AE/f < ' breaks down only for very small damp-
ing. Moreover, the classical limit holds if the conditions
BAE<1 and nAE/fh <y are satisfied.

The greatest relaxation time 7 predicted by Melnikov’s
formula 7= F;} [Eq. (18)] which we recall has been verified
by computer simulation®® and the relaxation time T./ n from
Eq. (17) calculated via matrix continued fractions are shown
in Figs. 3 and 4 for barrier heights Q=5 and 10, respectively,
as a function of the (dimensionless) damping parameter 7y’
characterizing the coupling to the heat bath. In relation to the
matrix continued fraction calculations of the escape rate we
recall that the (normalized) time 7,/ being of exponential
order accurately approximates the inverse escape rate for
symmetric potentials for all significant barrier heights. We
further remark that the inverse of the universal quantum rate
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P ) 3: A= 0.004
0o 2 4 6 8 10

FIG. 4. The correlation time 7,/ 7 [matrix continued fraction solution, Eq.
(17), solid lines] vs the barrier parameter Q for y'=0.1 (low damping) and
y'=10 (high damping) and various values of the quantum parameter A as
compared with the universal Mel’nikov equation [Eq. (18)] (symbols).

provides a reasonably good approximation to 7./7 for al-
most all y’ values with some deviation of the order of 20%
for small friction ' and relatively low barriers, e.g., Q=5 as
A increases. The agreement between the numerically calcu-
lated 7 and the quantum rate result, however, improves as the
barrier height increases (see Fig. 3). The results of the cal-
culations suggest in applying quantum rate theory to rela-
tively low barriers that the theory should be modified to in-
corporate finite-barrier effects as in the classical case as
envisaged by Melnikov.’ In order to improve the accuracy
of the universal turnover formula, Melnikov® suggested a
systematic way of accounting for finite-barrier corrections.
Analysis of the translational Brownian motion in a cosine
potential demonstrates that if such corrections are included,
the accuracy of the universal formula is considerably
improved.64‘65 This method may also be applied to the
present problem.

By way of further illustration we show in Fig. 4 the
correlation time 7,/ % and the inverse of universal quantum
rate (771°,,)~! as functions of barrier height Q for large and
small damping parameters y'=10 and 0.1, respectively.
Clearly, the correspondence between both results is very
good for all relevant values of Q, e.g., O>3. The discrep-
ancy for Q<2 arises simply because the assumption of a
high barrier (Q>1) is always used in the derivation of
asymptotic escape rate formulas. The largest quantum effects
obviously occur for the highest barriers as is obvious by
inspection of Fig. 4. Moreover, they manifest themselves
even for very small values of A.

To conclude, in this paper we have shown how quantum
effects in the Brownian motion of a particle in a double well
potential may be studied using a semiclassical master equa-
tion based on the extension of Wigner’s phase space formu-
lation of quantum mechanics to an open system. Our treat-
ment allows one to use all the solution techniques previously
developed for the classical Fokker-Planck equationl’2 render-
ing a transparent treatment of the quantum problem. More-
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over, our results are in agreement with those of quantum
reaction rate theory which constitutes a benchmark solution
verified by quantum mechanical simulations.” % The most
significant manifestation of the quantum effects above the
crossover temperature between tunneling and thermal activa-
tion appears to be in connection with the low-frequency re-
laxation via transitions across the potential barrier. In this
frequency range, the relaxation process is accurately de-
scribed by a single Lorentzian with relaxation time given by
the inverse of Melnikov’s universal quantum rate so provid-
ing a very simple picture of the quantum relaxation. Our
matrix continued fraction solution is valid only for small
values of the quantum parameter A (A <<1) as in our pertur-
bation procedure we have neglected all terms of the order of
A? and higher. In order to improve the accuracy of matrix
continued fraction calculations for larger values of A, addi-
tional terms of the order of A2, etc. should be included in the
master equation [Eq. (2)]. These higher order quantum cor-
rection terms to the master equation may be calculated, in
principle, to any desired degree r of f2r 2 Finally, we should
remark in the context of our semiclassical solution that, hith-
erto, the quantum Brownian motion in a double well poten-
tial has usually been treated by means of numerical simula-
tions (see, e.g., Refs. 22, 58—-60, and 66). These methods in
general allow one to understand quantum effects on diffusive
transport properties, activated barrier crossing, etc. However,
in spite of their great power they possess certain practical
disadvantages, because the qualitative behavior of the simu-
lated physical quantities is not always obvious from them. In
general therefore one may expect that only a combined use
of the complementary approaches of numerical simulation
and the analytical methods described here is capable of
yielding a comprehensive understanding of the quantum
Brownian dynamics in a potential.
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APPENDIX A: MATRIX CONTINUED FRACTION
SOLUTION OF EQ. (12)

Noting that the recurrence Eq. (12) may be separated
into two independent systems with g+n even and odd, we
introduce the column vectors

Cona1 (1) Con-1,0(t)
Co1(0) = con23(®) |, Cp(t) =| c2nm12(2)

n=1).

Now Eq. (12) can be rearranged as the set of matrix recur-

rence equations for the one-sided Fourier transforms én(w)
=[5 C (e dt, viz.,
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d
ECn(t’) =Q,C,_(t") =¥ (n-1C,(t") + Q;C,, (1)

+ A[qncn—Z(t’) + rnCn—S(t’)] s (A 1)

where r,, q,, and Q} are two-, three-, and four-diagonal
matrices, respectively. Their matrix elements are given by

. 151
[Qin—g]p,q == 2n—e- T(ap,q+2—862p—5+s

+ 5p,q+1—sd+

+ x
2p-3+¢ +6 d2p—2+£

p.q—¢

+ 5p,q—1—862p—2+£) s

[q2n—s]p,q = 7, \”/(2”1 -1- 8)(2]1 -2~ 8)(5p,q+1h2p—4+s

+ 5p,qg2p—2+s + 6p,q—1h2p—2+s) ’

[ryclpg=V2n-1-e)2n-2-¢)2n-3-¢)
X (pr—3+s 5p,q+ l-¢ +f2p—2+s 6p,q—8) °

where €=0,1,
—3p1/4

&=

. Vg + 1[3(q+1)—2a2\@i a'l,

174 -3
¢g="" Vg+3)g+2(g+1),

J—
qg+1,

fq: 12B3/4C¥_1\"
h,= 12a72VB(g+2)(g + 1),

g,= 4\@[3 a?2qg+1) - 2\@].

Next we use perturbation theory to find the solution of Eq.
(A1) as

C,(1") = C(t") + AC,(1"), (A2)

treating A as the customary small parameter. Substituting Eq.
(A2) into Eq. (A1), we have in the zero order of perturbation
theory the matrix three-term differential recurrence relation,

d
;C‘;(r’) =Q,C,_,(t') =¥ (n=)C(*") + Q;Cy,, (1)
(A3)

and in the first order of perturbation theory the forced three-
term matrix differential recurrence relation

%c},w =Q;CL (") = ¥ (n-1)C(t")

+QIC,, (1) +R,(1),

n n+
where R,,(t')=q,,C2_2(t’)+r,,C2_3(t').
By invoking the general method' for solving three-term
matrix recursion equations, we have the exact solution for
the zero order spectrum (~32(s)= I gCg(t)e‘”dt in terms of a
matrix continued fraction, viz.,

(Ad)

Cl(s) = A,(5)C0),

J. Chem. Phys. 127, 074502 (2007)

C%s)=S,C" (5)=S,S;_, " S;A,(5)C%0),

where S, =A,(s)Q,, and the matrix continued fraction A,(s)
is defined by the recurrence equation,

A(s)={ls + 7' (n= D= QA1 (5)Q;, )"

In a similar manner, we also have the exact solution for the
first order spectrum Cj(s) in terms of a matrix continued

fraction, viz.,
Cl(s) = A,(){C}(0) + SISI[C}(0) + F1},
where S7=Q;_,A,(s) and

F=1)q;+S;| qsS;+r14

+ 285 81(4,8,,+ 1,08, 5+ S5 | [A(5)CT(0).
n=5

Here we have noted that in the first order of perturbation
theory, the only nonzero initial conditions C?(O), Ci(O), and
C1(0) [as dictated by the Wigner distribution equation, Eqgs.
(6) and (10)]. Thus the only nonzero initial conditions
cmy2p+](0)=c,%’2p+1(0)+Ac,1n’2p+1(0) with c]fn,sz(O) (m=0,2
and k=0, 1) given by

7 EF (O H,, (af)e €208+ ¢
Z\22 (2p + 1)

’

c]:n,2p+1(0) =
where
FY&=1/\B, F)®=0,

— z
Fi(@) = 16[£(- 0+ )+ 0 -28] - i
cl ¥

FN®=4238-0),

Zy= f ey = \’/7_7(23)_1/40-1/2(— \,'E)eg/z,

and
4 1 * )
== Tf [V'(x")?=2V"(x")]e™"™dx’
VBZCI \“"BZCI —o0

== \8[Dyn(-120)
+D_3(- \'/E)]/D-l/z(— \*”Z)-

APPENDIX B: THE DERIVATION OF R(\,y) FOR THE
DOUBLE WELL POTENTIAL

To obtain R(\,y) occurring in the integral of the depopu-
lation factor A’(A,y), Eq. (25), Melnikov* calculated the
transition probability g(e,&’) from the state &’ to the state &
using perturbation theory. The expression for g(e—g’)
becomes™®
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gle—-¢')= eI Zm(e)de w(e—¢')

1 e
+ Ef w(e—&")w(e"—¢g")de"+ -+ ¢,

(B1)
where w is the quantum transition probability in first order
perturbation theory,

m 7\|2 ’ ’
(e[wle")*v(e — &"){coth[ Be — &")/2] - 1}.
(B2)

Taking the Fourier transform, f(\)=/"_f(e)e™P?ds, of
Eq. (B1) and performing the summation, we have

g()\) — ew()\)—w(O) — e—(B'yé)R(}wi/Z,Bﬁw/Z).

we-¢g')=

(B3)

Now in the semiclassical approximation the matrix elements
(g|x(t)|e") pertaining to a quantum transition from the state
&' to the state & can be expressed in terms of the Fourier
components of the classical trajectory x(z),

x(t)ei(s_sl)’/ﬁdt.

(eli(r)|e") = ﬁ

We need the classical trajectory x(¢) corresponding to zero
energy, i.e., the saddle energy trajectory £=0. It is defined by
the implicit relation

)= ‘[61 V- 2V(x Yim’

where x; is the classical turning point at /=0 and the signs +
and — correspond to positive and negative velocities of the
particle, respectively. The particle starts from x=0 at r=—
and returns to this point as r— 0. For the particular case of
the potential, Eq. (1), we have
X dxl

I
=0 e

> arccos(x/xl)
wJy x'y /x

or

x(t) = x;/cosh(wr), (B4)

where w=V—a/m and x;=w\2m/b. The matrix elements
(g|x(t)|e") for the double well potential are then given by
o i(s—a')t/hdt

217'ﬁ _» cosh(wt)

(e|x(t)|e") =

" 2% cosh[ (e — e)2ho]

The quantum transition probability w(e) and its Fourier
transform, namely, w(N—i/2)—w(0), are then given by, re-
spectively,
mmyxie(coth[ Be/2] - 1)

2h3w? cosh?[ me/2hw]

w(e) =

and
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w(\ —i/2) —w(0)

— f W(S) (ei(}\—i/Z),Bs _ l)ds

—o0

2momx; [
=By

= BYSR(\,y).

Here S=2[¢ \/—2mV(x)dx=2wmx%/3, y=Bhw!/2, x=Le/2y,
and

x(cosh yx — cos 2)\yx)

y sinh yx COShZ(’JTx/Z)

ROuy) = 2T * x(cosh yx — 0(2)s 2)\yx)d .
8y _» sinh yx cosh”(7mx/2)

(B5)

Noting that

cosh yx —cos 2\
Jim 2t (1440,
0 y sinh(yx) 2

we have in the classical limit

37N+ 1/4) x2dx 5
5 =N+ 1/4.
4 _ cosh”(mx/2)

lim R(\,y) =
-0
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