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The translational Brownian motion of a particle in a tilted washboard potential is considered. The dynamic
structure factor and longest relaxation time are evaluated from the solution of the governing Langevin equation
by using the matrix continued fraction method. The longest relaxation time is compared with the Kramers
theory of the escape rate of a Brownian particle from a potential well as extended to the Kramers turnover
region by Mel’nikov [Physics Reports 209, 1 (1991)]. It is shown that in the low temperature limit, the
universal Mel’nikov expression for the escape rate provides a good estimate of the longest relaxation time for
all values of dissipation including the very low damping (VLD), very high damping (VHD), and turnover
regimes. For low barriers (where the Mel’nikov method is not applicable) and zero tilt, analytic equations for
the relaxation times in the VLD and VHD limits are derived.
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I. INTRODUCTION

The translational Brownian motion in the tilted wash-
board potential

V(z) = = Vycos(2az/a) — Fz + const, (1)

where z is the coordinate and a is a characteristic length with
the constant field driving potential Fz superimposed on the
periodic potential —Vycos(27z/a), arises in a number of im-
portant physical applications involving noise and relaxation
processes in phase-locked loops. We mention the current-
voltage characteristics of the Josephson junction [1,2], mo-
bility of superionic conductors [3], a laser with injected sig-
nal [4], phase-locking techniques in radio engineering [5],
dielectric relaxation (when F=0) of molecular crystals [6],
the dynamics of a charged density wave condensate in an
electric field [7], ring-laser gyroscopes [8], stochastic reso-
nance [9,10], etc. A comprehensive discussion of the model
is given in Refs. [1,11,12].

One of the most important characteristics associated with
the Brownian motion in any multiwell and single-well poten-
tial is the friction and temperature dependence of the greatest
(overbarrier) relaxation time which is essentially the inverse
of the smallest nonvanishing eigenvalue \; of the character-
istic equation or secular determinant of the relevant dynami-
cal system. In other words, )\Il is the lifetime of the longest
lived relaxation mode of the system. The greatest relaxation
time may also be obtained by calculating the mean first pas-
sage times from each of the wells of the potential [13]. As far
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as the calculation of \; is concerned, one may expand the
solution of the associated probability density diffusion equa-
tion (usually the specialized form of the Fokker-Planck equa-
tion applicable to separable and additive Hamiltonians com-
prising the sum of the potential and kinetic energies known
as the Klein-Kramers equation) in Fourier series in the posi-
tion and velocity variables [11]. Alternatively, the secular
equation may be generated by averaging the appropriate
Langevin equation over its realizations in phase space yield-
ing the hierarchy of differential-recurrence equations govern-
ing the decay functions of the system [12]. In each of the two
methods, the secular determinant results from truncation of
the set of differential-recurrence relations at a number ensur-
ing convergence of the resulting set of simultaneous ordinary
differential equations. Thus, | is not in general available in
closed form as it is always rendered as the smallest root of a
high order polynomial equation. Hence, it is difficult to com-
pare \; so determined with experimental observations of the
greatest relaxation time or the relaxation rate. Fortunately
(noting that \, for sufficiently high barriers has exponential
dependence on the barrier height), a way of overcoming this
difficulty is to utilize an ingenious method originally pro-
posed by Kramers [14] in connection with thermally acti-
vated escape of particles out of a potential well.

Kramers [14] (using Einstein’s theory of the Brownian
motion as extended both to include the inertia of the Brown-
ian particles and a potential well) evaluated the prefactor A
(which is a function of both the dissipative coupling to the
bath and the potential shape) in an Arrhenius-like equation
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for the escape rate I" over the potential barrier AV (reaction
velocity in the case of chemical reactions), viz.,

Da _AVik,T
I'=A—e BY,

AV > kT, (2)
2

where the attempt frequency w, is the angular frequency of a
particle executing oscillatory motion at the bottom of a well
(for reviews of applications of Kramers’ method see Refs.
[13,15]), kg is Boltzmann’s constant, and T is temperature.
Due to the unique contribution of Kramers to our under-
standing of the role played by the dissipative coupling in the
escape rate, the escape-rate problem is now commonly
known as the Kramers problem [13].

Now if the escape rates for Brownian particles governed
by separable and additive Hamiltonians comprising the sum
of the kinetic and potential energy are calculated by the
Kramers method, three regimes of damping automatically
appear, viz., (i) intermediate-to-high damping (IHD), (ii)
very low damping (VLD), and (iii) a turnover region. Kram-
ers [14] obtained so-called IHD and VLD formulas for the
escape rate, assuming in both cases that the energy barrier is
much greater than the thermal energy so that the concept of
an escape rate applies. He mentioned in his paper, however,
that he could not find a general method of attack for the
purpose of obtaining a formula which would be valid for any
damping regime. This problem was solved nearly 50 years
later by Mel’nikov and Meshkov [16,17]. They postulated
from heuristic reasoning that a formula valid for all values of
the damping may be given by simply multiplying the general
Kramers IHD result for I' by using a certain bridging integral
derived by them. Mel’nikov [17] further extended the bridg-
ing integral method to take into account quantum effects in a
semiclassical way. Later Grabert [18] and Pollak er al. [19]
presented an even more complete solution of the Kramers
turnover problem showing that the Mel’nikov and Meshkov
turnover formula for the escape rate can be obtained without
ad hoc interpolation between the weak and strong damping
regimes. We remark that the theory of Pollak er al. [19] is
also applicable to an arbitrary memory friction and not only
in the “white noise” (memoryless) limit. In the semiclassical
limit, the latter theory was extended to the quantum regime
by Rips and Pollak [20].

As far as general accuracy is concerned, the universal
turnover formula of Mel’nikov and Meshkov compares fa-
vorably with escape rate calculations based on either the so-
lution of the Klein-Kramers equation or on numerical simu-
lations of the Brownian dynamics in various potentials (not
including to date, however, the tilted cosine potential). In
particular, a comparison with the numerical results for the
escape out of a single well was given in Refs. [21,22]. For
double-well potentials, the Mel’nikov and Meshkov formula
has been tested in Refs. [23-27] for both the rotational and
translational Brownian motion. Furthermore, Coffey et al.
[15,28] have extended the method to the magnetization re-
laxation of single-domain ferromagnetic particles. (The mag-
netic relaxation differs fundamentally from that of inertial
Brownian particles because the undamped equation of mo-
tion of the magnetization of a single-domain ferromagnetic
particle is the gyromagnetic equation and the Hamiltonian is
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nonseparable. Thus the inertia plays no role; the part played
by inertia in the mechanical system is essentially mimicked
in the magnetic system by the gyromagnetic term causing the
coupling or “entanglement” of the transverse and longitudi-
nal modes). The calculation of the longest relaxation time for
various magnetocrystalline anisotropies has been accom-
plished in Refs. [29-31].

It is the purpose of this paper to apply a universal turn-
over formula for the escape rate to the analysis of the dy-
namics of a Brownian particle in the tilted periodic potential,
Eq. (1). In particular application to a Josephson tunneling
junction, Mel’nikov has derived such a universal equation
for the longest relaxation time in Ref. [17]. In this context,
we must remark that the Kramers problem in a tilted periodic
potential is qualitatively different from the escape problem
from a metastable well because the tilted periodic potential is
multistable. The particle having escaped a particular well
may again be trapped due to the thermal fluctuations in an-
other well. Moreover, jumps of either a single lattice spacing
or of many lattice spacings are possible [32]. Thus from a
mathematical point of view, one has to take into account the
nonperiodic solution of the Fokker-Planck equation. Hence

the dynamic structure factor S(k, ) (playing an essential role
in neutron and light scattering experiments) is used as de-
scribed by Risken [11] generating an additional (wave num-
ber) parameter k in the Fokker-Planck equation. That factor
is then averaged over all possible jumps. Yet another differ-
ence from the conventional Kramers problem is that the sta-
tionary distribution is no longer the Maxwell-Boltzmann dis-
tribution. In the VHD limit, the analysis of the problem
usually starts from the Smoluchowski equation by either
converting the solution of that equation to a Sturm-Liouville
problem or to the solution of an infinite hierarchy of linear
differential-recurrence relations for statistical moments [11].
We have mentioned that a concise method of numerical treat-
ment (in terms of infinite scalar continued fractions) of the
model in the VHD limit, where the inertia of the particle may
be neglected, has been suggested by Cresser er al. [33] with
applications to a ring-laser gyroscope as summarized by
Risken [11] (see also references cited therein). Further devel-
opment of the continued fraction approach has been given by
Coffey et al. [12,34]. In the opposite VLD limit, the calcu-
lation of the escape rate by Kramer’s method was accom-
plished in Refs. [35,36]. A general method of solution of the
problem for all values of dissipation based on a matrix con-
tinued fraction representation of the Klein-Kramers equation
has been suggested by Risken [11]. This method allows one
to calculate eigenvalues and eigenfunctions of the Klein-
Kramers (Fokker-Planck) equation for the tilted periodic po-
tential and evaluate the Fourier transforms of various corre-
lation functions for virtually all cases. By applying this
method, Ferrando er al. [32,37] have studied the one-
dimensional translational Brownian motion in a pure peri-
odic potential (1) with F=0. These authors have evaluated
numerically the escape rate I' from the dynamic structure
factor §(k, w) and shown that the friction dependence of I" so
obtained is in full agreement with that given by the
Mel’nikov universal equation [17]. The treatment of the
same one-dimensional problem and its generalization to dif-
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FIG. 1. Potential V(x)=—p(cos x+yx)+C with V,=2y(V1-y?
+y arcsiny) and V=27yy.

fusion on a surface has been given by Pollak and collabora-
tors in Refs. [38—40]. Neither Ferrando et al. or Pollak et al.
extended their comparisons of the turnover formula with the
exact solution to the tilted cosine potential, i.e., ' # 0, which
we reiterate is the object of the present paper. This general
case differs in many respects from that considered by Fer-
rando et al. [32,37] as now the dynamic response strongly
depends on the tilt parameter F. Here we present the results
of a detailed comparison of the Mel’nikov turnover formula
with a matrix continued fraction solution for the dynamic
structure factor and longest relaxation time for the one-
dimensional translational Brownian motion in a tilted peri-
odic potential, Eq. (1). In this way, the range of validity of
the approximate analytic solutions for dynamic structure fac-

tor §(k,w) and the escape rate I' may be ascertained. Our
matrix continued fraction solution owes much to the method
of Risken [11]. However, the hierarchy of differential-
recurrence equations for statistical moments [which is the

basis of the evaluation of S(k, )] is derived directly from the

underlying Langevin equation without recourse to the
Fokker-Planck equation.

II. BASIC EQUATIONS

We consider the one-dimensional translational Brownian
motion of a particle of mass m in a tilted periodic potential,
Eq. (1). On introducing the normalized coordinate x, time #',
tilt y, and barrier y parameters as

2m aF Vo ,
x=—z, y= soy=, =, 3)
a 27V, kgT n
I L
7= 2m N 2k, T

the potential Eq. (1) takes the form (see Fig. 1)
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V(x) = V(2)/(kgT) + C' = — y(cos x + yx) + C’, (4)

and the Langevin equation describing the dynamics of the
Brownian particle becomes

(') + (") + o VIx(t) ]2 =\("), (3)

where C"=—y(J1—y2—1+y arcsin y) (this constant does not
affect the equation of motion, however, it is necessary for
further calculations), 8’ =n{/m is the dimensionless friction
parameter, { is the viscous drag coefficient, and \(¢') is the
white noise driving force so that

M) =0, NEDN() = 0B 8] —1)). (6)

The overbar means the statistical average over an ensemble
of particles which have all started at time 7' with the same
initial position x(¢")=x and velocity x(z')=x. Equation (5) is
interpreted here as a stochastic differential equation of the
Stratonovich type [11,12]. Typical examples of physical sys-
tems modeled by Brownian motion in a tilted periodic po-
tential and described by the Langevin Eq. (5) are presented
in Table 1.

The corresponding Klein-Kramers (Fokker-Planck) equa-
tion for the joint probability density function W(x,x,t") of
the phase space variables x and x may be written [11]

oW

—=LppW, 7
o = Ler (7

where the Fokker-Planck operator Lyp is given in our dimen-
sionless variables by

AW 19VIw ,<a(xw) laz_w). @)

ox 2 Ix

LppW=—x
re ax 2 dx ox

The first two terms on the right-hand side of Eq. (8) com-
prise the convective or Liouville term describing in the ab-
sence of dissipation the undamped streaming motion along
the energy trajectories in phase space corresponding to
Hamilton’s equations. The last term (the diffusion term) rep-
resents the interchange of energy (dissipative coupling) with
the heat bath.

The periodic solutions of Egs. (5) or (7) cannot describe
escape of the particle from the well because the potential (1)
contains only one well with period 2. To investigate the
process across the multiwell potential generated by Eq. (1)
one has to obtain a nonperiodic solution of Egs. (5) or (7)
[11]. In order to obtain a nonperiodic solution of the Klein-
Kramers Eq. (7), one makes the ansatz [11]

12

Wix,%,t') = Wik, x,%,t")e*dk, (9)
-1/2

where W is periodic in x with period 27 and it is assumed
that k is restricted to the first Brillouin zone, —1/2=k
=1/2. The periodic function W can then be expanded in a
truncated Fourier series in x and in orthogonal Hermite func-
tions in x [11]. A similar approach may be used in solution of
the Langevin Eq. (5).

Following Refs. [11,32], we calculate the dynamic struc-
ture factor §(k, ), which is the time Fourier transform of the
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TABLE 1. Physical systems modeled by Brownian motion in a tilted periodic potential V(x)=—7(cos x

+yx) and described by the Langevin Eq. (5).

Dimensionless Tilt Characteristic Dimensionless
Magnitude Parameter Time Damping
System Physical Parameters y y n B
Translational x: dimensionless
Brownian motion coordinate
of a particle in a \: random force
tilted periodic m: mass of the N
potential [3,11] particle Yo aF 4. " 14
V,: potential kgT 27V 2 \‘JZkBT m
magnitude
F: constant force
{: friction coefficient
x: phase difference
A point Josephson \: noise current
tunneling junction: 1.: maximum
the resistively and Josephson current
capacitively 1, bias dc current Al L. 3 T 7
shunted junction e: electron charge 2ekyT 1. 2% 5 kyT RC
(RCSJ) model #i: Planck constant \
[1,2,11,12] C: capacity
R: resistance
Rotational x: angular coordinate
Brownian motion A\ random torque
of a damped I: moment of inertia —
pendulum driven by Vy: potential Yo F “ ! s7
a constant torque magnitude kgT Vo \‘JZkBT 1
[1,12] F: constant torque
s: friction coefficient
equilibrium translational correlation function S(k,t’) for the correlation functions cnyp(k,t’). This is accomplished

= (e x>0y where x(0) is the initial value of x(¢'), and
the angular brackets denotes a stationary averaging. Thus we
introduce the set of stationary correlation functions cn’p(k,t’)
defined as

as follows. Recalling that the usual rules of analysis apply to
stochastic differential equations of the Stratonovich type
[11,12] and noting that [41]

’ 1 ikx(t")- ipx(t ! s d
Cn’p(k,t )= N (e Kx(t")=x(0)] yipx(t")+VIx(t )]/2Hn[x(t Do d_ZHn(Z) =2nH, (), H,.(z)=2zH,(z) - 2nH,_(2),

(10) (11)

where H,(z) is the Hermite polynomial of order n [41].
Equation (5) now may be recast as a hierarchy of equations one has
J
d . ’ ’ . ! ’
RO H LT = 20 H ()] + [ip + ) + VTG V2B H L e oo e e
={n(2N(")H,,[4(t")] - 28" (n - DH, ,[x(t')] - B'H,[x(t")] - H,,[#(t") ]9, V[x(¢')])
+ (ip + k) + 9 VIx(u)V2) (nH, [T+ Hy [ 2) e 0RO, (12)

By averaging Eq. (12) over the realizations of x(¢'), using the identity [12]
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Flx(t")H,[x(t")INE') = B (n = DF(x)H,, (%) (13)

(which is valid for an arbitrary function F[x(¢')]), and forming the stationary averages c

have

(¢) (as described in Ref. [12]), we

n.q

d , , , n+1)|. vy Ly ,
ycn!p(k,t )==np'c,,(k,t") + 1/ T{ |:l(p +k)— T]Cwl,p(k’t )— Z[cnﬂ’pﬂ(k,t’) = Cparpor kot )]}

+ \/g{ [i(p +k) + %]c,,_l,p(k,t’) + Y

:[cn—l,pﬂ(k»l,)_Cn—l,p—l(k’t,)]}~ (14’)

Having determined the ¢, ,(k,?) from Eq. (14), the function
S(k,t") can be evaluated as

S(k,t') = 25 a,cq (k1) = 2m)Z2 ¢4, (k.0)co (k. 1),
=0

p=0 p

(15)

where the initial conditions ¢, ,(k,0) for ¢, ,(k,?") are given
by [11]

2 2

eipx—V(x)/de, 7= J e—V(x)dx

0

cop(k,0)=Z" J

0
(16)

(the asterisk denotes the complex conjugate). Here we have
noted that

eikx(t’) — eV[x(t’)]/22 apei(p+k)x(t’)’
p=0

2
a,= (ZW)_IJ dxe™PV2 = (277)_lZc:;’p(k,O).
0

Equation (14) (equivalent to that derived by Risken [11]
from the Fokker-Planck equation) is the desired recurrence
equation for the statistical moments. This equation can be
solved by the matrix continued fraction method to yield the
one-sided Fourier transform of the dynamic structure factor
S(k, w)=f8°S(k,t’)e‘i“)’7”dt’ (see Appendix A). Having deter-
mined S(k,®), the longest relaxation time 7 and decay rate
'~ 7! can be evaluated as follows. Defining the decay rate
F~7!as

12
= f 7 (k)dk, (17)

=172

where the time 7(k) is a characteristic time associated with
the long time behavior of the function S(k,¢') which can be
approximated as t—o by an exponential S(k,t’)
~h(k)e™™ [32]. In the frequency domain as w—0, this
approximation corresponds to

- _ h(k)
Stkow) = iow+ 7 k)’ (18)
where 7!(k) can be extracted as [32]
~ -1
7(k) = limiw|: f(k’o) - 1] ) (19)
=0 Sk, w)

The dynamic structure factor §(k,w) can be calculated ex-
actly by solving the differential recurrence Eq. (14) using the
matrix continued fractions [11] (as described in Appendix A)
and may be compared with the characteristic time 7(k) and
the decay rate I'~ 7! evaluated from Eqgs. (19) and (17).

III. MEI’NIKOV’S UNIVERSAL EQUATION

An analytical approximation to the decay rate 7' in a
tilted periodic potential has been obtained by Mel’nikov [17]
by reducing the Klein-Kramers equation to an integral equa-
tion of Wiener-Hopf type. The Mel’nikov expression for the
longest relaxation time 7is [17]

v = TiuplA(B' 6, vy), (20)

where 7;yp is the longest relaxation time in the THD limit
which is given by the Kramers IHD formula [17]

Tp =4mn(NB'* + 2y - B') e, (21)
AV is the height of the lowest barrier (see Fig. 1), viz.,
AV=29(1 - +y arcsin y — my/2). (22)
The function A in Eq. (20) is defined as [17]

12
Ald,g) = w(k,d,g)dk, (23)
-172

where

w(k,d,g) = 4 sin(mk)sin[ m(k + ig) e~ ™= kd9)-E(0.24.0)/2

(24)
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[

E(k,d,g) = >, n~'cos[ mn(2k + ig)]

n=1

—(1 g
Xy erfe| Vnd| =+ — | "¢
2 d

+ erfc[ \r%(l - E)}e””’g}, (25)
2 d

and erfc(x) is the complementary error function defined as

erfc(x):%—T I ;Oe"zdt [41]. (Other forms of the function A are

given in Ref. [17]). For zero tilt (y=0), Eq. (24) can be

simplified to yield [32]

w(k,d,O) =4 Sin2(ﬂ_k)eE(k,d,())—E((),Zd,())/Z’ (26)

where E(k,d,0)=ZElen‘lerfc(\f'%l/2)cos(27mk). The pa-
rameter O is the dimensionless action associated with the
path along the top of lowest barrier given by

—arcsin y
6=2 f V= V(x)dx

0

—arcsin y r

i .

=2y )’f V1 = y? = cos x + y(x + arcsin y)dx,
X0

(27)

where x is an appropriate solution of the equation V(x;)=0.
On this path, a particle starts with zero velocity at the top of
the barrier and, having descended into the well, returns again
to the top of the barrier [36]. For y<1, & has the following
behavior:

P 1
= = 1= a9 - 4log(my/4)ly + Va2 + 0(y?),
3 32
(28)

where 50=8V’,Z/ is the action for zero tilt. If y approaches 1,
& can be approximated as [36]

8= 368,[2(1-y)P"*10. (29)

The normalized action &/ &, evaluated from Egs. (27)—(29) is
shown in Fig. 2. Now A(d) — 1 at d—o0 and A(d)/d—?2 at
d—0. Thus for very high damping, B8’ — o, Eq. (20) yields
the VHD asymptote

Tvap=4mnB vy etV (30)
In the VLD limit (8’ —0), one has from Eq. (20)

™ AV
B Nyl2

which is the result of Biittiker and Landauer [36] (in our
notation).

The Mel’nikov method (as other asymptotic methods) is
valid in the high barrier (low temperature) limit only. In or-
der to accurately estimate 7 for the low barrier, one should
use other methods such as mean first passage time (MFPT)
[13]. The MFPT may be easily calculated for all systems
with dynamics governed by single variable Fokker-Planck

31)

TyLp =
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FIG. 2. The normalized action &/ &, vs the tilt parameter y. Solid
line: Eq. (27). Dashed line: Eq. (28). Dashed-dotted line: Eq. (29).

equations in terms of the equilibrium (stationary) distribution
function W, and diffusion coefficient D® only. The advan-
tage of such a method is that it allows us to obtain VHD and
VLD solutions, valid for all barrier heights including very
low barriers, where asymptotic methods (like that of
Mel’nikov) are not applicable. In Sec. IV, we apply the
theory of MFPT for evaluation of the decay rate 7! in the
VHD and VLD limits at zero tilt y=0. Here the results can
be given in a closed form.

IV. THE MFPT ASYMPTOTES FOR THE DECAY RATE AT
ZERO TILT

In the VHD limit (B’ >> 1), the appropriate single variable
Fokker-Planck (Smoluchowski) equation for the probability
density function W(x,¢') is [11]

J o1 a P )
;W(x,t )= z—ﬂ,{a[‘y sin xW(x,t")] + @W(x,t )}
(32)
Thus, noting that the diffusion coefficient D®=(28")~, the
longest relaxation time is given by [42]

o1
=28

Wy (x)

f Wo(d)dpdx

— zﬂr nf f e-y(cos ¢—cos x)dqﬁdx, (33)

where the equilibrium Boltzmann distribution function W(x)
is given by

e Cos X

B 27ly(y)

and I,(z) is the modified Bessel function [41]. The time
P is the time needed for the Brownian particle starting at
the top of the barrier x=—m to reach, having attended a well
bottom, the neighboring top at x=r.

In the opposite low damping limit (8’ < 1), in order to
obtain a single variable Fokker-Planck equation, one may

Wo(x) (34)
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introduce as variables the energy of the particle
e=x>—ycosx (35)

and the time w (phase) measured along a closed trajectory in
phase space. These comprise the action-angle variables [13]
of the problem. The energy & varies very slowly with time.
Consequently, it is a slow variable in comparison to the
phase w. By using the method of Praestgaard and van Ka-
mpen [43], i.e., averaging the Fokker-Planck equation (7)
over the fast phase variable w, we have a single variable
Fokker-Planck equation for the probability density function
W(e,t) in energy space

%W(s,t') =28 {i(}?(s) - %) + g?(s)] W(e,t'),

(36)

where the double overbar denotes averaging over the fast
phase variable. Noting that the diffusion coefficient is

D@ = 2[-3')?(8) = Zﬂ’[s + y@(s)],

the time 7 is then given by

y Wal(s)fs Wo(x)dx
-y

FPT 77
T~ ,T]VI — _,
2B -y

The calculation of Wy(e) and the integrals in Eq. (37) is
described in Appendix B. The areas of applicability of the
VHD and VLD asymptotes [Eqgs. (33) and (37)] are the same
as those of the corresponding Fokker-Planck equations (32)
and (36), viz., the VHD and VLD limits, respectively. In
practice, Egs. (33) and (37) may be used at 8'>5 and B’
<0.01.

de. (37)

e+ ycosx(e)

V. RESULTS AND DISCUSSION

The greatest relaxation time predicted by the turnover for-
mula Eq. (20) and the inverse decay rate calculated numeri-
cally by matrix continued fraction methods are shown in
Figs. 3 and 4 as functions of B’ for different values of the
barrier height and tilt parameters. Here, the IHD [Eq. (21)],
VHD [Eq. (30)], and VLD [Eq. (31)] asymptotes for 7 are
also shown for comparison. Apparently in the high barrier
limit, Eq. (20) provides a good approximation to the decay
rate for all values of the friction parameter 8’ including the
VHD, VLD, and the Kramers turnover regions. In spite of
very good overall agreement between numerical results and
the universal Eq. (20), a marked difference of order of 20%
between numerical and analytical results exists in the VLD
region at moderate barriers (this difference decreases with
increasing 7, see Fig. 3). Such a difference has already been
noted for other systems (see, e.g., Refs. [22,37]). In order to
improve the accuracy of the universal turnover formula in
this region, Mel’nikov [44] suggested a systematic way of
accounting for finite-barrier corrections. Analysis of the
translational Brownian motion in a periodic cosine potential
has demonstrated [45] that if such a correction is included,
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L 1: y=5
103 2: y=10
3 3. y=15

y=0.3

FIG. 3. The longest relaxation time 7/# vs the friction param-
eter B’ for the tilt parameter y=0.3 and different values of the
barrier parameter y=5, 10, and 15. Solid line: the universal
Mel’nikov equation (20); dashed line: the VHD equation (30);
dashed dotted line: the IHD equation (21); dotted line: the VLD
equation (31); filled circles: exact numerical solution, Eq. (17).

the accuracy of the universal formula is considerably im-
proved for Brownian motion in a periodic potential with tilt
y=0. One would expect a similar improvement for nonzero
tilt.

For zero tilt, y=0, the greatest relaxation time 7 predicted
by the Mel’nikov universal equation (20) and the inverse
decay rate calculated numerically by matrix continued frac-
tion methods are shown in Fig. 5 as functions of B’ for
different values of the barrier height including the very low
barrier y=0.1. Here, the VHD [Eq. (33)] and VLD [Eq. (37)]
asymptotes for 7 calculated via the theory of MFPT are also
shown for comparison. In the VHD and VLD limits, these
asymptotes may be used to estimate 7 for all barrier heights.
For small barriers (e.g., y=0.1), the Mel’nikov universal for-

1()121= 1:y=00
3 2:y=02
=10
o 3:y=04 7
1074~ 4:y=06

r/n

FIG. 4. 7/ 7 vs the friction parameter B8’ for the barrier param-
eter y=10 and different values of the tilt parameter y=0.0, 02, 04,
and 0.6. Solid line: the universal Mel’nikov equation (20); dashed
line: the VHD equation (30); the IHD equation (21); dotted line: the
VLD equation (31); filled circles: exact solution, Eq. (17).
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FIG. 5. 7/ 5 vs B’ for the tilt parameter y=0 and y=0.1, 5, and
10. Solid line: the universal Mel’nikov equation (20); dashed line:
the VHD MFPT equation (33); dotted line: the VLD MFPT equa-
tion (B7); dashed dotted line: the ad hoc extrapolating equation
(38); filled circles: exact solution, Eq. (17).

mula is obviously not valid. However, here the simple ad hoc
extrapolating equation [13]

T~ T+ i (38)
provides a satisfactory estimate of the longest relaxation time
7 for all damping (see Fig. 5).

The real and imaginary parts of the normalized dynamic
structure factor S(k,w)/S(k,0), for various values of the tilt
parameter y are shown in Fig. 6 with barrier parameter y
=10, the friction coefficient is B8'=10, and k=0.2. For com-
parison, we also show in this figure the pure Lorentzian spec-
tra

Skw) 1
§(k,0) 1+ ink’

(39)

where the relaxation time 7,=1/ Re[7;; (k)] is related to the
7y from the universal equation (20) via 7,
=2[/?Re[ 7, (k)]dk. Apparently the simple equation (39) de-
scribes perfectly the low frequency part of the dynamic

structure factor S(k, w)/S(k,0).

Thus we have demonstrated how the matrix continued
fraction solution of nonlinear Langevin equations may be
successfully applied to a Brownian particle moving in the
tilted periodic potential, Eq. (1), for wide ranges of the bar-
rier parameter 7, tilt parameter y, and the damping parameter
B’. We have shown that in the low temperature limit, the
Mel’nikov formula for the longest relaxation time, Eq. (20),
yields satisfactory agreement with the numerical results for
all values of damping. Moreover, the Mel’nikov equation
(20) allows one to accurately estimate the damping depen-
dence of the low-frequency parts of the dynamic structure

factor S(k,w) via the simple approximate analytic formula,

Eq. (39). In practical calculations, Eq. (20) may be used for
y=1.5and 0=y=0.9. For 1.0=y>0.9 (where a parabolic
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:103 4
& 4t}

3: 1073}

vy 1077 1:y=0

% 10’5} 2:y=02

S g7 3y=04

\"J._,/ 10_9:: 4:y=0.6

&g 10—115 y=10,=10,k=02

Im [S (k@) / S (k,0)]

FIG. 6. The real and imaginary parts of the normalized dynamic
structure factor S(k,w)/S(k,0) vs w7 for various values of the tilt
parameter y and for the barrier parameter y=10, the friction coef-
ficient B'=10 and k=0.2. Solid lines: numerical calculation. Aster-
isks: Eq. (39).

approximation of the barrier top is no longer valid), the ma-
trix continued fraction solution must be used. For small y
(where asymptotic methods like Mel’nikov one are not ap-
plicable) and y=0, Egs. (33), (37), and (38) yield a good
estimate for the longest relaxation time.

To conclude, we have shown that the universal turnover
formula for evaluating the longest relaxation time 7 as a
function of the dissipation parameter for Brownian particles
in a tilted periodic potential provides in the low-temperature
limit excellent agreement with the exact continued fraction
solution for all values of the dissipation parameter including
the VLD,VHD, and turnover regions. A similar conclusion
may be drawn [22-29] for various stochastic systems mod-
eled by Brownian motion in multiwell potentials with
equivalent and nonequivalent wells, where the validity of the
universal equation for 7~I'~! (T is the escape rate) has been
verified by comparison with numerical solutions of the un-
derlying Langevin or Fokker-Planck equations. Thus the uni-
versal turnover equation for the escape rate appears to yield
an effective and powerful tool for evaluating the damping
dependence of the prefactor A in Eq. (2) for a wide class of
nonlinear stochastic systems even as in the present problem
where the stationary solution differs from the Maxwell-
Boltzmann distribution. It is obvious that the description of
the relaxation processes in the context of Eq. (20) neglects
quantum effects. These effects are important at very low
temperatures and necessitate an appropriate quantum me-
chanical treatment. As mentioned in Sec. I, Mel’nikov [17]
and Rips and Pollak [20] have extended the turnover formula
for mechanical particles to account for quantum tunneling in
a semiclassical way. We have seen that classical turnover
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formula for the escape rate may be confirmed as an accurate
approximation to the exact escape rate of a mechanical
Brownian particle because one may exactly solve the corre-
sponding Fokker-Planck equation describing the evolution of
the distribution function in phase space using matrix contin-
ued fractions. In order to verify formulae for the escape rate
which incorporates quantum effects, it is necessary to iden-
tify the appropriate quantum mechanical master equation un-
derlying the relaxation process, which becomes the Fokker-
Planck equation in the classical limit [46,47]. An appropriate
candidate seems to be the Caldeira-Leggett [48] quantum
Fokker-Planck equation for the time evolution of the Wigner
transform of the reduced density operator (here the relation-
ship between the quantum density operator and the semiclas-
sical distribution function is given by the Wigner transforma-
tion [49]). The Caldeira-Leggett approach may be used for
all values of damping. In the VHD limit, one can use the
quantum Smoluchowski equation, which to leading order co-
incides with the classical Smoluchowski equation, but con-
tains essential quantum corrections [50-52]. Such an ap-
proach to the quantum mechanical problem also lends itself
to solution by continued fraction methods [46,47] so that the
universal quantum escape rate equations can be tested in a
similar manner to that which we have described here.
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APPENDIX A: MATRIX CONTINUED FRACTION
SOLUTION

By introducing the column vectors C,(k,t) defined as

[11]

Cn—l,—l(kJ,)

Cn(k7t/)= Cn—l,()(kJJ) 5 n=1’2937 cee s

Cpt1(k.t')

Eq. (14) can be written in the vector tridiagonal form
d - ! ! 4
Ecn(k,t’) =Q,(k)C,_(k,t") = B'(n—1)C,(k,t")

+Q,(k)C,pi(k,1'),
where the matrices Q} (k) and Q) (k) are

(A1)

e = l+k+iyl2 -4 0
Q;(k)=i\/g yl4 k+iyyl2 — Y4 .
0 Y4 1+k+iyyl2
1 —l4k—ip2 4 0
Q,(k)=i nT - ¥4 k= iyyl2 /4
0

By Laplacian transformation, Eq. (A1) can be rearranged as
the set of matrix three-term recurrence equations

[7s + B (n = 1)]C,(k,s) = Q}(K)C 1 (k,5) = Q(K)C,p_ (K, )
= 3,,1C(k,0). (A2)

The exact solution of Eq. (A2) for the spectrum C (k,s) is
given by in terms of a matrix continued fraction

C,(k,s) = A, (k,s)C,(k,5), (A3)

where the matrix continued fraction A, (k,s) is defined by the
recurrence equation

-y4 1+k—iyl2

A, (ks)={[ns + B'(n = DI = Q(K)A, 1, (k,9) Q. (R}

and I is the unit matrix. Having determined C,(k,s) and
noting Eq. (15), one can calculate the dynamic structure fac-

tor S(k, ) as

S(k,w) = 27)'ZC[(k,0)A, (k,iw)C,(k,0),  (A4)

where the symbol “{” designates transformation of the col-
umn vector C;(k,0) to a row vector and its conjugation.
The exact matrix continued fraction solution, Eq. (A4),
we have obtained is easily computed (algorithms for calcu-
lating matrix continued fractions are discussed in Refs.
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[11,12]). As far as practical calculations of the infinite matrix
continued fraction are concerned, we approximate it by a
matrix continued fraction of finite order (by putting A,
=0 at some n=N); simultaneously, we confine the dimen-
sions of the infinite matrices Q,, Q:, and I to a finite value
(20+1)X(2Q+1). The N and Q were determined in such
way that a further increase of N and Q did not change the
results. Both N and Q depend on the dimensionless magni-
tude () and damping (B’) parameters and must be chosen
taking into account the desired degree of accuracy of the
calculation. Both N and Q increase with decreasing 8’ and
increasing 7.

APPENDIX B: UNDAMPED LIMIT FOR ZERO TILT

For B’ <1, the dynamics of the system differ but little
from those of the undamped limit (8’=0) when the Langevin
force vanishes. For B8’ =0, the energy of the particle [see Eq.
(35)] is a constant of the motion and so the dynamics of the
particle in the potential well are described by the following
deterministic nonlinear differential equation:

i) =g+ ycos x(t')

or

d
o cosx(t')= = \J/[s +ycos x(t)][1 —cos® x(¢')].
(B1)
For —y<e<, Eq. (BI) has a solution
cos x(t') = 1 - 2m(e)sn’(t'\ Y2 £ wlm(e)),  (B2)

where sn(u|m) is the Jacobian doubly periodic elliptic func-
tion [41],
arcsin{\m(z) sin[x(0)/2]}
w=f [1—m(e)sin® x'"2dx’,
0

(B3)

m(e) = (B4)

2y

In order to proceed, we recall the Fourier series for sn?(u | m)
[53]
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E(m) 27 zw ng" [ nu ]
K(m) K*(m)<r=1- " cos ’

m sn®(ulm)=1-

where K(m) and E(m) are the complete elliptic integrals
of the first and second kind, respectively [41,53], and ¢
=exp[-mK(1-m)/K(m)]. Thus we have from Egs. (B2),
(B3), and (B5)

cosx(e)=2——--1, (B6)

where the double overbar denotes averaging over the fast
phase variable, the dependence of the modulus m on ¢ is
given by Eq. (B4).

In order to evaluate equilibrium averages, one needs an
equation for the stationary distribution function W,,. On not-
ing that W, is the equilibrium Maxwell-Boltzmann distribu-
tion W, viz.,

Wo[x(0),x(0)]dx(0)dx(0)
1

= )e-*2<0>+“°s O x(0)d#(0)
o\Y

by making the transformation of the variables {x(0),x(0)}
—{w, e}, and by integrating the distribution function Wy(e)
over the phase w, we have

\2K[m(s)]e®
Iy
xEK[m_] (e)]e~®

1Y)\ ym(e)

de (—y<e<yy)
Wy(e)de =
de (e>1y)

with fnyO(s)ds= 1. Thus according to Egs. (37) and (B6),
in the context of the MFPT approach, 7in the VLD limit is
given by

| ) f E e K[m(x)]dx
T _ -y
7 4ﬁ'yf_ym(s>l<[m<s>]+E[m(s)]"8‘

(B7)
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