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The extension of the Kramers theory of the escape rate of a Brownian particle from a potential well
to the entire range of damping proposed by Mel'nikov and MeshHkKowChem, Phys85, 1018
(1986)] is applied to the rotational Brownian motion of fixed axis rotators in a double well cosine
potential. The procedure yields an expression for the Kramers escape rate valid for all values of the
dissipation including the very low dampin¢/LD), very high damping(VHD), and crossover
regimes. This equation provides a good asymptotic estimate of the correlationrtimiethe
longitudinal dipole moment correlation function calculated by solving the underlying Langevin
equation using the matrix-continued fraction method. Moreover, for low barriers, where the
Mel’'nikov and Meshkov approach is not applicable, analytic equations,for the VLD and VHD

limits are derived and a simple extrapolating equation that is valid for all values of the damping is
proposed. ©2004 American Institute of Physic§DOI: 10.1063/1.1703525

I. INTRODUCTION be generated by averaging the appropriate Langevin equation
over its realizations yielding the differential-recurrence equa-
The Brownian motion in a periodic potential is of inter- tions governing the decay functions of the systevhich is
est in the solution of a variety of physical problems involv- analogous to the use of matrix mechanics in quantum
ing a relaxation process. Among the most prominent of thesgheory). Alternatively, one may expand the solution of the
are dielectric relaxation of and the dynamic Kerr effect ofassociated probability density diffusion equatiosually the
nematic liquid crystals, magnetic relaxation of single domainspecialized form of the Fokker—Planck equation known as
ferromagnetic particles, dynamic response of Josephson tuthe Klein—Kramers equation which applies to separable and
neling junctions, transport phenomena in semiconductorsadditive Hamiltoniansin Fourier series in the position and
etc!™ velocity variables:? In each of the two methods, the secular
One of the most important characteristics associate@ieterminant results from truncation of the set of differential-
with the Brownian motion in a potential well is the greatestrecurrence relations at a number large enough to achieve
relaxation time or the time required to escape the well. The;onvergence of the resulting set of simultaneous ordinary
greatest relaxation time is essentially the inverse of thejifferential equations. Alternatively, if the problem is repre-
smallest nonvanishing eigenvalug of the characteristic sented in the frequency domain so that the more powerful
equation or secular determinant of the relevant dynamicatontinued fraction method may be us@thich is very effec-
system. Moreover, if the overbarrier mode characterized byjye from a computational point of viewvmany convergents
A, dominates the relaxation process as is always so for sympyst be taker* Thus the smallest nonvanishing eigenvalue
metric potential wells, the escape time;(*) will be closely | is not in general available in closed form as it is always
approximated in the high barrier limit by the integral relax- rendered as the smallest root of a high-order polynomial
ation time. This time is the area under the relaxation functioréquation_ Hence it is difficult to compave, so determined
of the appropriate dynamic variabidn linear response, the yith experimental observations of the greatest relaxation
integral relaxation time is identical to the correlation time of tjme or the relaxation rate. Fortunatelgoting that\, for
the corresponding autocorrelation function. However, fOI’SUfﬁCienﬂy high barriers has exponential dependence on the
asymmetric potentials such as will arise from the impositiony g rier heigh, a way of overcoming this difficulty is to uti-
of a'strong externa! fielq, it is pot always possjble to identify|ize an ingenious method originally proposed by Kramirs
the integral relaxation time with the escape tifies far as  connection with thermally activated escape of particles out
the calculation of\, is concerned, the secular equation mayf 4 potential well. His idea, motivated by the fluctuation-
dissipation theorer,is to calculate the prefactor in an
dCorresponding author. Arrhenius like equation for the reaction rdfe viz.,
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Ui as follows. First, he supposes that the energy trajectories of

the Brownian particle in the well differ but little from those

of the undamped periodic motion in the well. Thus the tra-
jectories are closed except for a particular trajectory with
Al energy corresponding to the barrier point energy associated
a with the transition state. Particles on this particular trajec-
tory known as the separatripetween the bounded motion in
the well and the motion outsigenay either escape the well
or else return to the depths of the well. The VLD regime is
then defined by the condition that the energy loss per cycle
AE of the almost periodic motion of a particle having the
saddle-point energy is much less than the thermal erl€fgy
This condition, recognized on solution of the VLD
problem®’ means thafA<1 in Eq.(1). Thus the escape rate
vanishes in the absence of coupling to the heat bath so rec-
onciling reaction rate theory with the fluctuation-dissipation
ntaeorem. The condition may also be written formally as

P=As2ehu (1)

as a function of the parametér That parameter represents
the interchange of energy between the reacting particles al
their surroundings or heat batfor reviews of applications AE=BS(E.)=BAU/w <KT. (2
of Kramers’ method, see Refs. 6 and 7

Equation (1) for the Kramers escape ralé (reaction
velocity for chemical reactionspertains to a model of a
chemical reaction where rare members of an assembly
Brownian particles that are initially trapped in a potential
well at a (see Fig. 1 may subsequently under the influence
of thermal agitation escape over a high{>kT) barrier at
¢ and descend to the bottom of a very deep potential tvell
and so never return t@ Thus we model a chemical reaction
(ignoring quantum effecidy introducing a reaction coordi-
natex such thax=a in speciesa andx=b in specied (the
product state The reaction is modeled by thermally acti-
vated diffusion over the boundary(the transition stabebe-
tween the two distinct states. The frequenrgy 27 which is
the frequency of oscillation of a particle in the potential well
centred ona is called the attempt frequency. The original AE~BAU/w >KT. 3)
Arrhenius equation which is obtained whén=1 [corre-
sponding to transition state theofy/ST)] assumes perpetual
thermal equilibrium everywhere at temperatdreThus no
account is taken of nonequilibrium effects due to the leakin
of particles over the potential barrier at In reality the

Here S(E.) is the action on the barrier point energy trajec-
tory and g is the dissipation constant. Moreover, the action
Oc%f a harmonic oscillator of energyU and angular frequency
. has been used to repres&{E;). Kramers obtained his
solution for the VLD escape rate by first writing the Klein—
Kramers equation in energy angle variables. He then elimi-
nates the fast angle variable by averaging along the energy
trajectories so obtaining a diffusion equation in the slowly
varying energy variable. In his derivation, the coupling be-
tween the Liouville and diffusion terms in the Klein—
Kramers equation is effectively ignored because the motion
is supposed almost conservative.

The intermediate to high dampir¢HD) regime occurs
when the energy loss per cycle is sensibly greater K&n

It is now impossible to ignore the coupling between the
Liouville and dissipative terms. Here Kramers obtained
asymptotic solutions for the escape rate by linearizing the
angevin equation about the point Such a procedure is
T . . legitimate because the region of departure from the
Maxwell-Boltzmann distribution no longer holds in the vi- ;- e _Boitzmann distribution is now so limited in spatial

cinity of the transition state because the fluctuation dissi- extent because of the relatively high damping, that it lies

pation theorem describing the coupling of the reacting Palivell inside the region in which it is permissible to linearize

ticles 0 their sgrroundings or heat bath is violated by thethe Langevin equation. In other words he represents the po-
Arrhsnlus eguatlon. this difficulty b iting the diff tential in the vicinity ofc by an inverted harmonic oscillator
ramers overcame this ditficutty by writing the diiiu- potential. He then solved the corresponding linearizedhe

S|0pb_equ$tlodKlTlT_—Krafrrlf]rs er?uauOnln phg\_s? _Ep?_ce (:e- position variablg Klein—Kramers equation by supposing that
scribing the evolution of the phase-space distnbution TunCy, o oo tion js quasistationary since escape over the barrier is
tion underlying the Langevin equation for a Brownian

particle. He then obtained asymptotic solutidtiee Kramers an exponentially slow process obtaining

escape radefor the smallest nonvanishing eigenvalueg of B? B

the Klein—Kramers equation in the limits of very small and A= \/ 1+ —— : (4)

intermediate to high dissipative coupling to the bath. These 4o

solutions, which are valid for high barriersAU>KkT) so  This equation contains the TST theor<£1) as a limiting

that the concept of an escape rate is valid, provide closedase when

form expressions for the reaction rate and its inverse the

greatest relaxation time%)\l’l which may be easily com- Bloc<1 )

pared with experiment. provided the IHD conditiofEqg. (3)] is also satisfied. Hence
As far as the various dissipation regimes are concerned;ombining Eqs(3) and(5) we expect the Arrhenius equation

the very low dampindVLD) regime is defined by Kramers to approximately hold in the range of damping,
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kTw./AU<B<w, (6) the undamped equation of motion of the magnetization of a
single domain ferromagnetic particle is the gyromagnetic
gquation. Thus the inertia plays no role; the part played by
inertia in the mechanical system is essentially mimicked in
the magnetic system for nonaxially symmetric potentials by
the gyromagnetic term which gives rise to the coupling or

and not for zero damping as expected by naively taking th
limit of Eq. (4). The IHD solution also contains as a limit the
very high damping(VHD) solution, whereAE>KT. This

solution amounting té\= w./B was also obtained by Kram- i L
ers by constructing the approximate Smoluchowski equationentanglement of the transverse and longitudinal mogles.

governing the evolution of the distribution function in con- M I,It_l'(s the gul\r/lposhekof this papﬁr o :J_Iecrjnons;]rate th_at Ithe
figuration space only. That equation is valid if the effect of ebT' ov ?'?h . est_ ?\é approac agp '€ ftof; edpar'_ucu ar
inertia of a particle on its nonequilibrium dynamics is ig- problem of the inertial Brownian motion of a fixed axis ro-

nored tator in a double well cosine potential yields an accurate

Kramers was, however, unable to find asymptotic sojySolution for the greatest relaxation timg * for high barriers
tions for the cross’over regir’nAE~kT where the coupling and for all values of the dissipation. Such a potential allows
between the Liouville and dissipative terms in the Klein—the flipping (_)f rotators tq neighboring_we_lls, thus permitting
Kramers equation enters so that one may no longer ignorQoth relaxation and oscillatory behavior in the same model.

the Liouville term as was done in the very low dampingThe detailed description of the mod@h the VHD or nonin-

regime. This problem, named the Kramers turnover problemertial limit) is given in Refs. 2(Chap. 4, 22, and 23 in

was solved nearly 50 years later by Melnikov and connection with site models of dielectric relaxation in mo-
Meshkov3® They gave an integral formula bridging the VLD lecular crystals and polar liquids. The first attempts to in-
and TST solutions. Their solution consists of an integralclude inertial effectgwhich are of importance in the rotation

which when multiplied by the TST result yields a formula in the VLD regio) were made in Refs. 24-27. These calcu-

which reduces to the VLD formula a8—0. Now the TST lations are, however, only valid in a restricted range of val-
result is a particular case of the IHD foﬁnula Hd) pro- ues of the dissipation parameter and it is only with the advent

vided the condition embodied in E¢) is satisfied. Thus of the matrix continued fraction meth&t?® that reliable re-

they postulate from heuristic reasoning, essentially appealinglJItS have peclo rg.e avslla\t;:fanor a_l(ljr\'/?ag es of the dllss||pat|on
to continuity that a formula valid for all values of the damp- arameter, including the regiort. Here, we caiculate

- ; : _— the Kramers escape rate by the Mel'nikov—Meshkov
ing may be given by simply multiplying the general IHD o . . ,
result by their bridging integral. Mel'nikdvhas further ex- asymptotic(in the sense that it applies for high barriezsid

tended the bridging integral method to take into accounyniversal(in the sense that it is' vqlid for aII.vaIues of the

quantum effects in a semiclassical way. Moreover, Grabert damplng fo_rmula an_d compare its inverse _W'th the greatest
and Pollaket al*! later presented a complete solution of therelaxatlon time predicted by the exact matrix continued frac-
Kramers turnover problem and have shown that th ion solution of the underlying Langevin equation. In the

Mel’'nikov and Meshkov universal formula can be obtainedfon.oWing section, we shall briefly review the derivation Qf a
without ad hocinterpolation between the weak and strong umver;al formgla for the Kramers escape rate as applied to
damping regimes. In the semiclassical limit, the latter theor)ﬁ’rown'an rotation in a double well potential.
was extended to the quantum regime by Rips and Pdflak.
As far as the verification of the universal turnover for-
mula of Mel'nikov and Meshkov is concerned, very few
comparisons of that formula with exact calculations based on  Our starting point is the Langevin equation for a dipole
either the solutions of the Klein—Kramers equation or onu rotating about an axis normal to tixg plane?
numerical simulations of the Brownian dynamics have ever ) _ dV( )
been given. Exceptions are the comparison of the universal | (t)+¢p(t)+
turnover formulas with the numerical results for the escape dé
out of a single well, which were given in Refs. 13 and 14 andwherel is the moment of inertia of a rotator about the axis of
the study of the one-dimensional translational Brownian morotation, ¢ is the angle specifying the angular position of a
tion in a periodic potential undertaken by Ferrando andotator, {p(t) and \(t) are the frictional and white-noise
co-workers.>*® Another exception is the treatment of the torques acting on a rotator due to the Brownian motion aris-
same one-dimensional problem and its generalization to difiyg from the heat bath. The internal field due to molecular

fusion on a surface which was undertaken by Pollak angnteractions is represented by the twofold cosine potential
collaborators in Refs. 17-19. Examples of the exact treat¢see Fig. 2,

ment of rotational Brownian motion problems are even 2
fewer. Pastor and Szaffotested the Mel’nikov—Meshkov V(¢)=Vo[cog2¢)—1]=—2kTo sin" ¢, ®8)

formula in the context of a linear molecule in a uniaxial where 2r=2V,/kT is the barrier height parameter. The cor-
potential and Coffey and co-workérs extended the responding Klein—KramergFokker—Planck equation for
Mel'nikov—Meshkov calculation to magnetization relaxation the joint probability density functiokV( ¢, ¢,t) of the angle
of single-domain ferromagnetic particles possessing nonaxias and angular velocityf can be written &s

ally symmetric potentials of the magnetocrystalline anisot-

ropy. (We remark that the magnetic relaxation problem dif- JW

fers fundamentally from that of mechanical particles because o LeaW, ©)

II. UNIVERSAL FORMULA FOR THE ESCAPE RATE
FOR FIXED AXIS ROTATION

=A\(1), )
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FIG. 2. Potential functio®V(¢) from Eg. (8).

where 8= ¢/l and the Fokker—Planck operatgp is given

by*’
L We -07W+1dVr7W

192

+8 (10

Ja - W)+ KT 9°W
The first two terms on the right-hand side of E#0) com-
prise the convective or Liouville term describing in the ab-

Coffey, Kalmykov, and Titov

f-($,E)=W(b,— ) =W(,— V2[E- V() /). (15

The functionfR(4,E) gives the distribution of rotators ro-
tating clockwise while the functiof-(,E) gives the distri-
bution of rotators rotating counterclockwise. Thus we have
from Egs.(11)—(15)

d
== \2IE- V()18 7¢

IRt

d¢

J
RL RL
f +kT&Ef }
(16)

Furthermore, if we define the acti@fi¢) in the usual way

as”©

ds
— =

d¢

Eqg. (16) can compactly be rewritten as the energy-action
diffusion equatiofr®

21[E—V(¢)], (17)

ofRL
is

Jd
B3

14
fRU4KT = fRL|,

JE (18

We emphasize that the solution of EHG8) will effectively
become Maxwell-Boltzmann distributions deep in the wells
of the potential given by Eq8) and will differ from those
distributions only in a relatively narrow region about the top
of the barrier. The behavior being analogous to the VLD

sence of dissipation the undamped streaming motion alongase however, the anglhe fast variabledependence of the
the energy trajectories in phase space corresponding fnction f given by the left-hand side of Eq18) may not

Hamilton’s equations. The last tertthe diffusion term rep-
resents the interchange of eneigljssipative couplingwith
the heat bath.

now be neglected near the top of the barfeompare, for
example, pp. 538 and 539 of Ref). Equation(18) has a
formal solution as the convolutiof?

Since escape over the potential barrier generated by Eq.

(8) is exponentially slow foro>1 (high barrierg, we may
consider the quasistationary distributioVW(¢,®) which
does not depend explicitly on the time. Thus E®). can be
rewritten asL .[pW=0 or

- W dV(¢) o7W+I d ('W)+k

76~ do ap Plagl?

We shall now apply the Mel'nikov—Meshkov method to the
potential given by Eq(8). Since our problem differs in detall

2

Taw) 1
a2

1 g2

vaL(s,E)zf ng'L(s—s’,E—E’)
EJs

x fRL(s’" E")ds dE’, (19
where the kerneg)(s,E) is the Green function given By

(E—E'+Bs)?
~ 4kTBs

g(s,E—E")=

’

1
VA7KTBs exp{

from the translational Brownian motion considered by them,

we shall give a condensed version of the modifications re
quired in order to apply their method to the present problem
First, we note that the particular Fokker—Planck equatio

(fast and slow variable coordinates{¢,E} [where E
=1¢?/2+ V()] using the transformatiois
d

a
— R ($,p)==2I[E-V(4)]

% aEfR’L(d),E), (12
P S dv(¢) @
%fR'L(Q%D)—@fRL(&EHWEfRL(d’,E),
(13
where
fR(,E)=W(b,p)=W(,\2[E- V() ]/1), (14

Downloaded 10 Jun 2009 to 134.226.1.229. Redistribution subject to AIP

. . TConditions for the functions
given above may be represented in terms of angle—energé(eed as follows. Near the

9(0E-E")=6(E-E’), (20)

and the limits of integration are determined by the boundary
R(s,E) and f'(s,E). We pro-
barrier, the flux of the left-going
particles inside the first well arises by reflection from the
barrier of the right-going particles wite<<0 (recall thatE

=0 is the barrier energyand also from the particles which
have crossed over the barrier from the second well \Eith
>0 (see Fig. 2 The same conditions hold for the second
well yielding the following relationship betwee§ , andf} ,
(subscripts 1 and 2 pertain to the wells

fi¢'(E),E]=fR¢'(E),E],
5 ¢"(E),E]=15[¢"(E),E], (E<0),
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f'i(o,E)zfé(oyE), flR(o'E)zfg(o,E), (E>0), Due to the equivalence of the wells 1 and 2, the escape rate
I',; from the well 2 is equal td";,. These escape rates are

where ¢'(E) and ¢"(E) are the roots of the equations related to the lifetimer of a particle by
Vi(¢')=E andV,(¢") =E, respectively. Particles with dif-

ferent energieg€ are always reflected at different anglés

For E~KT (the order of magnitude of a fluctuatigrhow-
ever, this difference is small compared to the angular size of , )
the potential well. Thus we may assume that such particles SOl\é'ng Egs. (23 and (25 by the Wiener—Hopf
propagate along trajectories very close to the barrier energ§€thod; as shown in Ageendm A, and using the solution so
trajectory (defined byV,=V,=0) and so can be described OPtained to evaluate of"* from Eq.(28), we have

) N ) f:m(E)—fz(E)]dE. 28)

by identical Green function&0), viz., L A'2(A) [\/ﬂ_’er 2|V~(0)/||_'8_I
E)=q(SE) 1 r{ (E+ 8S)2 o1 7yA’ (2A) 4 7 2
=09(SE)= ————exg — —ac |
" i AmkTAS TS x{\/m V(hy)/(KT)
" e
where S=S, (i=1,2) andS, is the action in theith well [V"(0)]
given by V' (by)
- eV(lﬁz)/(kT)} ' 29
V'(0)] @9

0
slzf V=2IV(¢)dp=4\IkTa,
o where = \I/2kT is a characteristic timgg' =8y is the di-
mensionless damping parameter,

= |, T2V GIdg=a kT @ vepkn =20, [V()IN=IV(OIN =201,
The complete system of integral equations is then &i= ¢min (1=1,2) are the potential minima in thh well,
o0 o0 _— —_— 2
fE= | radE-EniEa-EY Ad)=e | In1-expt = AMTHUDI ) 1
- 7 Jo AN2+1/4
_e\¢R ’ ’ ’ (30)
+9s(E-E")f(E")6(E")]dE, (23
BV
* , , , A=——=48"\20. 31
hE= [ losE-ENiREIa-EY i~ 462 (0
L , , As shown by Mel'nikov and MeshkaoY,
+gs(E—E")f;(E")6(E")]dE (24
L o ) o ) A'(A)—1 asA—» andA’'(A)/A—1 as A—D0.
(i,j=1, 2 andi#j), whered(x) is the Heaviside unit step (32)
function. The system of four integral equatidi28) and(24) ] )
can be reduced to Thus the greatest relaxation timecan now be compactly
represented by the universal formula
((E)= | losE—E)fu(E0-E) A'(28)
o T=————Tp, (33
’ ! ! ! A’Z(A)
+9s(E—E")f,(E")6(E")]dE’, (29
where
fo(E)= E—-E")f,(E")0(—E’
2(E) f_oc[gs( )f2(E") 6( ) - )

THD ™ T——o— ., © (34)
+9s(E—E")f,(E")O(E")]dE’, (26) JVB'?+80—p

here f.(E)=fL(E)+ fR(E d f-(E)=fL(E)+fR(E). Isthe greatest relaxation 'time in the IHD limit. The.Ieading
where T,(B)=T3(E)+ f;(E) and T5(E)=15(E)+ f2(E) factor on the right-hand side of E¢B3) is the correction to
the IHD result due to Mel’'nikov and Meshkov. ' —co, we
have from Eqs(32) and(33) the VHD formula[cf. Ref. 2,

Equations(25) and (26) indicate that two distinct contribu-
tions tof,; andf, exist. One contribution is from particles
reflectedfrom the barrier with distributionf,6(—E) and

f,6(—E) and the other is from particles which ham@ssed Sec. 4.3
the barrier with distributiorf,0(E) andf,6(E). B’
Now, the escape raté,, from the well 1 is(see Fig. 2 TVHD:?eZUv (39
= fm[f&(E)Jr fT(E)— fE(E)—fg(E)]dE which is the result of Lauritzen and Zwan%?g(in our nota-
0 tion). In like manner, in the VLD limit,8’—0, we have

- | th®) - e 27) Ao =g 36
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Since the potential is symmetric the greatest relaxation
time 7, Eq. (33), can be used to estimate the correlation timel 7S+ nB’Ic,, q(5)+ [Cn+1q(s)+2ncn 14(8)]
7, of the equilibrium correlation functio€(t) of the longi-

tudinal component of the dipole moment which for the po- —ino["én_l,q”(s) —En_lyq_z(s)]z 7Coq(0)Sno. (43
tential given by Eq(8) is Here we have noted that the initial conditions &gr,(0) are
sing(0)sing(t)
C(t)= { ¢.( $(0)o (37 Co%(0)=0,
(sir’ $(0))o (20516
(the angular brackets denote the equilibrium ensemble aver- Coa+1(0)=(singe™ )
age. The correlation timer, is defined as the area under the J27 sinpe (At Ddg-ocos 2 g

curve of C(t), viz., fgwe—acos 24

7| cwat @9 e )
2lg(0)
The time 7, may equivalently be defined in terms of the °
eigenvalues X,) of the Fokker—Planck operatdrgp from V\{here thel arse1 the modified Bessel functions of the first
Eq. (10) because the functioB(t) may be formally written ~ kind of ordern;>* the otherc, 4(0)=0 for n=1 because
as the discrete set of relaxation modes (sinngn(('ﬁ)e*‘q‘/’):O

C(t)=D, ce M, (39  for the equilibrium Maxwell-Boltzmann distribution.
K In order to solve Eq(43), we introduce the column vec-
Thus from Egs(38) and (39): tors
= % Ck/)\k , (40) Eoﬁz(s)
where X, c,=1. The correlation timer; contains contribu- El(s)z %’"%S)
tions from all the eigenvalues.. In general, in order to 20t
evaluateC(t) and 7, a knowledge of all the\, andcy is CoAS)

required. However, in the high barrier limife>1), A\,

~e 27<)\, and for symmetric potentials,;~1>c, (k and
#1),%2 so that the approximatiom~1/\, can be used. In

other words, the inverse of the smallest nonvanishing eigen-

value, i.e., the greatest relaxation time closely approximates Cho1-2(5)

the correlation timer; for symmetric potentials in the low- Cn-1-1(5)

temperatureéhigh barriej limit. En(S)Z Ch_1dS) (n=2).
Enfl,l(s)

En—1.,2(3)
I1l. EXACT MATRIX CONTINUED FRACTION :

SOLUTION OF THE LANGEVIN EQ. (7 .
Q- Now, Eq.(43) can be rearranged as the set of matrix three-

In order to calculate,, we shall use the matrix contin- term recurrence equations,
ued fraction approach, developed for a similar problem i , ~ = _~
Ref. 29. This is accomplished as follows. As shown in Ref, 2 7578 (N~ D]ICn(8) = Qn Cps1(8) —Qn Cn-a(9)

(Chaps. 4 and 1)Qwe can derive from the Langevin E() =76,.C1(0), (n=1), (44)
the following recurrence relation for the correlation functions ) N B
Cng(t), Viz., where the column vectdZ,(0) and the matriceQ, andQ,,

are given in Appendix B. By invoking the general method for
solving the matrix recurrence Euﬁ144),2 we have the exact
solution for the spectrun,(s) in terms of a matrix contin-
ued fraction, viz.,

77Cn q(t)+n:8 Cn, q(t)+ [Cn+1q(t)+2ncn 1q(t)]

_ina[cn—l,q+2(t)_Cn—l,q—2(t)]=01 (41 5
where Ci(s)=nA1(s)C4(0), (45)
cn,q(t):<sin¢(0)Hn[n&(t)]e‘iqq’“)), where the matrix.continued fractiah,(s) is defined by the
recurrence equation
(N=0,—0<q<®), (42 -
Ay(s)={[ns+p' (n—-1)]1 - n+1(S)Qn+1}

so that Inficy o(t) ]/Im[cy 4(0)]=C(t), andH, are the Her-
mite polynomials’ By Laplace transformation, we have and! is the unit matrix. Having determineﬁl(s), we can
from Eq. (41) evaluate the correlation tims ,
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FIG. 3. 7y vs B’ for barrier height

parameters 2=3, 6, 12, and 18. Solid
lines 1: exact matrix continued frac-
tion solution for the correlation time
7, Eq.(46); dashed lines 2: the VHD
Eq. (35); dotted line 3: the IHD Egq.

(34); dashed-dotted lines 4: the VLD
Eq. (36); filled circles: the universal
Mel'nikov—Meshkov Eq.(33).

L ] Ty — e | - ™ I'” E Ty - k' ey . Ty ey |
w' 1w o' ow w1 w1t ot ow o w1
i g
~ Cp—1(0)—Co4(0) and dampindg’) parameters and must be chosen taking into
7=C(0)= (46)  account the desired degree of accuracy of the calculation.

Co-1(0)—Co4(0)’

Both N andM increase with decreasing and increasingr.

as well as the spectrum of the longitudinal correlation funcgq, example, forr=6 (a relatively high barrier12 kT), N

tion E(w),

I _Eo,— 1lw) _EO,l(i )
) e (0 Cox(0)

(47)

We remark that for free Brownian rotation of plane rotators

(0=0), the exact analytic solution foﬁ(w) may be
expressetf in terms of the confluent hypergeomettium-
mer’s) function M(a,b,z)%! (in our notation

2B'n

C(w):1+ia)2,8'77

XM[1,1+28" " 2(1+iw2B'5),28" "2]. (48

In the VLD and VHD limits, the correlation timeuza(O)
from Eq. (48) yields

n—nm and n—2np', (49
respectively. Equation@8) and(49) provide very useful re-

lations for the purpose of testing the results of numerical

calculations.

IV. RESULTS AND DISCUSSION

The exactmatrix continued fraction solutiofEq. (44)]

=50 andM =60 allows us to obtain six significant digits for
7/ 7=18.88490x 10* at B'=1 (intermediate damping while
N=2300 andM =300 are required to obtain six significant
digits for 7/ 7=1.47885< 10° at 8’ =0.01 (low damping.

The greatest relaxation timer predicted by the
Mel'nikov and Meshko¥ method[Eq. (33)] and the correla-
tion time 7, calculated numerically by matrix continued frac-
tion methods from Eqs(45) and (46) are shown in Figs. 3
and 4 as functions g8’ and o, respectively. Here, the VHD
[Eq. (35)], IHD [Eg. (34)], and VLD [Eq. (36)] asymptotes
are also shown for comparison. Apparently in the high bar-
rier limit, Eq. (33) provides a good approximation of the
correlation timer; for all values of the damping parameter
B’ including the VHD, VLD, and crossover regions. Further-
more, EQq.(33) yields a reasonable estimate fgreven for
low barriers,oc~1 (see Fig. 4. However, a marked differ-
ence(of order of 10—40 %between numerical and analyti-
al results exists in the VLD region especially at moderate
barriers(this difference decreases with increasingnd de-
creasingB’, see Fig. 3 Such behavior has already been
noted for other systemsee, e.g., Refs. 14 and)1@hus in
order to improve the accuracy of the universal turnover for-
mula, Melnikov*® suggested a systematic way of accounting

we have obtained is easily computéagorithms for calcu- for finite-barrier corrections. Analysis of the translational
lating matrix continued fractions are discussed in Refs. 1 an@rownian motion in a cosine potential demonstrates that if
2). As far as practical calculations of the infinite matrix con- such corrections are included, the accuracy of the universal
tinued fraction are concerned, we approximate it by a matrixormula is considerably improve:* His method may also
continued fraction of finite ordetby putting A,,;=0 at  be applied to the present problem.

somen=N). Simultaneously, we confine the dimensions of = We remark that in principle the accurate calculation of
the infinite matricesQ,, , Q. , and| to a finite valueM  the correlation timer, is a much more complicated problem
X M. BothN andM depend on the dimensionless barfier  than the evaluation of the smallest nonvanishing eigenvalue
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10 The advantage of Eq50) is that it yields VHD and VLD
A’=0.001 asymptotes, valid foall barrier heightsincluding very low
barriers, where the Melnikov—Meshkov method is not appli-

i I cable.
it Since the dynamics of the system of planar rotators in
. the VHD and VLD limits are governed by a single variable,
19 we can obtain accurate VHD and VLD asymptotes by apply-
1073 . . . ing Eq. (50) to the present problem. In the high damping

et limit (8'>1), the appropriate single variable Fokker—Planck
(SmoluchowskKi equation for the probability density function
W(¢,t) of the orientations of rotators?$?

2 ! o
EW((ﬁ,t)—W ——20-sm2¢)W(¢,t). (51)

t/n

al
ndp\dd
Thus, noting thaD ®)(¢)=1/(2B’ ) andA=sin ¢, the cor-
relation timer; of the longitudinal dipole moment autocor-
relation functionC(t) = (sin ¢(0)sin (1)), is given by

n~r e
; A°=100
= 10 2’y (7 1 f¢ _ 2
= (i Yo _WWSM;)( 0 S'”st[(x)dx) de
IUJ-I :8,7]e2(r 2
| = o Cos 2
! ol11(a) +1o(0)] fo e erf(\20 cos¢)d¢.
10 0 2 ] H - o
iy Here We(d)=e~"27S" 4[201 ()] is the equilibrium

FIG. 4. 717 vs o for 8'=0.001[(a) very low damping,8'=0.01 (b) low Boltzmann distribution functiofiwhich is a stationary solu-

damping, ang8’ =10 (c) high damping, Solid lines: exact matrix continued  tion of Eq. (51)], erf(z) is the error functiorf" and we have

fraction solution for the correlation time, Eq. (46), dashed-dotted lines: noted that

the VLD Eq.(36); dashed lines: the IHD Ed35) for B'=10; filled circles:

the universal Mel'nikov—Meshkov E¢33): crosses: the VHD Eq(52); . Io( o)+ 1(0)

stars: the VLD Eq(56). (sir? (;5)0:2'—@_)
0

(53
In the opposite low damping limit8’<1), one may in order
to obtain a single variable Fokker—Planck equation introduce

alone since all the other eigenvalues give a contributior) to the energy of the dipole

(see Sec. )l Fortunately, for the problem under consider- _
ation, an accurate method of estimatingin the VHD and e=n’Pp>—20 st ¢ (54)
VLD limits exists. This method based on the mean first pas-

sage time was first suggested by SZ4fwthe context of the ~and the timew (phas¢ measured along a closed trajectory in
theory of polarized fluorescent emission in uniaxial liquid Phase space as action-angle vanaB‘fe_‘El:we encrgye varies
crystals. However, it may be used for all systems with dy-Very slo_wly with time. Consequently_, it is a slow variable in
namics governed by single variable Fokker—Planck equatomparison to the phase By averaging the Fokker—Planck
tions. Namely, one may calculate in intergral form the corre-£quation(9) over the fast phase variable Praestgaard and
lation time 7, of a dynamic variablé\(x) defined as the area Van |_<ampeﬁ derived a single variable Fokker—Planck
under the curve of the normalized autocorrelation functiorfduation for the probability density functio(e,t) in en-
Ca(t)=(A[X(0)JA[X(t)])o. Here( ), designates the statis- €rdy Spacein our notation,

tical averages over the stationaquilibrium) distribution J 28"
function W¢{x(0)] with x(0) defined in the rangex; —W(e,t)= —
<x(0)<x, and it is assumed thgiA),=0. The pertinent at 7
feature of these is that aexactformula for the correlation )

time 7,5, may be expressed in terms of the diffusion coeffi- + nzigz(s)
cientD®)(x) andWg(x) only (see, e.g., Ref. 1, Sec. S.9, and g2

Ref. 2, Chap. 2, Sec. 2.10, for detailsiz.,

_ !t fo ! [fXA(z)Wt(z)dz
AT A% S WD @) | L

= 1
P n2¢2(8)—§)

W(e,t), (55)

where the double overbar denotes averaging over the fast
2 phase variable. Since

dx. — 2,8' R
o DP(e)=28'nd%e)== (e +205in°(e)),
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the correlation timer; is given by

VD
T T

__ f _ !
2B'(SIN? )0 J 207 ¢ + 2 5in2eh() [We( &)

e 2
xf sin(X)Wg(x)dx| de+ /7
B pme” 1 cosi2om)—1 o'
"~ B'\20[lo(0) +11(0)] Jo (M=1)K(m)+E(m) m ,
1y
+ (56) =

whereK(m) andE(m) are complete elliptic integrals of the
first and second kind, respectivéf/The calculation of the .
integrals in Eq.(56) is described in Appendix Chere we 10
have used Eq9C7)—(C11)]. The term 77\/; in Eq. (56) is .
due to the contribution of the free rotation to the correlation T ey —r——|
time (it is independent of3’, and may be obtained from the I e e e e e
solution of the undamped equativvi=0, see also Appendix g

0.

. . . FIG. 5. 77 vs B’ for small barrier heights 2=0.5 and 1. Solid lines 1:
The regions of applicability of the VHD and VLD as- exact matrix continued fraction solution for the correlation time Eq.
ymptotes from Eqs(52) and (56) are the same as for the (46), dashed-dotted lines 2: the VLD E@6); dashed lines 3: the VHD Eq.

corresponding Fokker—Planck equatic(ﬁa) and (55), viz., (52); filled circles: the universal Mel'nikov—Meshkov E¢B3); stars: Eq.
the VHD and VLD regions, respectively; in practice, Eqs.(m'
(52) and (56) may be used ap’'>5 and B'<0.01. These
VHD and VLD asymptotes are shown in Fig. 4. Apparently, sal of magnetization by tunneling occur in such particles? If
these asymptotes yield a much better estimate for the correhis reversal mechanism occurs then one would have an im-
lation time than those provided by the Mel’nikov—Mesh?(ov portant examp|e Of‘nacroscopic guantum tunne"ng fol-
method(the maximum relative deviation between the corre-jows therefore that the development of an accurate analytical
sponding curves is less then 25% in the worst cases, usualfgrmula for the Kramers escape rate incorporating tunneling
at the limits of applicability '~5 [for Eq. (52)] and effects is vital to the study of magnetization reversal mecha-
B'~0.01[for Eq.(56); that is shown in Fig. #) In Fig. 5, we  nisms in superparamagnets and the possible existence of the
compare Eqs52) and(56) with the exact numerical solution  macroscopic tunneling phenomenon in such systems. In the
for the correlation time at small barriers, where thecontext of the present problem, we remark that the calcula-
Melnikov—Meshkov universal formula is not applicable. tions of Mel'nikov and Meshkov may be confirmed as an
Here a simplead hocextrapolating equaticn accurate approximation to the exact escape rate because of
VLD , _VHD the existence of the Klein—Kramers equation describing the
T ©7 evolution of the distribution function in
phase space. In the
provides a satisfactory estimate of the correlation tim@or ~ context of single domain ferromagnetic particles, the corre-
all damping. We emphasize that E¢52), (56), and(57) can  sponding evolution equation is Brown's Fokker—Planck
be used forall barrier heightso (see Fig. 4. equation for the distribution of the orientations of the mag-
Mel'nikov® and Pollak and co-workefs!’ have also ex- netic moments on the unit sphere. Thus, in order to verify
tended the bridging integral method to take into accounformulas for the Kramers escape rate which incorporate tun-
guantum effects. They attempt to generalize the classical fomeling effects, it is necessary to define the quantum-
mulas given by Kramers for the various escape rate regimemechanical master equation which underlies the relaxation
and the bridging integral Eq30) by incorporating in their process and to solve it numerically. It is possible that one
integral equation for the energy distribution function themay achieve this by using the Wigner representation of the
quantum tunneling factor for a parabolic barrier. We remarkquantum-mechanical master equatfort* which in the clas-
that the subject of tunneling in the context of the Kramerssical limit goes over into the Klein—Kramers equation or
escape rate for rotational diffusion problems is of particularBrown’s Fokker—Planck equation. This representation of the
relevance in superparamagnetiéidere the Kramers theory quantum-mechanical problem lends itself to solution by the
as adapted to nonseparable Hamiltonians has been exterbntinued fraction method we have described.
sively used™ to study the reversal of the magnetization in Finally, we remark that Lang& has generalized the
single domain ferromagnetic particles. Here the magnetizaKramers IHD calculation to a system of many degrees of
tion may be considered as macroscopicobject since freedom and to non separable Hamiltonians yielding a gen-
10~ 10 spins are collectively involved. A very important eral theory of the decay of metastable states. This calculation
question first posed by Bean and Livingstbis: does rever- which may be successfully applied to magnetic relaxation is
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the generalization of Becker and Brog's*® calculation of  where
the rate of condensation of a supersaturated vapor. The

. R = + —
Mel'nikov and Meshkov method may also be applied to G12M)=C1(M)+Go(A) = G1(M)Go(N)
Langer’s problem in order to extend his calculation to all B(S;+S,)(4N%+1)
values of the dissipation. However, one may well encounter =1- - AKT
difficulties in the evaluation of the action integrals which are

involved in their integral formula in this general case. Equation(A8) is now in a form whereby one may apply the
Wiener—Hopf method. In order to use the method we rewrite

Eqg. (A8) as

+ —
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The functionG;(\) may now be decomposed as

where by Cauchy’s theorem

APPENDIX A: WIENER-HOPF METHOD OF = InGi(\")

SOLUTION OF EQS. (23) AND (25) Gi("):exﬁ{iﬁ I EETL } (A12)

Following Refs. 8 and 9, we can solve the integral Eqs gquation(A10) thus has the form

(23) and (25) by the Wiener—Hopf method by introducing
the Fourier transforni$* IN[—¢*(M)]=ING; (M) =InG; (\) +InGiH(\)

. % , =ING;(N\)+InG,(N)—=InG(AN)+Ing (N). (A13)
o7 () = Trsi( ) J fi(E)f(+E)e” (M I2EKTGE, N i - N

—o The functionsf; andf, must satisfy the boundary conditions
(Al)  that deep in the wells these distributions become Maxwell—

where Boltzmann distributions so that
- YV (i)l WO e vsnmm
TTSl ¢i):2—77'ev<¢i)/(m (A2) fi(E)NWe i , —E>KT. (Al4)

and ;= ¢y, are the potential minima in thigh well [re- ~ AS @ consequence the functi0m§_(>\) from Eqg. (A1) have
calling thatV(¢;) is negative, see Fig.]2The prefactor poles(_the choice of the prefactor in that equation should now
rrs(#;) of the Fourier transformation which is introduced P& €vident

for notational convenience is suggested by @g. Applying . —i _

this transformation to the integral Eq&€3) and(25) we have ¢ (M)=35775 IN+i/2|<1. (A15)

¢1 (M) + 1 (M)=[1-G1(M)[e1 (M) +¢; (M, (A3)  As the functions in the left- and in the right-hand side of Eq.

SO+ 0 (N =[1—Go(\ “(M+of(VN)], (Al (A13) are analytic in different half planes for complexhey
2 (M)t o2 (M) =1 2(M]lez M) +er(M] - (A4) should equal an entire function, which satisfies &ifL5),**
whereG;(\) is related to the Fourier transform of the Green

functiong;(\) via ‘=i G (—i/2)G5 (—i/2)Gy (NG5 (M) A16)
3 S| , 1 v (HIRIGH—12GN)
Gi(h)=1—gi()\)=exr{ KT A+ 4 A5 Hence in Eq.(A6)
Now, Eqg.(28) in turn can be represented as B A'(S)A'(Sy)
A8 [F B AT s s M
TS V" (0)]/1 { ZJF V" (0)/1]—= 2 }/vher_eA’(Si) is related to the Fourier transform of the Green
unction by
X [r1si( b1) + Trsi( 62)], (A6) A(S)=|G (I12)]2 (A18)

where SubstitutingG;"” from Eq. (A12) into Eq. (A18) and noting

A(S,,S,)=¢1 (i12)— @, (112)= ¢ (il2). (A7)  Egs.(22) and(31), one obtains the functioA’(A) in Eq.

Here we have introduced the functio@(\)= () (30) bridging the VLD and TST resuits.

—@»(N\). An equation fore(\) can be obtained by subtract-

ing Eq. (A4) from Eq.(A3). We have APPENDIX B: EQUATIONS FOR C(0), QF, AND Q;,
Gi(NM)Go(N) The column vectoC,(0) and the matrice®,” andQ,,
+ - e — 1 n n
o (M) Gis(N) ¢ (M)=0, (A8) are given by
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|y(a) + (o)
0
_|2(U)_|1(U)
0
i | ot
~ 2lg(0) | —lolo)—14(0)
0
(o) +1,(0)
0

~ (o) =15(0)

(B1)

C1(0)

(B2)

O

+

I

|

|
O O O O v

o
o o o O o
‘o r O O o
"N O o O o U

Q,=-i(n—1 (B3)

o o o o g
o0 0o § O -
o

g O o o
|
-N o .o e
© q
o
o o o o

o o § o
q

The exceptions are the matric5 andQ, , which are given by

-2 0 0 0 0 -
Lo 0O -1.0 0 O -
Qu="3 0O 0 01 0 [
0O 0 00 2-
c 0 -2 0 0 0 0 O
0O ¢ 0 -1 -0 O 0 0
Q, =i 00 ¢ 0 O -0 0 O
00 0 ¢ 1 0 -¢ O
0 0 O
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APPENDIX C: EVALUATION OF AVERAGES IN THE Eq. (7) vanisheg the energy, Eg. (54), is a constant of the
UNDAMPED LIMIT motion. Thus the dynamics of the dipole are described by the

In the very low damping limi{g <1), the energy of the deterministic nonlinear differential equation

dipole is not conserved but will vary very slowly with time d

(quasistationarity Thus the dynamics of the system are de- 7 B(t)= = Je+20 Sirf $(t). (CY
scribed by the one-dimensional Fokker—Planck equdBéh

and differ but little from those of the undamped limit Equation(C1) has a solutiof? in terms of the Jacobian dou-

(B'=0). In the undamped limitwhen the Langevin torque in bly periodic elliptic function cng|m) and dn(im):3?

t
idn(; \/%erm(s)), —20<e<0,

sing(t)= ¢ | , (C2
tcn(; \/8+20'+W\/m(8)‘m_1(8)), O=se<m,
where
W=J:(O)[l—m(s)sinzx]‘l’zdx, m(e)=1+¢/20.
By noting that sA(u|m) + cr?(u|m)=1 andmsr?(u|m)+dr?(ulm)= 12! one has
S)Sr\z( V2o +w m(a)) —20=¢e<0,
Sir? ¢(t) = : (C3)
1—Snz(7] \/s+20'+w\/m(s)’m1(s)), O<g< o,
|
In order to proceed, we recall the Fourier series for the_ 1 (2K
Jacobi functior® Sin? ¢p(s,w) = K f Sir? ¢(&,w)dw
—2K
B * qn+1/2 (2n+1)’7TU E[m(&‘)] Coe=e<0
enlulm)= m*2K (m) =0 1+q2””005{ 2K(m) [’ _ | me)] o
C4 -1 '
(4 1—m(s)|1—w], Osg<x,
K[m™*(e)]
T 27 < Q" nwu
dn(ulm)= + nco:{ , (C9
2K(m) — K(m) =1 1+ ¢? K(m) cs Accordingly, on noting thatV, is the equilibrium Maxwell—
(€5 Boltzmann distributionV,, viz.,
Em) 242 Wol (0), ¢(0)1d$(0)d(0)
msré(ujm)=1— —— Km) K2 .
K=(m) - Le— 7?$%(0)+20 sin? ‘f’(o)d¢(0)d<-l>(0),
N 27 o(0)
x 21 1-g2" S{K(m) ' (C6) by making the transformation of the variablbs(O),éﬁ(O)}

—{w,e},* and by integrating the distribution function

where g=exd —#K(1-m)/K(m)]. Thus, from Egs.(C3)— Wo(e) over the phase, we have

(C6), we can readily obtain sip sigp and S|r'°r¢ averaged over Wo(&)de
the phasew, viz., J2e7

2e .
=mRe{K[m(s)]}e de,

1 (2K
sing(e,w)= 4KJ sing(e,w)dw

Jw Wo(e)de=1. (c9)
+ml(2K[m(e)]), —20=<e<O. "2
- (C?)

0, Ose<w» The average of a dynamical quant®ye,w) is defined as
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(Ayo= f ZUA:\(S)WO(S)C‘S

77_3/20_1/2| 0( 0,)

“OZ A(e)K[m(e)]e de
+fm;,&(s)K[m’l(s)]e’gds .
0 JV1+¢el20
(C10

In particular, we have from Eq$C8) and (C10)

(S $o= f: SI? () Wo(e)de

V2e @ F
—20

:WZIO(U) Re[E[m(e)]}e™ °de.

(C11)

Equation (C11) yields the same equilibrium value as Eq.
(53). One can also verify that the equipartition theorem, viz.

7 $2)o=(e+20 SIF PYo=5, (c12

N| =

also holds. By using Eq$C7)—(C11), we have Eq(56).

The longitudinal  correlation  function C(t)
=(sin $(0)sing(t)), for the free rotation can be derived from
Egs.(C2), (C4), (C5), and(C9) and is given by

2\27lo

lo(o) +14(0)

0 1 *© q2n {
X —
j—2o’(8 ngl(l-l-qzn)zc0

—Ee— 0

X—K[m(s)] de+

C(t)=
nmw\2o
nK[m(e)]
foc m1/2(8)e—s—o'
o K[m *(e)]

- g>1t {(Zn—l)Tr\/s-l-Zat q

>< ~
- 1 2K m (o]

i
i

(C13

=11+ qzn—l)z"

For o=0, C(t) from Eg. (C13 reduces to the free rotator
correlation function, viz.,

1 © 1 2,2
_ _ —& —a—t4
C(t)= TJO _scos{\/st/n)e de=e 47 (C14

Equation(C14) yields 7,= n\/7.
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