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The extension of the Kramers theory of the escape rate of a Brownian particle from a potential well
to the entire range of damping proposed by Mel’nikov and Meshkov@J. Chem, Phys.85, 1018
~1986!# is applied to the rotational Brownian motion of fixed axis rotators in a double well cosine
potential. The procedure yields an expression for the Kramers escape rate valid for all values of the
dissipation including the very low damping~VLD !, very high damping~VHD!, and crossover
regimes. This equation provides a good asymptotic estimate of the correlation timet i of the
longitudinal dipole moment correlation function calculated by solving the underlying Langevin
equation using the matrix-continued fraction method. Moreover, for low barriers, where the
Mel’nikov and Meshkov approach is not applicable, analytic equations fort i in the VLD and VHD
limits are derived and a simple extrapolating equation that is valid for all values of the damping is
proposed. ©2004 American Institute of Physics.@DOI: 10.1063/1.1703525#

I. INTRODUCTION

The Brownian motion in a periodic potential is of inter-
est in the solution of a variety of physical problems involv-
ing a relaxation process. Among the most prominent of these
are dielectric relaxation of and the dynamic Kerr effect of
nematic liquid crystals, magnetic relaxation of single domain
ferromagnetic particles, dynamic response of Josephson tun-
neling junctions, transport phenomena in semiconductors,
etc.1–3

One of the most important characteristics associated
with the Brownian motion in a potential well is the greatest
relaxation time or the time required to escape the well. The
greatest relaxation time is essentially the inverse of the
smallest nonvanishing eigenvaluel1 of the characteristic
equation or secular determinant of the relevant dynamical
system. Moreover, if the overbarrier mode characterized by
l1 dominates the relaxation process as is always so for sym-
metric potential wells, the escape time (l1

21) will be closely
approximated in the high barrier limit by the integral relax-
ation time. This time is the area under the relaxation function
of the appropriate dynamic variable.2 In linear response, the
integral relaxation time is identical to the correlation time of
the corresponding autocorrelation function. However, for
asymmetric potentials such as will arise from the imposition
of a strong external field, it is not always possible to identify
the integral relaxation time with the escape time.2 As far as
the calculation ofl1 is concerned, the secular equation may

be generated by averaging the appropriate Langevin equation
over its realizations yielding the differential-recurrence equa-
tions governing the decay functions of the system~which is
analogous to the use of matrix mechanics in quantum
theory!. Alternatively, one may expand the solution of the
associated probability density diffusion equation~usually the
specialized form of the Fokker–Planck equation known as
the Klein–Kramers equation which applies to separable and
additive Hamiltonians! in Fourier series in the position and
velocity variables.1,2 In each of the two methods, the secular
determinant results from truncation of the set of differential-
recurrence relations at a number large enough to achieve
convergence of the resulting set of simultaneous ordinary
differential equations. Alternatively, if the problem is repre-
sented in the frequency domain so that the more powerful
continued fraction method may be used~which is very effec-
tive from a computational point of view!, many convergents
must be taken.1,4 Thus the smallest nonvanishing eigenvalue
l1 is not in general available in closed form as it is always
rendered as the smallest root of a high-order polynomial
equation. Hence it is difficult to comparel1 so determined
with experimental observations of the greatest relaxation
time or the relaxation rate. Fortunately~noting thatl1 for
sufficiently high barriers has exponential dependence on the
barrier height!, a way of overcoming this difficulty is to uti-
lize an ingenious method originally proposed by Kramers5 in
connection with thermally activated escape of particles out
of a potential well. His idea, motivated by the fluctuation-
dissipation theorem,2 is to calculate the prefactor in an
Arrhenius like equation for the reaction rateG, viz.,a!Corresponding author.
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as a function of the parameterA. That parameter represents
the interchange of energy between the reacting particles and
their surroundings or heat bath~for reviews of applications
of Kramers’ method, see Refs. 6 and 7!.

Equation ~1! for the Kramers escape rateG ~reaction
velocity for chemical reactions! pertains to a model of a
chemical reaction where rare members of an assembly of
Brownian particles that are initially trapped in a potential
well at a ~see Fig. 1! may subsequently under the influence
of thermal agitation escape over a high (DU@kT) barrier at
c and descend to the bottom of a very deep potential wellb
and so never return toa. Thus we model a chemical reaction
~ignoring quantum effects! by introducing a reaction coordi-
natex such thatx5a in speciesa andx5b in speciesb ~the
product state!. The reaction is modeled by thermally acti-
vated diffusion over the boundaryc ~the transition state! be-
tween the two distinct states. The frequencyva/2p which is
the frequency of oscillation of a particle in the potential well
centred ona is called the attempt frequency. The original
Arrhenius equation which is obtained whenA51 @corre-
sponding to transition state theory~TST!# assumes perpetual
thermal equilibrium everywhere at temperatureT. Thus no
account is taken of nonequilibrium effects due to the leaking
of particles over the potential barrier atc. In reality the
Maxwell–Boltzmann distribution no longer holds in the vi-
cinity of the transition statec because the fluctuation dissi-
pation theorem describing the coupling of the reacting par-
ticles to their surroundings or heat bath is violated by the
Arrhenius equation.

Kramers5 overcame this difficulty by writing the diffu-
sion equation~Klein–Kramers equation! in phase space de-
scribing the evolution of the phase-space distribution func-
tion underlying the Langevin equation for a Brownian
particle. He then obtained asymptotic solutions~the Kramers
escape rate! for the smallest nonvanishing eigenvaluel1 of
the Klein–Kramers equation in the limits of very small and
intermediate to high dissipative coupling to the bath. These
solutions, which are valid for high barriers (DU@kT) so
that the concept of an escape rate is valid, provide closed
form expressions for the reaction rate and its inverse the
greatest relaxation timet'l1

21 which may be easily com-
pared with experiment.

As far as the various dissipation regimes are concerned,
the very low damping~VLD ! regime is defined by Kramers

as follows. First, he supposes that the energy trajectories of
the Brownian particle in the well differ but little from those
of the undamped periodic motion in the well. Thus the tra-
jectories are closed except for a particular trajectory with
energy corresponding to the barrier point energy associated
with the transition statec. Particles on this particular trajec-
tory known as the separatrix~between the bounded motion in
the well and the motion outside! may either escape the well
or else return to the depths of the well. The VLD regime is
then defined by the condition that the energy loss per cycle
DE of the almost periodic motion of a particle having the
saddle-point energy is much less than the thermal energykT.
This condition, recognized on solution of the VLD
problem,5,7 means thatA!1 in Eq. ~1!. Thus the escape rate
vanishes in the absence of coupling to the heat bath so rec-
onciling reaction rate theory with the fluctuation-dissipation
theorem. The condition may also be written formally as

DE5bS~Ec!.bDU/vc!kT. ~2!

Here S(Ec) is the action on the barrier point energy trajec-
tory andb is the dissipation constant. Moreover, the action
of a harmonic oscillator of energyDU and angular frequency
vc has been used to representS(Ec). Kramers obtained his
solution for the VLD escape rate by first writing the Klein–
Kramers equation in energy angle variables. He then elimi-
nates the fast angle variable by averaging along the energy
trajectories so obtaining a diffusion equation in the slowly
varying energy variable. In his derivation, the coupling be-
tween the Liouville and diffusion terms in the Klein–
Kramers equation is effectively ignored because the motion
is supposed almost conservative.

The intermediate to high damping~IHD! regime occurs
when the energy loss per cycle is sensibly greater thankT:

DE;bDU/vc.kT. ~3!

It is now impossible to ignore the coupling between the
Liouville and dissipative terms. Here Kramers obtained
asymptotic solutions for the escape rate by linearizing the
Langevin equation about the pointc. Such a procedure is
legitimate because the region of departure from the
Maxwell–Boltzmann distribution is now so limited in spatial
extent because of the relatively high damping, that it lies
well inside the region in which it is permissible to linearize
the Langevin equation. In other words he represents the po-
tential in the vicinity ofc by an inverted harmonic oscillator
potential. He then solved the corresponding linearized~in the
position variable! Klein–Kramers equation by supposing that
the solution is quasistationary since escape over the barrier is
an exponentially slow process obtaining

A5A11
b2

4vc
2
2

b

2vc
. ~4!

This equation contains the TST theory (A51) as a limiting
case when

b/vc!1 ~5!

provided the IHD condition@Eq. ~3!# is also satisfied. Hence
combining Eqs.~3! and~5! we expect the Arrhenius equation
to approximately hold in the range of damping,

FIG. 1. Single well potential function.
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kTvc /DU,b!vc , ~6!

and not for zero damping as expected by naively taking the
limit of Eq. ~4!. The IHD solution also contains as a limit the
very high damping~VHD! solution, whereDE@kT. This
solution amounting toA5vc /b was also obtained by Kram-
ers by constructing the approximate Smoluchowski equation
governing the evolution of the distribution function in con-
figuration space only. That equation is valid if the effect of
inertia of a particle on its nonequilibrium dynamics is ig-
nored.

Kramers was, however, unable to find asymptotic solu-
tions for the crossover regime,DE;kT, where the coupling
between the Liouville and dissipative terms in the Klein–
Kramers equation enters so that one may no longer ignore
the Liouville term as was done in the very low damping
regime. This problem, named the Kramers turnover problem,
was solved nearly 50 years later by Mel’nikov and
Meshkov.8,9 They gave an integral formula bridging the VLD
and TST solutions. Their solution consists of an integral
which when multiplied by the TST result yields a formula
which reduces to the VLD formula asb→0. Now the TST
result is a particular case of the IHD formula Eq.~4! pro-
vided the condition embodied in Eq.~6! is satisfied. Thus
they postulate from heuristic reasoning, essentially appealing
to continuity that a formula valid for all values of the damp-
ing may be given by simply multiplying the general IHD
result by their bridging integral. Mel’nikov8 has further ex-
tended the bridging integral method to take into account
quantum effects in a semiclassical way. Moreover, Grabert10

and Pollaket al.11 later presented a complete solution of the
Kramers turnover problem and have shown that the
Mel’nikov and Meshkov universal formula can be obtained
without ad hoc interpolation between the weak and strong
damping regimes. In the semiclassical limit, the latter theory
was extended to the quantum regime by Rips and Pollak.12

As far as the verification of the universal turnover for-
mula of Mel’nikov and Meshkov is concerned, very few
comparisons of that formula with exact calculations based on
either the solutions of the Klein–Kramers equation or on
numerical simulations of the Brownian dynamics have ever
been given. Exceptions are the comparison of the universal
turnover formulas with the numerical results for the escape
out of a single well, which were given in Refs. 13 and 14 and
the study of the one-dimensional translational Brownian mo-
tion in a periodic potential undertaken by Ferrando and
co-workers.15,16 Another exception is the treatment of the
same one-dimensional problem and its generalization to dif-
fusion on a surface which was undertaken by Pollak and
collaborators in Refs. 17–19. Examples of the exact treat-
ment of rotational Brownian motion problems are even
fewer. Pastor and Szabo20 tested the Mel’nikov–Meshkov
formula in the context of a linear molecule in a uniaxial
potential and Coffey and co-workers7,21 extended the
Mel’nikov–Meshkov calculation to magnetization relaxation
of single-domain ferromagnetic particles possessing nonaxi-
ally symmetric potentials of the magnetocrystalline anisot-
ropy. ~We remark that the magnetic relaxation problem dif-
fers fundamentally from that of mechanical particles because

the undamped equation of motion of the magnetization of a
single domain ferromagnetic particle is the gyromagnetic
equation. Thus the inertia plays no role; the part played by
inertia in the mechanical system is essentially mimicked in
the magnetic system for nonaxially symmetric potentials by
the gyromagnetic term which gives rise to the coupling or
‘‘entanglement’’ of the transverse and longitudinal modes.!

It is the purpose of this paper to demonstrate that the
Mel’nikov and Meshkov approach applied to the particular
problem of the inertial Brownian motion of a fixed axis ro-
tator in a double well cosine potential yields an accurate
solution for the greatest relaxation timel1

21 for high barriers
and for all values of the dissipation. Such a potential allows
the flipping of rotators to neighboring wells, thus permitting
both relaxation and oscillatory behavior in the same model.
The detailed description of the model~in the VHD or nonin-
ertial limit! is given in Refs. 2~Chap. 4!, 22, and 23 in
connection with site models of dielectric relaxation in mo-
lecular crystals and polar liquids. The first attempts to in-
clude inertial effects~which are of importance in the rotation
in the VLD region! were made in Refs. 24–27. These calcu-
lations are, however, only valid in a restricted range of val-
ues of the dissipation parameter and it is only with the advent
of the matrix continued fraction method28,29 that reliable re-
sults have become available for all values of the dissipation
parameter, including the VLD region.1,2 Here, we calculate
the Kramers escape rate by the Mel’nikov–Meshkov
asymptotic~in the sense that it applies for high barriers! and
universal~in the sense that it is valid for all values of the
damping! formula and compare its inverse with the greatest
relaxation time predicted by the exact matrix continued frac-
tion solution of the underlying Langevin equation. In the
following section, we shall briefly review the derivation of a
universal formula for the Kramers escape rate as applied to
Brownian rotation in a double well potential.

II. UNIVERSAL FORMULA FOR THE ESCAPE RATE
FOR FIXED AXIS ROTATION

Our starting point is the Langevin equation for a dipole
m rotating about an axis normal to thexy plane,2

I f̈~ t !1zḟ~ t !1
dV~f!

df
5l~ t !, ~7!

whereI is the moment of inertia of a rotator about the axis of
rotation,f is the angle specifying the angular position of a
rotator, zḟ(t) and l(t) are the frictional and white-noise
torques acting on a rotator due to the Brownian motion aris-
ing from the heat bath. The internal field due to molecular
interactions is represented by the twofold cosine potential
~see Fig. 2!,

V~f!5V0@cos~2f!21#522kTs sin2 f, ~8!

where 2s52V0 /kT is the barrier height parameter. The cor-
responding Klein–Kramers~Fokker–Planck! equation for
the joint probability density functionW(f,ḟ,t) of the angle
f and angular velocityḟ can be written as2

]W

]t
5LFPW, ~9!
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whereb5z/I and the Fokker–Planck operatorLFP is given
by27

LFPW52ḟ
]W

]f
1

1

I

dV

df

]W

]ḟ

1bS ]

]ḟ
~ḟW!1

kT

I

]2W

]ḟ2 D . ~10!

The first two terms on the right-hand side of Eq.~10! com-
prise the convective or Liouville term describing in the ab-
sence of dissipation the undamped streaming motion along
the energy trajectories in phase space corresponding to
Hamilton’s equations. The last term~the diffusion term! rep-
resents the interchange of energy~dissipative coupling! with
the heat bath.

Since escape over the potential barrier generated by Eq.
~8! is exponentially slow fors@1 ~high barriers!, we may
consider the quasistationary distributionW(f,ḟ) which
does not depend explicitly on the time. Thus Eq.~9! can be
rewritten asLFPW50 or

I ḟ
]W

]f
5

dV~f!

df

]W

]ḟ
1IbS ]

]ḟ
~ḟW!1

kT

I

]2W

]ḟ2 D . ~11!

We shall now apply the Mel’nikov–Meshkov method to the
potential given by Eq.~8!. Since our problem differs in detail
from the translational Brownian motion considered by them,
we shall give a condensed version of the modifications re-
quired in order to apply their method to the present problem.
First, we note that the particular Fokker–Planck equation
given above may be represented in terms of angle-energy
~fast and slow variable! coordinates $f,E% @where E
5I ḟ2/21V(f)] using the transformations7,9

]

]ḟ
f R,L~f,p!56A2I @E2V~f!#

]

]E
f R,L~f,E!, ~12!

]

]f
f R,L~f,p!5

]

]f
f R,L~f,E!1

dV~f!

df

]

]E
f R,L~f,E!,

~13!

where

f R~f,E!5W~f,ḟ !5W~f,A2@E2V~f!#/I !, ~14!

f L~f,E!5W~f,2ḟ !5W~f,2A2@E2V~f!#/I !. ~15!

The function f R(f,E) gives the distribution of rotators ro-
tating clockwise while the functionf L(f,E) gives the distri-
bution of rotators rotating counterclockwise. Thus we have
from Eqs.~11!–~15!

] f R,L

]f
56A2I @E2V~f!#b

]

]E F f R,L1kT
]

]E
f R,LG .

~16!

Furthermore, if we define the actions(f) in the usual way
as30

ds

df
56A2I @E2V~f!#, ~17!

Eq. ~16! can compactly be rewritten as the energy-action
diffusion equation7,9

] f R,L

]s
5b

]

]E F f R,L1kT
]

]E
f R,LG . ~18!

We emphasize that the solution of Eq.~18! will effectively
become Maxwell–Boltzmann distributions deep in the wells
of the potential given by Eq.~8! and will differ from those
distributions only in a relatively narrow region about the top
of the barrier. The behavior being analogous to the VLD
case, however, the angle~the fast variable! dependence of the
function f given by the left-hand side of Eq.~18! may not
now be neglected near the top of the barrier~compare, for
example, pp. 538 and 539 of Ref. 7!. Equation~18! has a
formal solution as the convolution,7,9

f R,L~s,E!5E
E
E

s
gR,L~s2s8,E2E8!

3 f R,L~s8,E8!ds8dE8, ~19!

where the kernelg(s,E) is the Green function given by7,9

g~s,E2E8!5
1

A4pkTbs
expF2

~E2E81bs!2

4kTbs G ,
g~0,E2E8!5d~E2E8!, ~20!

and the limits of integration are determined by the boundary
conditions for the functionsf R(s,E) and f L(s,E). We pro-
ceed as follows. Near the barrier, the flux of the left-going
particles inside the first well arises by reflection from the
barrier of the right-going particles withE,0 ~recall thatE
.0 is the barrier energy! and also from the particles which
have crossed over the barrier from the second well withE
.0 ~see Fig. 2!. The same conditions hold for the second
well yielding the following relationship betweenf 1,2

R and f 1,2
L

~subscripts 1 and 2 pertain to the wells!:

f 1
L@f8~E!,E#5 f 1

R@f8~E!,E#,

f 2
R@f9~E!,E#5 f 2

L@f9~E!,E#, ~E,0!,

FIG. 2. Potential functionV(f) from Eq. ~8!.
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f 1
L~0,E!5 f 2

L~0,E!, f 1
R~0,E!5 f 2

R~0,E!, ~E.0!,

where f8(E) and f9(E) are the roots of the equations
V1(f8)5E andV2(f9)5E, respectively. Particles with dif-
ferent energiesE are always reflected at different anglesf.
For E;kT ~the order of magnitude of a fluctuation!, how-
ever, this difference is small compared to the angular size of
the potential well. Thus we may assume that such particles
propagate along trajectories very close to the barrier energy
trajectory~defined byV15V250) and so can be described
by identical Green functions~20!, viz.,

gS~E!5g~S,E!5
1

A4pkTbS
expF2

~E1bS!2

4kTbS G , ~21!

where S5Si ( i 51,2) andSi is the action in theith well
given by

S15E
2p

0
A22IV~f!df54AIkTs,

S25E
0

p
A22IV~f!df54AIkTs. ~22!

The complete system of integral equations is then

f i
R~E!5E

2`

`

@gS~E2E8! f i
L~E8!u~2E8!

1gS~E2E8! f j
R~E8!u~E8!#dE8, ~23!

f i
L~E!5E

2`

`

@gS~E2E8! f i
R~E8!u~2E8!

1gS~E2E8! f j
L~E8!u~E8!#dE8 ~24!

( i , j 51, 2 andiÞ j ), whereu(x) is the Heaviside unit step
function. The system of four integral equations~23! and~24!
can be reduced to

f 1~E!5E
2`

`

@gS~E2E8! f 1~E8!u~2E8!

1gS~E2E8! f 2~E8!u~E8!#dE8, ~25!

f 2~E!5E
2`

`

@gS~E2E8! f 2~E8!u~2E8!

1gS~E2E8! f 1~E8!u~E8!#dE8, ~26!

where f 1(E)5 f 1
L(E)1 f 1

R(E) and f 2(E)5 f 2
L(E)1 f 2

R(E).
Equations~25! and ~26! indicate that two distinct contribu-
tions to f 1 and f 2 exist. One contribution is from particles
reflected from the barrier with distributionf 1u(2E) and
f 2u(2E) and the other is from particles which havecrossed
the barrier with distributionf 2u(E) and f 1u(E).

Now, the escape rateG12 from the well 1 is~see Fig. 2!

G125E
0

`

@ f 1
L~E!1 f 1

R~E!2 f 2
L~E!2 f 2

R~E!#dE

5E
0

`

@ f 1~E!2 f 2~E!#dE. ~27!

Due to the equivalence of the wells 1 and 2, the escape rate
G21 from the well 2 is equal toG12. These escape rates are
related to the lifetimet of a particle by

t215G121G2152G1252E
0

`

@ f 1~E!2 f 2~E!#dE. ~28!

Solving Eqs. ~23! and ~25! by the Wiener–Hopf
method,9 as shown in Appendix A, and using the solution so
obtained to evaluate oft21 from Eq. ~28!, we have

t215
A82~D!

phA8~2D!
FAb82

4
1h2uV9~0!/I u2

b8

2 G
3FAV9~f1!

uV9~0!u
eV~f1!/~kT!

1AV9~f2!

uV9~0!u
eV~f2!/~kT!G , ~29!

whereh5AI /2kT is a characteristic time,b85bh is the di-
mensionless damping parameter,

V~f i !/~kT!522s, uV9~f i !u/I 5uV9~0!u/I 52s/h2,

f i5fmini
(i51,2) are the potential minima in theith well,

A8~D!5expF 1

p E
0

` ln@12exp$2D~l211/4!%#

l211/4
dlG ,

~30!

D5
b8S

hkT
54b8A2s. ~31!

As shown by Mel’nikov and Meshkov,9

A8~D!→1 as D→` and A8~D!/D→1 as D→0.
~32!

Thus the greatest relaxation timet can now be compactly
represented by the universal formula

t5
A8~2D!

A82~D!
t IHD , ~33!

where

t IHD5
ph

Ab8218s2b8
e2s ~34!

is the greatest relaxation time in the IHD limit. The leading
factor on the right-hand side of Eq.~33! is the correction to
the IHD result due to Mel’nikov and Meshkov. Ifb8→`, we
have from Eqs.~32! and ~33! the VHD formula@cf. Ref. 2,
Sec. 4.5#

tVHD5
phb8

4s
e2s, ~35!

which is the result of Lauritzen and Zwanzig22 ~in our nota-
tion!. In like manner, in the VLD limit,b8→0, we have

tVLD5
ph

8b8s
e2s. ~36!
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Since the potential is symmetric the greatest relaxation
time t, Eq. ~33!, can be used to estimate the correlation time
t i of the equilibrium correlation functionC(t) of the longi-
tudinal component of the dipole moment which for the po-
tential given by Eq.~8! is

C~ t !5
^sinf~0!sinf~ t !&0

^sin2 f~0!&0

~37!

~the angular brackets denote the equilibrium ensemble aver-
age!. The correlation timet i is defined as the area under the
curve ofC(t), viz.,

t i5E
0

`

C~ t !dt. ~38!

The time t i may equivalently be defined in terms of the
eigenvalues (lk) of the Fokker–Planck operatorLFP from
Eq. ~10! because the functionC(t) may be formally written
as the discrete set of relaxation modes

C~ t !5(
k

cke
2lkt. ~39!

Thus from Eqs.~38! and ~39!:

t i5(
k

ck /lk , ~40!

where (kck51. The correlation timet i contains contribu-
tions from all the eigenvalueslk . In general, in order to
evaluateC(t) and t i , a knowledge of all thelk and ck is
required. However, in the high barrier limit~s@1!, l1

;e22s!lk and for symmetric potentialsc1'1@ck (k
Þ1),1,2 so that the approximationt i'1/l1 can be used. In
other words, the inverse of the smallest nonvanishing eigen-
value, i.e., the greatest relaxation time closely approximates
the correlation timet i for symmetric potentials in the low-
temperature~high barrier! limit.

III. EXACT MATRIX CONTINUED FRACTION
SOLUTION OF THE LANGEVIN EQ. „7…

In order to calculatet i , we shall use the matrix contin-
ued fraction approach, developed for a similar problem in
Ref. 29. This is accomplished as follows. As shown in Ref. 2
~Chaps. 4 and 10!, we can derive from the Langevin Eq.~7!
the following recurrence relation for the correlation functions
cn,q(t), viz.,

h ċn,q~ t !1nb8cn,q~ t !1
iq

2
@cn11,q~ t !12ncn21,q~ t !#

2 ins@cn21,q12~ t !2cn21,q22~ t !#50, ~41!

where

cn,q~ t !5^sinf~0!Hn@hḟ~ t !#e2 iqf~ t !&,

~n>0,2`,q,`!, ~42!

so that Im@c0,1(t)#/Im@c0,1(0)#5C(t), and Hn are the Her-
mite polynomials.31 By Laplace transformation, we have
from Eq. ~41!

@hs1nb8# c̃n,q~s!1
iq

2
@ c̃n11,q~s!12nc̃n21,q~s!#

2 ins@ c̃n21,q12~s!2 c̃n21,q22~s!#5hc0,q~0!dn,0 . ~43!

Here we have noted that the initial conditions forcn,q(0) are

c0,2q~0!50,

c0,2q11~0!5^sinfe2 i ~2q11!f&

5
*0

2p sinfe2 i ~2q11!fe2s cos 2fdf

*0
2pe2s cos 2fdf

5 i ~21!q11
I q~s!1I q11~s!

2I 0~s!
,

where theI n are the modified Bessel functions of the first
kind of ordern;31 the othercn,q(0)50 for n>1 because

^sinfHn~ḟ !e2 iqf&50

for the equilibrium Maxwell–Boltzmann distribution.
In order to solve Eq.~43!, we introduce the column vec-

tors

C̃1~s!5S ]

c̃0,22~s!

c̃0,21~s!

c̃0,1~s!

c̃0,2~s!

]

D
and

C̃n~s!5S ]

c̃n21,22~s!

c̃n21,21~s!

c̃n21,0~s!

c̃n21,1~s!

c̃n21,2~s!

]

D ~n>2!.

Now, Eq. ~43! can be rearranged as the set of matrix three-
term recurrence equations,

@hs1b8~n21!#C̃n~s!2Qn
1C̃n11~s!2Qn

2C̃n21~s!

5hdn,1C1~0!, ~n>1!, ~44!

where the column vectorC1(0) and the matricesQn
1 andQn

2

are given in Appendix B. By invoking the general method for
solving the matrix recurrence Eq.~44!,2 we have the exact
solution for the spectrumC̃1(s) in terms of a matrix contin-
ued fraction, viz.,

C̃1~s!5hD1~s!C1~0!, ~45!

where the matrix continued fractionDn(s) is defined by the
recurrence equation

Dn~s!5$@hs1b8~n21!#I2Qn
1Dn11~s!Qn11

2 %21.

and I is the unit matrix. Having determinedC̃1(s), we can
evaluate the correlation timet i ,

9204 J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Coffey, Kalmykov, and Titov

Downloaded 10 Jun 2009 to 134.226.1.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



t i5C̃~0!5
c̃0,21~0!2 c̃0,1~0!

c0,21~0!2c0,1~0!
, ~46!

as well as the spectrum of the longitudinal correlation func-
tion C̃(v),

C̃~v!5
c̃0,21~ iv!2 c̃0,1~ iv!

c0,21~0!2c0,1~0!
. ~47!

We remark that for free Brownian rotation of plane rotators
~s50!, the exact analytic solution forC̃(v) may be
expressed32 in terms of the confluent hypergeometric~Kum-
mer’s! function M (a,b,z)31 ~in our notation!

C̃~v!5
2b8h

11 iv2b8h

3M @1,112b822~11 iv2b8h!,2b822#. ~48!

In the VLD and VHD limits, the correlation timet i5C̃(0)
from Eq. ~48! yields

t i→hAp and t i→2hb8, ~49!

respectively. Equations~48! and~49! provide very useful re-
lations for the purpose of testing the results of numerical
calculations.

IV. RESULTS AND DISCUSSION

The exactmatrix continued fraction solution@Eq. ~44!#
we have obtained is easily computed~algorithms for calcu-
lating matrix continued fractions are discussed in Refs. 1 and
2!. As far as practical calculations of the infinite matrix con-
tinued fraction are concerned, we approximate it by a matrix
continued fraction of finite order~by putting Dn1150 at
somen5N). Simultaneously, we confine the dimensions of
the infinite matricesQn

2 , Qn
1 , and I to a finite valueM

3M . BothN andM depend on the dimensionless barrier~s!

and damping~b8! parameters and must be chosen taking into
account the desired degree of accuracy of the calculation.
Both N andM increase with decreasingb8 and increasings.
For example, fors56 ~a relatively high barrier512 kT!, N
550 andM560 allows us to obtain six significant digits for
t/h58.884903104 at b851 ~intermediate damping!, while
N52300 andM5300 are required to obtain six significant
digits for t/h51.478853106 at b850.01 ~low damping!.

The greatest relaxation timet predicted by the
Mel’nikov and Meshkov9 method@Eq. ~33!# and the correla-
tion timet i calculated numerically by matrix continued frac-
tion methods from Eqs.~45! and ~46! are shown in Figs. 3
and 4 as functions ofb8 ands, respectively. Here, the VHD
@Eq. ~35!#, IHD @Eq. ~34!#, and VLD @Eq. ~36!# asymptotes
are also shown for comparison. Apparently in the high bar-
rier limit, Eq. ~33! provides a good approximation of the
correlation timet i for all values of the damping parameter
b8 including the VHD, VLD, and crossover regions. Further-
more, Eq.~33! yields a reasonable estimate fort i even for
low barriers,s;1 ~see Fig. 4!. However, a marked differ-
ence~of order of 10–40 %! between numerical and analyti-
cal results exists in the VLD region especially at moderate
barriers~this difference decreases with increasings and de-
creasingb8, see Fig. 3!. Such behavior has already been
noted for other systems~see, e.g., Refs. 14 and 16!. Thus in
order to improve the accuracy of the universal turnover for-
mula, Melnikov33 suggested a systematic way of accounting
for finite-barrier corrections. Analysis of the translational
Brownian motion in a cosine potential demonstrates that if
such corrections are included, the accuracy of the universal
formula is considerably improved.34,35 His method may also
be applied to the present problem.

We remark that in principle the accurate calculation of
the correlation timet i is a much more complicated problem
than the evaluation of the smallest nonvanishing eigenvalue

FIG. 3. t/h vs b8 for barrier height
parameters 2s53, 6, 12, and 18. Solid
lines 1: exact matrix continued frac-
tion solution for the correlation time
t i , Eq. ~46!; dashed lines 2: the VHD
Eq. ~35!; dotted line 3: the IHD Eq.
~34!; dashed-dotted lines 4: the VLD
Eq. ~36!; filled circles: the universal
Mel’nikov–Meshkov Eq.~33!.
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alone since all the other eigenvalues give a contribution tot i

~see Sec. II!. Fortunately, for the problem under consider-
ation, an accurate method of estimatingt i in the VHD and
VLD limits exists. This method based on the mean first pas-
sage time was first suggested by Szabo36 in the context of the
theory of polarized fluorescent emission in uniaxial liquid
crystals. However, it may be used for all systems with dy-
namics governed by single variable Fokker–Planck equa-
tions. Namely, one may calculate in intergral form the corre-
lation timetA of a dynamic variableA(x) defined as the area
under the curve of the normalized autocorrelation function
CA(t)5^A@x(0)#A@x(t)#&0 . Here ^ &0 designates the statis-
tical averages over the stationary~equilibrium! distribution
function Wst@x(0)# with x(0) defined in the rangex1

<x(0)<x2 and it is assumed that̂A&050. The pertinent
feature of these is that anexact formula for the correlation
time tA , may be expressed in terms of the diffusion coeffi-
cientD (2)(x) andWst(x) only ~see, e.g., Ref. 1, Sec. S.9, and
Ref. 2, Chap. 2, Sec. 2.10, for details!, viz.,

tA5
1

^A2&0
E

x1

x2 1

Wst~x!D ~2!~x!
F E

x1

x

A~z!Wst~z!dzG2

dx.

~50!

The advantage of Eq.~50! is that it yields VHD and VLD
asymptotes, valid forall barrier heights including very low
barriers, where the Melnikov–Meshkov method is not appli-
cable.

Since the dynamics of the system of planar rotators in
the VHD and VLD limits are governed by a single variable,
we can obtain accurate VHD and VLD asymptotes by apply-
ing Eq. ~50! to the present problem. In the high damping
limit ~b8@1!, the appropriate single variable Fokker–Planck
~Smoluchowski! equation for the probability density function
W(f,t) of the orientations of rotators is2,22

]

]t
W~f,t !5

1

2b8h

]

]f S ]

]f
22s sin 2f DW~f,t !. ~51!

Thus, noting thatD (2)(f)51/(2b8h) andA5sinf, the cor-
relation timet i of the longitudinal dipole moment autocor-
relation functionC(t)5^sinf(0)sinf(t)&0 is given by

t i;t i
VHD

5
2b8h

^sin2 f&0
E

2p

p 1

Wst~f! S E
0

f

sinxWst~x!dxD 2

df

5
b8he2s

s@ I 1~s!1I 0~s!#
E

0

p/2

es cos 2f erf2~A2s cosf!df.

~52!

Here Wst(f)5e2s12s sin2 f/@2pI0(s)# is the equilibrium
Boltzmann distribution function@which is a stationary solu-
tion of Eq. ~51!#, erf(z) is the error function,31 and we have
noted that

^sin2 f&05
I 0~s!1I 1~s!

2I 0~s!
. ~53!

In the opposite low damping limit~b8!1!, one may in order
to obtain a single variable Fokker–Planck equation introduce
the energy of the dipole

«5h2ḟ222s sin2 f ~54!

and the timew ~phase! measured along a closed trajectory in
phase space as action-angle variables.26 The energy« varies
very slowly with time. Consequently, it is a slow variable in
comparison to the phasew. By averaging the Fokker–Planck
equation~9! over the fast phase variablew, Praestgaard and
van Kampen26 derived a single variable Fokker–Planck
equation for the probability density functionW(«,t) in en-
ergy space~in our notation!,

]

]t
W~«,t !5

2b8

h F ]

]« S h2ḟ2% ~«!2
1

2D
1h2

]2

]«2
ḟ2% ~«!GW~«,t !, ~55!

where the double overbar denotes averaging over the fast
phase variable. Since

D ~2!~«!52b8hḟ2% ~«!5
2b8

h
~«12s sin2f% ~«!!,

FIG. 4. t/h vs s for b850.001 @~a! very low damping,b850.01 ~b! low
damping, andb8510 ~c! high damping#. Solid lines: exact matrix continued
fraction solution for the correlation timet i , Eq. ~46!, dashed-dotted lines:
the VLD Eq. ~36!; dashed lines: the IHD Eq.~35! for b8510; filled circles:
the universal Mel’nikov–Meshkov Eq.~33!: crosses: the VHD Eq.~52!;
stars: the VLD Eq.~56!.
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the correlation timet i is given by

t i;t i
VLD

5
h

2b8^sin2 f&0
E

22s

` 1

@«12s sin2f% ~«!#Wst~«!

3F E
22s

«

sinf~x!% Wst~x!dxG2

d«1hAp

'
hApes

b8A2s@ I 0~s!1I 1~s!#
E

0

1 cosh~2sm!21

~m21!K~m!1E~m!
dm

1hAp, ~56!

whereK(m) andE(m) are complete elliptic integrals of the
first and second kind, respectively.30 The calculation of the
integrals in Eq.~56! is described in Appendix C@here we
have used Eqs.~C7!–~C11!#. The termhAp in Eq. ~56! is
due to the contribution of the free rotation to the correlation
time ~it is independent ofb8, and may be obtained from the
solution of the undamped equationẆ50, see also Appendix
C!.

The regions of applicability of the VHD and VLD as-
ymptotes from Eqs.~52! and ~56! are the same as for the
corresponding Fokker–Planck equations~51! and ~55!, viz.,
the VHD and VLD regions, respectively; in practice, Eqs.
~52! and ~56! may be used atb8.5 and b8,0.01. These
VHD and VLD asymptotes are shown in Fig. 4. Apparently,
these asymptotes yield a much better estimate for the corre-
lation time than those provided by the Mel’nikov–Meshkov9

method~the maximum relative deviation between the corre-
sponding curves is less then 25% in the worst cases, usually
at the limits of applicability b8;5 @for Eq. ~52!# and
b8;0.01@for Eq. ~56!; that is shown in Fig. 4#.! In Fig. 5, we
compare Eqs.~52! and~56! with the exact numerical solution
for the correlation time at small barriers, where the
Melnikov–Meshkov universal formula is not applicable.
Here a simplead hocextrapolating equation6

t i;t i
VLD1t i

VHD ~57!

provides a satisfactory estimate of the correlation timet i for
all damping. We emphasize that Eqs.~52!, ~56!, and~57! can
be used forall barrier heightss ~see Fig. 4!.

Mel’nikov8 and Pollak and co-workers12,17have also ex-
tended the bridging integral method to take into account
quantum effects. They attempt to generalize the classical for-
mulas given by Kramers for the various escape rate regimes
and the bridging integral Eq.~30! by incorporating in their
integral equation for the energy distribution function the
quantum tunneling factor for a parabolic barrier. We remark
that the subject of tunneling in the context of the Kramers
escape rate for rotational diffusion problems is of particular
relevance in superparamagnetism.2 Here the Kramers theory
as adapted to nonseparable Hamiltonians has been exten-
sively used2,11 to study the reversal of the magnetization in
single domain ferromagnetic particles. Here the magnetiza-
tion may be considered as amacroscopic object since
104– 105 spins are collectively involved. A very important
question first posed by Bean and Livingston37 is: does rever-

sal of magnetization by tunneling occur in such particles? If
this reversal mechanism occurs then one would have an im-
portant example ofmacroscopic quantum tunneling. It fol-
lows therefore that the development of an accurate analytical
formula for the Kramers escape rate incorporating tunneling
effects is vital to the study of magnetization reversal mecha-
nisms in superparamagnets and the possible existence of the
macroscopic tunneling phenomenon in such systems. In the
context of the present problem, we remark that the calcula-
tions of Mel’nikov and Meshkov may be confirmed as an
accurate approximation to the exact escape rate because of
the existence of the Klein–Kramers equation describing the
evolution of the distribution function in phase space. In the
context of single domain ferromagnetic particles, the corre-
sponding evolution equation is Brown’s Fokker–Planck
equation for the distribution of the orientations of the mag-
netic moments on the unit sphere. Thus, in order to verify
formulas for the Kramers escape rate which incorporate tun-
neling effects, it is necessary to define the quantum-
mechanical master equation which underlies the relaxation
process and to solve it numerically. It is possible that one
may achieve this by using the Wigner representation of the
quantum-mechanical master equation38–41which in the clas-
sical limit goes over into the Klein–Kramers equation or
Brown’s Fokker–Planck equation. This representation of the
quantum-mechanical problem lends itself to solution by the
continued fraction method we have described.

Finally, we remark that Langer42 has generalized the
Kramers IHD calculation to a system of many degrees of
freedom and to non separable Hamiltonians yielding a gen-
eral theory of the decay of metastable states. This calculation
which may be successfully applied to magnetic relaxation is

FIG. 5. t/h vs b8 for small barrier heights 2s50.5 and 1. Solid lines 1:
exact matrix continued fraction solution for the correlation timet i , Eq.
~46!, dashed-dotted lines 2: the VLD Eq.~56!; dashed lines 3: the VHD Eq.
~52!; filled circles: the universal Mel’nikov–Meshkov Eq.~33!; stars: Eq.
~57!.

9207J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Escape rate of a Brownian rotator

Downloaded 10 Jun 2009 to 134.226.1.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the generalization of Becker and Do¨ring’s43 calculation of
the rate of condensation of a supersaturated vapor. The
Mel’nikov and Meshkov method may also be applied to
Langer’s problem in order to extend his calculation to all
values of the dissipation. However, one may well encounter
difficulties in the evaluation of the action integrals which are
involved in their integral formula in this general case.
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APPENDIX A: WIENER–HOPF METHOD OF
SOLUTION OF EQS. „23… AND „25…

Following Refs. 8 and 9, we can solve the integral Eqs.
~23! and ~25! by the Wiener–Hopf method by introducing
the Fourier transforms9,44

w i
6~l!5tTST~f i !E

2`

`

f i~E!u~6E!e2~ il11/2!E/~kT!dE,

~A1!

where

tTST
21 ~f i !5

AV9~f i !/I

2p
eV~f i !/~kT! ~A2!

and f i5fmini
are the potential minima in theith well @re-

calling that V(f i) is negative, see Fig. 2#. The prefactor
tTST(f i) of the Fourier transformation which is introduced
for notational convenience is suggested by Eq.~1!. Applying
this transformation to the integral Eqs.~23! and~25! we have

w1
1~l!1w1

2~l!5@12G1~l!#@w1
2~l!1w2

1~l!#, ~A3!

w2
1~l!1w2

2~l!5@12G2~l!#@w2
2~l!1w1

1~l!#, ~A4!

whereGi(l) is related to the Fourier transform of the Green
function g̃i(l) via

Gi~l!512g̃i~l!5expF2
bSi

kT S l21
1

4D G . ~A5!

Now, Eq. ~28! in turn can be represented as

t215
2A~S1 ,S2!

AuV9~0!u/I
FAb2

4
1uV9~0!/I u2

b

2G
3@tTST

21 ~f1!1tTST
21 ~f2!#, ~A6!

where

A~S1 ,S2!5w1
1~ i /2!2w2

1~ i /2!5w1~ i /2!. ~A7!

Here we have introduced the functionw(l)5w1(l)
2w2(l). An equation forw~l! can be obtained by subtract-
ing Eq. ~A4! from Eq. ~A3!. We have

w1~l!1
G1~l!G2~l!

G12~l!
w2~l!50, ~A8!

where

G12~l!5G1~l!1G2~l!2G1~l!G2~l!

512expF2
b~S11S2!~4l211!

4kT G . ~A9!

Equation~A8! is now in a form whereby one may apply the
Wiener–Hopf method. In order to use the method we rewrite
Eq. ~A8! as

ln@2w1~l!#5 ln G1~l!1 ln G2~l!2 ln G12~l!

1 ln w2~l!. ~A10!

The functionGi(l) may now be decomposed as

Gi~l!5Gi
1~l!Gi

2~l!, ~A11!

where by Cauchy’s theorem

Gi
6~l!5expF6

1

2p i E2`

` lnGi~l8!

l82l7 i0
dl8G . ~A12!

Equation~A10! thus has the form

ln@2w1~l!#2 ln G1
1~l!2 ln G2

1~l!1 ln G12
1 ~l!

5 ln G1
2~l!1 ln G2

2~l!2 ln G12
2 ~l!1 ln w2~l!. ~A13!

The functionsf 1 and f 2 must satisfy the boundary conditions
that deep in the wells these distributions become Maxwell–
Boltzmann distributions so that

f i~E!;
AV9~f i !/I

2pkT
e2@E2V~f i !#/~kT!, 2E@kT. ~A14!

As a consequence the functionsw i
6(l) from Eq. ~A1! have

poles~the choice of the prefactor in that equation should now
be evident!

w i
6~l!5

2 i

l6 i /2
, ul1 i /2u!1. ~A15!

As the functions in the left- and in the right-hand side of Eq.
~A13! are analytic in different half planes for complexl they
should equal an entire function, which satisfies Eq.~A15!,11

w1~l!5 i
G1

2~2 i /2!G2
2~2 i /2!G1

1~l!G2
1~l!

~l1 i /2!G12
1 ~2 i /2!G12

2 ~l!
. ~A16!

Hence in Eq.~A6!

A~S1 ,S2!5
A8~S1!A8~S2!

A8~S11S2!
, ~A17!

whereA8(Si) is related to the Fourier transform of the Green
function by

A8~Si !5uGi
1~ i /2!u2. ~A18!

SubstitutingGi
1 from Eq. ~A12! into Eq. ~A18! and noting

Eqs. ~22! and ~31!, one obtains the functionA8(D) in Eq.
~30! bridging the VLD and TST results.

APPENDIX B: EQUATIONS FOR C 1„0…, Qn
¿ , AND Qn

À

The column vectorC1(0) and the matricesQn
1 andQn

2

are given by
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C1~0!5
i

2I 0~s! 1
]

I 2~s!1I 3~s!

0
2I 2~s!2I 1~s!

0
I 0~s!1I 1~s!

2I 0~s!2I 1~s!

0
I 2~s!1I 1~s!

0
2I 2~s!2I 3~s!

]

2 , ~B1!

Qn
152

i

2 S � ] ] ] ] ] �

¯ 22 0 0 0 0 ¯

¯ 0 21 0 0 0 ¯

¯ 0 0 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯

� ] ] ] ] ] �

D , ~B2!

Qn
252 i ~n21!S � ] ] ] ] ] ] ] ] ] �

¯ s 0 22 0 2s 0 0 0 0 ¯

¯ 0 s 0 21 0 2s 0 0 0 ¯

¯ 0 0 s 0 0 0 2s 0 0 ¯

¯ 0 0 0 s 0 1 0 2s 0 ¯

¯ 0 0 0 0 s 0 2 0 2s ¯

� ] ] ] ] ] ] ] ] ] �

D . ~B3!

The exceptions are the matricesQ1
1 andQ2

2 , which are given by

Q1
152

i

2 S � ] ] ] ] ] �

¯ 22 0 0 0 0 ¯

¯ 0 21 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯

� ] ] ] ] ] �

D ,

Q2
252 iS � ] ] ] ] ] ] ] ] �

¯ s 0 22 0 0 0 0 0 ¯

¯ 0 s 0 21 2s 0 0 0 ¯

¯ 0 0 s 0 0 2s 0 0 ¯

¯ 0 0 0 s 1 0 2s 0 ¯

¯ 0 0 0 0 0 2 0 2s ¯

� ] ] ] ] ] ] ] ] �

D .

9209J. Chem. Phys., Vol. 120, No. 19, 15 May 2004 Escape rate of a Brownian rotator

Downloaded 10 Jun 2009 to 134.226.1.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



APPENDIX C: EVALUATION OF AVERAGES IN THE
UNDAMPED LIMIT

In the very low damping limit~b8!1!, the energy of the
dipole is not conserved but will vary very slowly with time
~quasistationarity!. Thus the dynamics of the system are de-
scribed by the one-dimensional Fokker–Planck equation~55!
and differ but little from those of the undamped limit
~b850!. In the undamped limit@when the Langevin torque in

Eq. ~7! vanishes#, the energy«, Eq. ~54!, is a constant of the
motion. Thus the dynamics of the dipole are described by the
deterministic nonlinear differential equation

h
d

dt
f~ t !56A«12s sin2 f~ t !. ~C1!

Equation~C1! has a solution45 in terms of the Jacobian dou-
bly periodic elliptic function cn(uum) and dn(uum):31

sinf~ t !5H 6dnS t

h
A2s1wUm~«! D , 22s<«,0,

6cnS t

h
A«12s1wAm~«!Um21~«! D , 0<«,`,

, ~C2!

where

w5E
0

f~0!

@12m~«!sin2 x#21/2dx, m~«!511«/2s.

By noting that sn2(uum)1cn2(uum)51 andmsn2(uum)1dn2(uum)51,31 one has

sin2 f~ t !5H 12m~«!sn2S t

h
A2s1wUm~«! D , 22s<«,0,

12sn2S t

h
A«12s1wAm~«!Um21~«! D , 0<«,`,

, ~C3!

In order to proceed, we recall the Fourier series for the
Jacobi functions46

cn~uum!5
2p

m1/2K~m!
(
n50

`
qn11/2

11q2n11
cosF ~2n11!pu

2K~m! G ,
~C4!

dn~uum!5
p

2K~m!
1

2p

K~m! (
n51

`
qn

11q2n
cosF npu

K~m!G ,
~C5!

msn2~uum!512
E~m!

K~m!
2

2p2

K2~m!

3 (
n51

`
nqn

12q2n
cosF npu

K~m!G , ~C6!

where q5exp@2pK(12m)/K(m)#. Thus, from Eqs.~C3!–

~C6!, we can readily obtain sinf% and sin2 f% averaged over
the phasew, viz.,

sinf~«,w!% 5
1

4K E
22K

2K

sinf~«,w!dw

5H 6p/~2K@m~«!#!, 22s<«,0.

0, 0<«,`
~C7!

sin2 f~«,w!% 5
1

4K E
22K

2K

sin2 f~«,w!dw

55
E@m~«!#

K@m~«!#
, 22s<«,0,

12m~«!H 12
E@m21~«!#

K@m21~«!#
J , 0<«,`.

.

~C8!

Accordingly, on noting thatWst is the equilibrium Maxwell–
Boltzmann distributionW0 , viz.,

W0@f~0!,ḟ~0!#df~0!dḟ~0!

5
he2s

2p3/2I 0~s!
e2h2ḟ2~0!12s sin2 f~0!df~0!dḟ~0!,

by making the transformation of the variables$f(0),ḟ(0)%
→$w,«%,45 and by integrating the distribution function
W0(«) over the phasew, we have

W0~«!d«

5
A2e2s

p3/2s1/2I 0~s!
Re$K@m~«!#%e2«d«,

E
22s

`

W0~«!d«51. ~C9!

The average of a dynamical quantityA(«,w)% is defined as
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^A% &05E
22s

`

A% ~«!W0~«!d«

5
A2e2s

p3/2s1/2I 0~s!
F E

22s

0

A% ~«!K@m~«!#e2«d«

1E
0

` 1

A11«/2s
A% ~«!K@m21~«!#e2«d«G .

~C10!

In particular, we have from Eqs.~C8! and ~C10!

^sin2 f% &05E
22s

`

sin2 f% ~«!W0~«!d«

5
A2e2s

p3/2s1/2I 0~s!
E

22s

`

Re$E@m~«!#%e2«d«.

~C11!

Equation ~C11! yields the same equilibrium value as Eq.
~53!. One can also verify that the equipartition theorem, viz.,

h2^ḟ2% &05^«12s sin2 f% &05
1

2
, ~C12!

also holds. By using Eqs.~C7!–~C11!, we have Eq.~56!.
The longitudinal correlation function C(t)

5^sinf(0)sinf(t)&0 for the free rotation can be derived from
Eqs.~C2!, ~C4!, ~C5!, and~C9! and is given by

C~ t !5
2A2p/s

I 0~s!1I 1~s!

3H E
22s

0 S 1

8
1 (

n51

`
q2n

~11q2n!2
cosF npA2s

hK@m~«!#
tG D

3
e2«2s

K@m~«!#
d«1E

0

` m1/2~«!e2«2s

K@m21~«!#

3 (
n51

`
q2n21

~11q2n21!2
cosF ~2n21!pA«12s

2hK@m21~«!#
tGd«J .

~C13!

For s50, C(t) from Eq. ~C13! reduces to the free rotator
correlation function, viz.,

C~ t !5
1

Ap
E

0

` 1

A«
cos~A«t/h!e2«d«5e2t2/4h2

. ~C14!

Equation~C14! yields t i5hAp.
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