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Inertial effects in anomalous dielectric relaxation of symmetrical top molecules
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The linear dielectric response of an assembly of noninteracting symmetrical top molecules~each of which is
free to rotate in space! is evaluated in the context of fractional dynamics. The infinite hierarchy of differential-
recurrence relations for the relaxation functions appropriate to the dielectric response is derived by using the
underlying inertial fractional Klein-Kramers equation. On solving this hierarchy in terms of matrix continued
fractions~as in the normal rotational diffusion!, the complex dynamic susceptibility is obtained and is calcu-
lated for typical values of the model parameters. For the limiting case of spherical top molecules, the solution
is obtained in terms of an ordinary continued fraction. It is shown that the model can reproduce nonexponential
anomalous dielectric relaxation behavior at low frequencies (vt<1, wheret is the Debye relaxation time! and
the inclusion of inertial effects ensures that optical transparency is regained at very high frequencies~in the far
infrared region! so that Gordon’s sum rule for integral dipolar absorption is satisfied.
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I. INTRODUCTION

Dielectric relaxation of a variety of materials~such as
amorphous polymers, glass forming liquids, etc.! often ex-
hibits in practice nonexponential behavior with a slowly d
caying long time tail. Such a process is commonly charac
ized by a complex susceptibilityx~v! which exhibits Cole-
Cole behavior, viz.,

x~v!

x8~0!
5

1

11~ ivt!s ~0,s,1!, ~1!

@for s51, Eq. ~1! reduces to the well-known Debye equ
tion#. Anomalous relaxation has its origins in anomalous d
fusion. A physical explanation of anomalous diffusion d
scribed by Eq.~1! may be given in terms of the continuou
time random walk~CTRW!. The concept of a CTRW wa
introduced by Montroll and Weiss in 1965@1,2# as a way to
render time continuous in a random walk without an app
to the diffusion or continuum limit. In the context of dielec
tric relaxation, the CTRW allows one to derive a fraction
rotational diffusion equation in configuration space whi
yields Eq.~1! ~detailed discussion of this subject is given
Ref. @3#!. However, in such an approach inertial effects a
ignored.

The omission of inertial effects in the relaxation proce
gives rise, in the context of dielectric relaxation, to the ph
nomenon of infinite dielectric absorption at high frequenci
In order to give a physically meaningful description of t
high-frequency behavior~e.g., to avoid a diverging absorp
tion coefficient!, the inertial effects must also be included
anomalous relaxation just as in normal relaxation. In the c
text of Brownian motion, the inertial effects may be treat
by either averaging the inertial Langevin equation over
1063-651X/2004/69~3!/031114~11!/$22.50 69 0311
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realizations or by constructing the Klein-Kramers equat
for the evolution of the probability density function in pha
space. We remark that models of the rotational Brown
motion are frequently used in studying orientational rela
ation in liquids by various probe techniques such as die
tric relaxation, the dynamic Kerr effect, far-infrared absor
tion, Raman scattering, etc.@4–6#. The various
generalizations of the Klein-Kramers equation to fraction
diffusion which have been proposed have been describe
Metzler and Klafter@7,8# and Barkai and Silbey@9#. By us-
ing the rotational counterpart of the fractional Klein-Krame
equation~FKKE! of Barkai and Silbey~their FKKE was sug-
gested for one-dimensional translational Brownian motio!,
Coffey et al. @10,11# have shown~by generalizing the ap-
proach given by Gross@12# and Sack@13,14# for normal
rotational diffusion! how inertial effects may be included i
the fractional dynamics of noninteracting planar rotators a
rotators in space~linear molecules! to yield a physically ac-
ceptable description of the far-infrared absorption in dipo
fluids. Moreover, Coffeyet al. @10,11# have proposed a
method of solution of the inertial FKKE. The key step
applying the method is first to convert by appropriate tra
formation the FKKE into an equation for the quantity th
statistical average of which is desired. The resulti
differential-recurrence relation may then be solved by c
tinued fraction methods to yield the complex susceptibilit

Although the models considered in Refs.@10,11# repro-
duce the principal features of dielectric relaxation of an e
semble of dipolar molecules, these models may only be u
in the limiting case of linear molecules. Here, the approa
for rigid rotators proposed in Refs.@10,11# is extended to the
orientational relaxation of an assembly of dipolar nonpol
izablesymmetrical topmolecules undergoing fractional dif
fusion in space~treated originally by Morita@15# and Coffey
©2004 The American Physical Society14-1
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et al. @16# for normal diffusion!. Here we demonstrate how
this generalized model can reproduce the nonexpone
~Cole-Cole type! anomalous dielectric relaxation behavi
and how the unphysical high frequency behavior of the
sorption coefficient due to the neglect of inertia may be
moved in fractional relaxation. The after effect solution f
the dynamic Kerr effect@6# may be treated in analogou
fashion and is also presented.

II. ANOMALOUS ROTATIONAL DIFFUSION OF A
SYMMETRICAL TOP MOLECULE IN SPACE

The rotational Brownian motion of a symmetric top mo
ecule in the molecular coordinate systemoxyz rigidly con-
nected to the top is characterized by the angular velocitv
and the angular momentumM defined as@4#

v5~vx ,vy ,vz!5~q̇,ẇ sinq,ċ1ẇ cosq! ~2!

and

M5~ Ivx ,Ivy ,I zvz!, ~3!

whereI and I z are the moments of inertia about the axis
symmetry and about an axis perpendicular to that axis,
spectively,q, w, andc are the Euler angles~q is the angle
between the axis of symmetry of the molecule and theZ axis
of the laboratory coordinate system,w is the azimuthal angle
and c is the angle characterizing rotation about the axis
symmetry!.

In order to describe the fractional Brownian rotation
motion, we use the FKKE for the evolution of the probabili
density functionW in configuration-angular velocity spac
for symmetrical top molecules in the same form as in R
@11# for linear molecules. For symmetric top molecules, t
FKKE becomes~in the absence of external fields!

]W

]t
1vx

]W

]q
1S vy cotq2

I z

I
vzD S vy

]W

]vx
2vx

]W

]vy
D

5t12a
0Dt

12aFb ]

]vx
S vxW1

kBT

I

]W

]vx
D

1b
]

]vy
S vyW1

kBT

I

]W

]vy
D1bz

]

]vz

3S vzW1
kBT

I z

]W

]vz
D G , ~4!

whereb5z/I , bz5zz /I z , z, andzz are the viscous dampin
coefficients,kBT is the thermal energy,t is an intertrapping
time scale~see below! which we identify with the Debye
relaxation timez/(2kBT) for normal diffusion of symmetri-
cal top molecules, anda is the exponent characterizing th
anomalous diffusion process. The operator0Dt

12a

[ (]/]t)0Dt
2a in Eq. ~4! is defined in terms of the convolu

tion ~the Riemann-Liouville fractional integral definition!
@17#
03111
ial

-
-

f
e-

f

l

f.

0Dt
2aW~ ,t !5

1

G~a!
E

0

t W~ ,t8!dt8

~ t2t8!12a ~5!

so that the fractional derivative is a type of memory functi
@2,17# or stosszahlansatzfor the Boltzmann equation@18,19#
underlying the FKKE. Fora51, Eq. ~4! reduces to the cor-
responding normal Fokker-Planck equation for inertia c
rected rotational diffusion already considered~see, e.g., Ref.
@15#!. Here, the internal field effects are ignored, whi
means that the effects of long-range torques due to the in
action between the average moments and the Maxwell fi
are not taken into account. Such effects may be ignored
dilute systems in first approximation. Thus, the results
tained here are relevant to situations where dipole-dipole
teractions have been eliminated by extrapolation of data
infinite dilution.

III. SOLUTION OF THE INERTIAL FRACTIONAL
KLEIN-KRAMERS EQUATION

Let us suppose that the uniform electric fieldE having
been applied to the assembly of polar nonpolarizable s
metric top molecules at a timet52` so that equilibrium
conditions prevail by the timet50, is switched off att50.
In addition it is supposed that the field is weak~i.e., mE
!kBT, which is the linear response condition!. For t.0, the
evolution ofW satisfies Eq.~4!. Just as witha51, Eq.~4! is
independent of the anglesw andc so that for the problem in
question one may ignore the dependence ofW on w andc.
Thus, we seek a solution of Eq.~4! by using the method of
separation of variables in the form of the series

W~q,vx ,vy ,vz,t !5hzh
2e2h2(vx

2
1vy

2)2hz
2vz

2

3(
l 50

`

(
m52 l

l

(
n50

`

(
k50

`

an,k
l ,mbn,k

l ,m~ t !sn,k
m

3~vx ,vy ,vz!Pl
umu~cosq!, ~6!

where

bn,k
l ,m~ t !5^Pl

umu~cosq!sn,k
m ~vx ,vy ,vz!&, ~7!

Pl
umu(cosq) are the associated Legendre functions@20#, and

the functionssn,k
m (vx ,vy ,vz) ( l ,n,k50, 1, 2,...; 2 l<m

< l ) are expressed as finite series of products of Herm
polynomialsHn(z) @20# in the componentsvx ,vy andvz of
the angular velocity, viz.,

sn,k
2m2M~vx ,vy ,vz!5Hk~hzvz! (

q50

n
r 2m2M~n,q!

q! ~n2q!!

3H2n22q1M2«m
~hvx!H2q1«m

~hvy!.

~8!

Here h5AI /(2kBT), hz5AI z /(2kBT), «m50 for m>0,
«m51 for m,0, M50 or 1 and the coefficients
r 2m1M(n,q) of the finite series are determined by the rec
rence relations@16#
4-2
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r 2p~n,q!5S n2q1
1

2D S 12
2q11

2p21D r 2p21~n,q!

1~n2q!
2q11

2p21
r 2p21~n,q11!, ~9!

r 2p11~n,q!5S 11
q

pD r 2p~n,q!2
q

p
r 2p~n,q21!, ~10!

r 22p~n,q!5~n2q!F S 12
2q12

2p21D r 2(2p21)~n,q!

1
2q13

2p21
r 2(2p21)~n,q11!G , ~11!

r 2(2p11)~n,q!5S 11
2q11

2p D r 22p~n,q!

2
q

2p S 22
1

n2q11D r 22p~n,q21!,

~12!

with r 0(n,q)5r 61(n,q)51 andp>0. The above recurrenc
relations and the orthogonality of the Hermite polynomi
ensure that the functionssn,k

m (vx ,vy ,vz) are orthogonal,
viz.,

E
2`

` E
2`

` E
2`

`

sn,k
m ~vx ,vy ,vz!sn8,k8

m8 ~vx ,vy ,vz!

3e2h2(vx
2
1vy

2)2hz
2vz

2
dvxdvydvz;dn,n8dm,m8dk,k8 ,

and that they form a complete set in angular velocity spa
The angular brackets denote ensemble averages over th
tribution functionW, viz.,

^A&~ t !5E
2`

` E
2`

` E
2`

` E
0

p

A~q,vx ,vy ,vz!

3W~q,vx ,vy ,vz ,t !sinqdqdvxdvydvz .

~13!

The normalizing constantsan,k
l ,m are obtained by means of th

orthogonality properties of thePl
m(cosq) and Hn(z), viz.

@20#,

E
0

p

Pl
m~cosq!Pl 8

m8~cosq!sinqdq

5
2~ l 1m!!

~2l 11!~ l 2m!!
d l ,l 8dm,m8 , ~14!

E
2`

`

Hn~x!Hn8~x!e2x2
dx5Ap2nn!dn,n8 ~15!

so that
03111
e.
dis-

~an,k
l ,2m2M !215

p3/222n1k1M11k! ~ l 1m!!

~2l 11!~ l 2m!!

3 (
q50

n S r 2m2M~n,q!

q! ~n2q!! D 2

3~2n22q1M2«m!! ~2q1«m!!. ~16!

Substituting Eq.~6! into Eq.~4!, taking the inner product
and utilizing the orthogonal properties and known recurre
relations@20# for the associated Legendre functions and
Hermite polynomials, then yields the infinite hierarchy
differential recurrence relations for thebn,k

l ,m(t) governing the
orientational relaxation of the system, viz.,

h
d

dt
bn,k

l ,0 52@2nb81kbz8/B#t12a
0Dt

12abn,k
l ,0

1
1

2
bn,k

l ,1 12bn21,k
l ,1 , ~17!

h
d

dt
bn,k

l ,6152@~2n11!b81kbz8/B#t12a
0Dt

12abn,k
l ,61

1bn,k
l ,621

1

4
bn11,k

l ,62 2~12d61,21!l ~ l 11!~n11!

3Fbn,k
l ,0 1

1

4
bn11,k

l ,0 G7ABS 1

2
bn,k11

l ,71 1kbn,k21
l ,71 D ,

~18!

h
d

dt
bn,k

l ,6252@2nb81kbz8/B#0Dt
12at12abn,k

l ,621bn21,k
l ,63

1
1

4
bn,k

l ,632~ l 12!~ l 21!F ~n11!bn21,k
l ,61

1
n

4
bn,k

l ,61G72ABS 1

2
bn,k11

l ,72 1kbn,k21
l ,72 D , ~19!

and so on. Hereb85hz/I , bz85hzz /I , and B5I z /I . For
linear molecules (B50,bz8/B→0), Eqs.~17!, ~18! yield the
results of Ref.@11#.

IV. DIELECTRIC RELAXATION OF AN ENSEMBLE
OF SYMMETRIC TOP MOLECULES

In dielectric relaxation,l 51 so that by taking the Laplac
transform of Eqs.~17!–~19! over the time variables and no
ing the generalized integral theorem for Laplace transfor
@17,21,22#, namely,

L$0Dt
12a f ~ t !%5H s12a f̃ ~s!2 0Dt

2a f ~ t !u t50 ~0,a,1!,

s12a f̃ ~s! ~1<a,2!,
~20!

where
4-3
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f̃ ~s!5L$ f ~ t !%5E
0

`

e2stf ~ t !dt,

we then have a system of algebraic recurrence relations
the Laplace transform ofbn,k

1,m(t) (m50,61) @so that
b0,0

1,0(t)[^cosu&(t)] governing the dielectric response. The
equations can be written as a system of algebraic recurr
relations in the frequency domain using Laplace transform
tion, namely,

@hs12nr~s!1krz~s!/B#b̃n,k
1,0

5hb0,0
1,0~0!dn1k,01

1

2
b̃n,k

1,112b̃n21,k
1,1 , ~21!

@hs1~2n11!r~s!1krz~s!/B#b̃n,k
1,1

52
1

2
~n11!b̃n11,k

1,0 22~n11!b̃n,k
1,0

2
1

2
AB~ b̃n,k11

1,21 12kb̃n,k21
1,21 !, ~22!

@hs1~2n11!r~s!1krz~s!/B#b̃n,k
1,21

5
1

2
AB~ b̃n,k11

1,1 12kb̃n,k21
1,1 !. ~23!

Here

r~s!5b8~ts!12a, rz~s!5bz8~ts!12a ~24!

and we have noted that all thebn,k
1,0(0) vanish with the ex-

ception of n1k50, viz., b0,0
1,0(0)5j/3, where j

5mE/(kBT). This initial condition follows from the linear-
ized initial ~at t50) distribution function, which has the
Maxwell-Boltzmann form

W~q,vx ,vy,0!5
hzh

2

2p3/2e2h2(vx
2
1vx

2)2hz
2vz

2

3S 11jcosq1
j2

2
cos2 q D1o~j2!.

~25!

In order to solve the hierarchy of recurrence Eqs.~21!–~23!,
we introduce a supercolumn vectorC̃n(s) comprising three
subvectors:

C̃n~s!5S c̃n21
1,0 ~s!

c̃n21
1,1 ~s!

c̃n21
1,21~s!

D , c̃n
1,m~s!5S b̃n,0

1,m~s!

b̃n21,1
1,m ~s!

A
b̃0,n

1,m~s!

D . ~26!
03111
or

ce
-

The subvectorc̃n
1,m(s) has the dimensionn11. The three

index recurrence Eqs.~21!–~23! for b̃n,k
1,m(s) can then be

transformed into the matrix three-term differentia
recurrence equation

@hsI3n2Qn~s!#C̃n~s!2Qn
1C̃n11~s!2Qn

2C̃n21~s!

5dn,1hC1~0! ~n>1!, ~27!

where

Qn
25S 0 qn

2 0

0 0 2pn
2

0 pn
2 0

D , Qn
15S 0 0 0

qn
1 0 2pn

1

0 pn
1 0

D ,

Qn~s!5S qn
0~s! In/2 0

2~rn2In! qn
1~s! 0

0 0 qn
1~s!

D ,

and

qn
252S 1 0 ¯ 0

0 1 ¯ 0

A A � A

0 0 ¯ 1

0 0 ¯ 0

D
n3(n21)

,

qn
152

1

2 S n 0 ¯ 0 0

0 n21 ¯ 0 0

A A � A A

0 0 ¯ 1 0

D
n3(n11)

,

pn
25ABS 0 ¯ 0 0

1 ¯ 0 0

A � A A

0 ¯ n22 0

0 ¯ 0 n21

D
n3(n21)

,

pn
15

AB

2 S 0 1 ¯ 0 0

A A � A A

0 0 ¯ 1 0

0 0 ¯ 0 1

D
n3(n11)

,

rn52S n21 0 ¯ 0

0 n22 ¯ 0

A A � A

0 0 ¯ 0

D
n3n

,

4-4
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qn
M~s!5S f n21,0

M ~s! 0 ¯ 0

0 f n22,1
M ~s! ¯ 0

A A � A

0 0 ¯ f 0,n21
M ~s!

D
n3n

.

Here f n,k
M (s)52(2n1M )r(s)2krz(s)/B and In is the unit

matrix which has dimensionn3n. The initial value vector
e

nt

cs

a

03111
C1(0) is

C1~0!5S j/3
0
0
D

and Cn(0)50 for all n>2. The exact solution forC̃1(s) is
then given by the matrix continued fraction@23#
C̃1~s!5h
I3

hsI32Q1~s!2Q1
1

I6

hsI62Q2~s!2Q2
1

I9

hsI92Q3~s!�
Q3

2

Q2
2

C1~0!, ~28!
be
ued
where the fraction lines denote matrix inversion. Having d
termined the spectrumb̃0,0

1,0( iv) from Eq. ~28!, one can also
evaluate the normalized complex susceptibilityx̂(v)
5x̂8(v)2 i x̂9(v) from linear response theory as~Ref. @23#,
p. 203!

x̂~v!5
x~v!

x8~0!
512 iv

b̃0,0
1,0~ iv!

b0,0
1,0~0!

, ~29!
-wherex8(0)5N0m2/3kBT is the static susceptibility andN0

is the number of dipoles per unit volume.
For linear and spherical top molecules, the solution can

considerably simplified and presented as ordinary contin
fractions. For linear molecules (I z50), such a solution was
obtained in Ref.@11#. For spherical tops (b85bz8 , and B
51), the corresponding solution is~see Appendix A!
b̃0,0
1,0~s!

b0,0
1,0~0!

5
h

sh1
1

sh1r~s!1
1

4@sh12r~s!#
1

~321/2!/2

sh12r~s!1
2

sh13r~s!1
1

6@sh14r~s!#
1

~521/3!/2

sh14r~s!1¯

. ~30!
s

f.

d to

ial
r-

q.
For a51, r(s)5b8 and Eq.~30! coincides with that of Sack
@14# for normal rotational diffusion with a corrected mispri
@16#. In the high damping limit (b8@1), Eq. ~30! can be
simplified yielding the generalization to fractional dynami
of the Rocard@16# equation, namely,

x̂~v!5
1

11~ ivt!s2~vh!2 , ~31!

where

s522a. ~32!

On neglecting inertial effects (h→0), Eq. ~31! reduces to
Eq. ~1!, i.e., the result previously proposed from empiric
 l

considerations@24,25#. The results of numerical calculation
indicate that the matrix continued fraction solution@Eqs.~28!
and~29!# and the ordinary continued fraction solution of Re
@11# for linear molecules and Eq.~30! for spherical tops yield
the same results.

The approach we have developed may also be extende
treat all the other averages^Pn(cosq)&(t) characterizing ori-
entational relaxation in fluids@2,3#, in particular, to evaluate
the average of the second-order Legendre polynom
^P2(cosq)&(t) ~this quantity describes the dynamic Ker
effect! which is given in Appendix B.

V. RESULTS AND DISCUSSION

The infinite matrix continued fraction Eq.~28! is easily
computed so that the complex dielectric susceptibility E
4-5
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~29! can be readily evaluated for typical values of the mo
parametersh, b8, bz8 , B, anda. Dielectric lossx̂9(v) spec-
tra for various values ofa, b8, bz8 andB are shown in Figs.
1–5. It is apparent that the half-width and the shape of
dielectric spectra strongly depend ona ~here pertaining to
anomalous diffusion in velocity space!, b8, bz8 , ~which char-
acterize the effects of damping and molecular inertia!, andB
~which accounts for the shape of the molecule!. For high
damping,b8, bz8@1, the low frequency part ofx̂9(v) may
be approximated by the Cole-Cole Eq.~1! ~see Figs. 1–5!.
On the other hand, the high-frequency behavior ofx̂9(v) is
entirely determinedby the inertia of system. Just as in no
mal Brownian dynamics, it is apparent that inertial effe
produce a much more rapid falloff ofx̂9(v) at high frequen-
cies. Indeed, one can show that our fractional model satis
the Gordon sum rule for the dipole integral absorption@26#,
viz.,

FIG. 1. Dielectric loss spectrax̂9(v) for b85bz855 and vari-
ous values ofa: a50.5 ~curves 1 and 18), a51.0 ~curves 2 and
28), anda51.5 ~curves 3 and 38). Solid lines~1, 2, and 3!: Eqs.
~28! and ~29!; asterisks (18, 28, and 38): Eq. ~1!.

FIG. 2. Dielectric loss spectrax̂9(v) for a51.5, b85bz855
and various values ofB: B50.1 ~curve 1!, B51 ~curve 2!, B52
~curve 3!; circles: Eq.~31!; asterisks: Eq.~1!.
03111
l

e

s

es

E
0

`

vx9~v!dv5
pNm2

3I
. ~33!

It is significant that the right hand side of Eq.~33! is deter-
mined by molecular parameters only and isindependentof
the temperature and the model parametersa, b8, andbz8 . In
contrast, the fractional noninertial rotational diffusion mod
@3# @yielding Eq.~1!# predicts infinite integral absorption.

We remark that all the above results are obtained by us
the Barkai-Silbey@9# fractional form of the Klein-Kramers
equation for the evolution of the probability distributio
function in phase space. In that equation, the fractional
rivative, or memory term, acts only on the right-hand sid
that is, on the diffusion or dissipative term. Thus, the form
the Liouville operator, or convective derivative is preserv
@cf. the right-hand side of Eq.~4!#. Thus, Eq.~4! has the
conventional form of a Boltzmann equation for the sing
particle distribution function. The preservation of the Lio

FIG. 3. Dielectric loss spectrax̂9(v) for a50.5, b85bz855
and various values ofB: B50.1 ~curve 1!, B51 ~curve 2!, B52
~curve 3!; circles: Eq.~31!; asterisks: Eq.~1!.

FIG. 4. Dielectric loss spectrax̂9(v) for a51.5, B51 and
various values ofb85bz8 : b851 ~curve 1!, b8510 ~curve 2!, B
5100 ~curve 3!, b85103 ~curve 4!, andb85104 ~curve 5!. Aster-
isks: Eq.~1!.
4-6
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ville operator is equivalent to stating that the Newtoni
form of the equations of motion underlying the Klein
Kramers equation is preserved. Thus, the high frequency
havior is entirely controlled by the inertia of the system, a
does not depend on the anomalous exponent. Consequ
the fundamental sum rule, Eq.~33!, for the dipole integral
absorption of single axis rotators is satisfied, ensuring a
turn to transparency at high frequencies as demanded
physical grounds.

At this stage, it is appropriate to mention yet another g
eralization to fractional dynamics of the Klein-Krame
equation, which has been proposed in Ref.@7#. Here, unlike
Eq. ~4!, the fractional derivative acts on the convective
well as the diffusive terms in the normal Klein-Krame
equation. This equation, in the notation of Eq.~4!, reads

]W

]t
5t12a

0Dt
12aH 2vx

]W

]q
2S vycotq2

I z

I
vzD

3S vy

]W

]vx
2vx

]W

]vy
D1Fb ]

]vx
S vxW1

kBT

I

]W

]vx
D

1b
]

]vy
S vyW1

kBT

I

]W

]vy
D1bz

]

]vz

3S vzW1
kBT

I z

]W

]vz
D G J . ~34!

Equation~34! may also be solved exactly in terms of a sca
continued fraction just as Eq.~4! for the complex suscepti
bility of an assembly of noninteracting dipoles. However, t
complex susceptibility so rendered does not satisfy the G
don sum rule, the absorption coefficientvx9(v) showing a
marked divergence at high frequencies asv increases. Thus
the high frequency behavior of the dielectric susceptibi

FIG. 5. Dielectric loss spectrax̂9(v) for a50.5, B51 and
various values ofb85bz8 : b851 ~curve 1!, b8510 ~curve 2!, b8
5100 ~curve 3!, b85103 ~curve 4!, andb85104 ~curve 5!. Aster-
isks: Eq.~1!.
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predicted by Eq.~34!, is physically unacceptable, unlike tha
predicted by the Barkai-Silbey equation. For example,
generalization of the Rocard equation gained using Eq.~34!,
viz.,

x̂~v!5
1

11~ ivt!a1b822~ ivt!2a , ~35!

predicts a divergent absorption coefficient. The root of
problem appears to be the supposition that the fractional
rivative ~or memory function with a power law kernel so th
the process depends on the history of the system! acts on the
convective terms. If it is allowed to act on these terms, th
the high frequency behavior is no longer entirely inertia co
trolled, it depends on the dissipation through the anomal
exponent, with the result, that the Gordon sum rules are
lated, and infinite absorption ensues. This is the reason
the use of the Barkai-Silbey equation. We also remark t
the Barkai-Silbey equation was originally given for subd
fusion in velocity space (a,1), or for enhanced diffusion in
configuration space (s.1). However, the most interestin
case is subdiffusion in configuration space, correspondin
the Cole-Cole equation in dielectric theory. This sugge
extending the Barkai-Silbey equation toenhanceddiffusion
in velocity space, corresponding tosubdiffusionin configu-
ration space, sinces522a. The justification for doing this
is simply that this generalization yields physically meanin
ful results for the broad-band spectrum of the complex s
ceptibility x̂(v), as well as yielding the Cole-Cole equatio
in the limit g→0. It is also apparent that the Barkai-Silbe
equation must have its origin in a Le´vy ~rather than a purely
fractal! time random walk@7#, as unlike Eq.~34!, it does not
separate into temporal and spatial parts, moreover, the e
nential decay of the normal diffusion theory is not replac
by a Mittag-Leffler function, as in a fractal time rando
walk @7#. Such behavior is indicative of coupling betwee
the jump length probability distribution and the waiting tim
probability distribution, that is, the jump length and waitin
time are not independent random variables.

As far as comparison with experimental data is co
cerned, the fractional Klein-Kramers model under discuss
may be suitable for the explanation of dielectric relaxation
dilute solution of polar molecules~such as CHCl3 , CH3Cl,
etc.! in nonpolar glassy solvents~such as decalin at low tem
peratures, see, e.g., Ref.@27#!. Here, in contrast to the norma
diffusion, the model can explain qualitatively the inerti
corrected anomalous~Cole-Cole-like! dielectric relaxation
behavior of such solutions at low frequencies. However, o
would expect that the model is not applicable at high f
quencies~in the far-infrared region!, where the librational
character of the rotational motion must be taken into
count. The failure of the fractional Klein-Kramers model
account for the high-frequency~Poley! absorption even
though it explains the return to transparency at high frequ
cies is to be expected in view of the assumption made in
4-7
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theory that all electrical interactions between dipoles may
neglected.
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APPENDIX A: ORDINARY CONTINUED FRACTION
SOLUTION FOR SPHERICAL TOP MOLECULES

A solution of the system of moment equations~21!–~23!
can be obtained in terms of ordinary continued fractions
spherical top molecules (b85bz8 , and B51) as follows.
On substituting Eqs.~21! and ~23! into Eq. ~22! and intro-
ducing a new quantityan,k defined asan,k5b̃n,2k

1,1 /k!, we
obtain
Fhs1@2~n1k!11#r~s!1
2~n1k!13

2$hs1@2~n1k!12#r~s!%
1

2~n1k!12

2@hs12~n1k!r~s!#Gan,k

52
2

s
b0,0

1,0~0!dn1k,02
n11

4$hs1@2~n1k!12#r~s!%
an11,k2

k11

4$hs1@2~n1k!12#r~s!%
an,k11

2
4~n11!

hs12~n1k!r~s!
an21,k2

4k22

hs12~n1k!r~s!
an,k21 . ~A1!

Further, for the series

Sm5(
i 50

m

am2 i ,i ~A2!

~where the summation is taken over the elementsan,k with n1k5m, e.g.,S05a0,0, S15a1,01a0,1, S25a2,01a1,11a0,2,
etc.!, we have from Eqs.~A1! and ~A2!

Fhs1~2m11!r~s!1
2m13

2@hs12~m11!r~s!#
1

2m12

2@hs12mr~s!#GSm

52
2

s
b0,0

1,0~0!dm,02
m11

4@hs12~m11!r~s!#
Sm112

4m16

hs12mr~s!
Sm21 ~A3!
ce
or

~hs2qm!Sm2qm
1Sm112qm

2Sm2152
2

s
b0,0

1,0~0!dm,0 ,

~A4!

where

qm52~2m11!r~s!2
2m13

2@hs12~m11!r~s!#

2
m11

hs12mr~s!
, ~A5!

qm
152

m11

4@hs12~m11!r~s!#
, ~A6!

qm
252

4m16

hs12mr~s!
. ~A7!
The continued fraction solution of the three-term recurren
Eq. ~A4! is

S052
2

hs

hb0,0
1,0~0!

hs2q02
q0

1q1
2

hs2q12
q1

1q2
2

hs2q22�

. ~A8!

The quantityb̃0,0
1,0 is then given by

b̃0,0
1,05

b0,0
1,0~0!

s
1

1

2hs
S0 . ~A9!

Taking into account Eqs.~A4!–~A9! and noting the equality
4-8
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2n13

2A
2

~n11!~2n15!

2A2

1

n12

A
1B

5
1

2~n12!A
1

1

2 S 2n132
1

n12D
A1

n12

B

,

ua
eg

c
ac

03111
we obtain

b̃0,0
1,0~s!

b0,0
1,0~0!

5
h

sh1Z2
, ~A10!

where the infinite continued fractionZ2 is determined by the
recurrence relation
Zn5
n/2

sh1r~s!~n21!1
1

~n12!@sh1nr~s!#
1

n~n13!

2~n12!@sh1nr~s!1Zn12#

. ~A11!
al-
Equations~A10! and ~A11! yield Eq. ~30!.

APPENDIX B: DYNAMIC KERR EFFECT RESPONSE

One may also readily derive differential-recurrence eq
tions for the statistical moments involving the associate L
endre functions of order 2(l 52) pertaining to the dynamic
Kerr effect, viz., bn,k

2,m(t) @so that b0,0
2,0(t)5^P2(cosq)&(t)].

These equations can be written as a system of algebrai
currence relations in the frequency domain using Lapl
transformation, namely,

@hs12nr~s!1krz~s!/B#b̃n,k
2,0

5hc0,0
2,0~0!dn1k,01

1

2
b̃n,k

2,112b̃n21,k
2,1 , ~B1!

@hs1~2n11!r~s!1krz~s!/B#b̃n,k
2,1

52
3

2
~n11!b̃n11,k

2,0 26~n11!b̃n,k
2,01

1

4
b̃n11,k

2,2 1b̃n,k
2,2

2
1

2
AB~ b̃n,k11

2,21 12kb̃n,k21
2,21 !, ~B2!

@hs1~2n11!r~s!1krz~s!/B#b̃n,k
2,21

5
1

4
b̃n11,k

2,22 1b̃n,k
2,221

1

2
AB~ b̃n,k11

2,1 12kb̃n,k21
2,1 !,

~B3!

@hs12nr~s!1krz~s!/B#b̃n,k
2,2

52nb̃n,k
2,124~n11!b̃n21,k

2,1 2AB~ b̃n,k11
2,22 12kb̃n,k21

2,22 !,

~B4!
-
-

re-
e

@hs12nr~s!1krz~s!/B#b̃n,k
2,22

52nb̃n,k
2,2124~n11!b̃n21,k

2,21 1AB~ b̃n,k11
2,2 12kb̃n,k21

2,2 !,

~B5!

Then the hierarchy of equations forb̃n,k
2,m(s) Eqs.~B1!–~B5!

can be transformed into the matrix three-term differenti
recurrence equation

@hsI5n2Qn~s!#C̃n~s!2Qn
1C̃n11~s!2Qn

2C̃n21~s!

5dn,1hC1~0! ~n>1!, ~B6!

where the supercolumn vectorC̃n(s) comprising of five sub-
vectors

C̃n~s!5S c̃n21
2,0 ~s!

c̃n21
2,1 ~s!

c̃n21
2,21~s!

c̃n21
2,2 ~s!

c̃n21
2,22~s!

D , c̃n
2,m~s!5S b̃n,0

2,m~s!

b̃n21,1
2,m ~s!

A
b̃0,n

2,m~s!

D , ~B7!

and the matricesQn
2 , Qn , andQn

1 are given by

Qn
25S 0 qn

2 0 0 0

0 0 2pn
2 0 0

0 pn
2 0 0 0

0 vn
2 0 0 22pn

2

0 0 vn
2 2pn

2 0

D ,
4-9
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Qn
15S 0 0 0 0 0

3qn
1 0 2pn

1 vn
1 0

0 pn
1 0 0 vn

1

0 0 0 0 22pn
1

0 0 0 2pn
1 0

D ,

Qn~s!5S qn
0~s! In/2 0 0 0

6~rn2In! qn
1~s! 0 In 0

0 0 qn
1~s! 0 In

0 rn 0 qn
0~s! 0

0 0 rn 0 qn
0~s!

D .

Here the submatricespn
6 , qn

6 , rn , and qn
M(s) are defined
,

s.

i,
op

r
,

E

03111
above and the submatricesvn
6 are

vn
2524S n 0 ¯ 0

0 n21 ¯ 0

A A � A

0 0 ¯ 2

0 0 ¯ 0

D
n3(n21)

,

vn
15

1

4 S 1 0 ¯ 0 0

0 1 ¯ 0 0

A A � A A

0 0 ¯ 1 0

D
n3(n11)

.

The exact solution, for the Laplace transformC̃1(s) is
then given by the matrix continued fraction, viz.,
C̃1~s!5h
I5

hsI52Q12Q1
1

I10

hsI102Q22Q2
1

I15

hsI152Q3�
Q3

2

Q2
2

C1~0! ~B8!
ear
ac-

eri-
ry
with initial conditions

C1~0!5S j2/15
0
0
0
0

D

andCn(0)50 for all n>2.
As an example the results of numerical calculations for lin
(I z50) molecules based on the above matrix continued fr
tion solution have been compared with that of Ref.@11# pre-
sented in terms of ordinary continued fractions. The num
cal calculations show that both matrix and ordina
continued fraction solutions yield the same results.
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