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Inertial effects in anomalous dielectric relaxation of symmetrical top molecules
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The linear dielectric response of an assembly of noninteracting symmetrical top mol@adkef which is
free to rotate in spagés evaluated in the context of fractional dynamics. The infinite hierarchy of differential-
recurrence relations for the relaxation functions appropriate to the dielectric response is derived by using the
underlying inertial fractional Klein-Kramers equation. On solving this hierarchy in terms of matrix continued
fractions(as in the normal rotational diffusignthe complex dynamic susceptibility is obtained and is calcu-
lated for typical values of the model parameters. For the limiting case of spherical top molecules, the solution
is obtained in terms of an ordinary continued fraction. It is shown that the model can reproduce nonexponential
anomalous dielectric relaxation behavior at low frequencies< 1, whereris the Debye relaxation timend
the inclusion of inertial effects ensures that optical transparency is regained at very high freq(ieribegar
infrared region so that Gordon's sum rule for integral dipolar absorption is satisfied.
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[. INTRODUCTION realizations or by constructing the Klein-Kramers equation
for the evolution of the probability density function in phase
Dielectric relaxation of a variety of materialsuch as space. We remark that models of the rotational Brownian
amorphous polymers, glass forming liquids, ptften ex-  motion are frequently used in studying orientational relax-
hibits in practice nonexponential behavior with a slowly de-ation in liquids by various probe techniques such as dielec-
caying long time tail. Such a process is commonly charactertric relaxation, the dynamic Kerr effect, far-infrared absorp-
ized by a CompleX SUSC@ptlbllltX(w) which exhibits Cole- tion, Raman Scattering’ etc_[4_6]_ The various

Cole behavior, viz., generalizations of the Klein-Kramers equation to fractional
diffusion which have been proposed have been described by
x(w) 1 Metzler and Klafte7,8] and Barkai and SilbejQ]. By us-
— = —— (0<o<1), @ . ) . )
x'(0) 1+(iwT7) ing the rotational counterpart of the fractional Klein-Kramers

equation(FKKE) of Barkai and Silbeytheir FKKE was sug-

[for o=1, Eq. (1) reduces to the well-known Debye equa- gested for one-dimensional translational Brownian motion
tion]. Anomalous relaxation has its origins in anomalous dif-Coffey et al. [10,11] have shown(by generalizing the ap-
fusion. A physical explanation of anomalous diffusion de-proach given by Gros§l2] and Sack[13,14 for normal
scribed by Eq(1) may be given in terms of the continuous rotational diffusion how inertial effects may be included in
time random walk(CTRW). The concept of a CTRW was the fractional dynamics of noninteracting planar rotators and
introduced by Montroll and Weiss in 196%,2] as a way to  rotators in spacélinear moleculesto yield a physically ac-
render time continuous in a random walk without an appeateptable description of the far-infrared absorption in dipolar
to the diffusion or continuum limit. In the context of dielec- fluids. Moreover, Coffeyet al. [10,11] have proposed a
tric relaxation, the CTRW allows one to derive a fractionalmethod of solution of the inertial FKKE. The key step in
rotational diffusion equation in configuration space whichapplying the method is first to convert by appropriate trans-
yields Eq.(1) (detailed discussion of this subject is given in formation the FKKE into an equation for the quantity the
Ref. [3]). However, in such an approach inertial effects arestatistical average of which is desired. The resulting
ignored. differential-recurrence relation may then be solved by con-

The omission of inertial effects in the relaxation processtinued fraction methods to yield the complex susceptibility.
gives rise, in the context of dielectric relaxation, to the phe- Although the models considered in Ref40,11 repro-
nomenon of infinite dielectric absorption at high frequenciesduce the principal features of dielectric relaxation of an en-
In order to give a physically meaningful description of the semble of dipolar molecules, these models may only be used
high-frequency behaviofe.g., to avoid a diverging absorp- in the limiting case of linear molecules. Here, the approach
tion coefficieny, the inertial effects must also be included in for rigid rotators proposed in Refgl0,11] is extended to the
anomalous relaxation just as in normal relaxation. In the conerientational relaxation of an assembly of dipolar nonpolar-
text of Brownian motion, the inertial effects may be treatedizable symmetrical topmolecules undergoing fractional dif-
by either averaging the inertial Langevin equation over itsfusion in spacdtreated originally by Moritd15] and Coffey
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et al. [16] for normal diffusion. Here we demonstrate how - 1 [tw(t)dt’
this generalized model can reproduce the nonexponential oDy “W(, )= (e Jo(i—t)T @ 5
(Cole-Cole typé anomalous dielectric relaxation behavior 0

and how the unphysical high frequency behavior of the abgg that the fractional derivative is a type of memory function

sorption coefficient due to the neglect of inertia may be r€12,17] or stosszahlansator the Boltzmann equatiofL8,19
moved in fractional relaxation. The after effect solution forunderlying the FKKE. Fom=1, Eq.(4) reduces to the cor-

the dynamic Kerr effec{6] may be treated in analogous regnonding normal Fokker-Planck equation for inertia cor-

fashion and is also presented. rected rotational diffusion already considersee, e.g., Ref.
[15]). Here, the internal field effects are ignored, which
II. ANOMALOUS ROTATIONAL DIFFUSION OF A means that the effects of long-range torques due to the inter-
SYMMETRICAL TOP MOLECULE IN SPACE action between the average moments and the Maxwell fields

, , . , are not taken into account. Such effects may be ignored for
The rotational Brownian motion of a symmetric top mol- gijyte systems in first approximation. Thus, the results ob-
ecule in the molecular coordinate systemyzrigidly con-  (ained here are relevant to situations where dipole-dipole in-

nected to the top is characterized by the angular velaoity (eractions have been eliminated by extrapolation of data to
and the angular momentuM defined ag4] infinite dilution.

w=(0y,0y,0,)=(3,¢sind,+ ¢ cosd) 2 Ill. SOLUTION OF THE INERTIAL FRACTIONAL
KLEIN-KRAMERS EQUATION

d . L .
an Let us suppose that the uniform electric fidddhaving

been applied to the assembly of polar nonpolarizable sym-
metric top molecules at a time= —o so that equilibrium

herel and| h f inertia about the axi fconditions prevail by the timeé=0, is switched off at=0.
wherel andl, are the moments of Inertia about the axis of .y aqgition it is supposed that the field is weéle., uE

symmetry and about an axis perpendicular to that axis, r
spectively,d, ¢, and ¢ are the Euler anglegd is the angle
between the axis of symmetry of the molecule andzfexis
of the laboratory coordinate systemis the azimuthal angle,
and ¢ is the angle characterizing rotation about the axis o
symmetry.

In order to describe the fractional Brownian rotational
motion, we use the FKKE for the evolution of the probability
density functionW in configuration-angular velocity space

M=(lwy,loy,l,0,), (3

€< kgT, which is the linear response conditjofrort>0, the
evolution of W satisfies Eq(4). Just as withw=1, Eq.(4) is
independent of the anglesand ¢ so that for the problem in
uestion one may ignore the dependenc&\bbn ¢ and .
hus, we seek a solution of E}) by using the method of
separation of variables in the form of the series

2, 2, 2 22
W( T, wy , @y ywy,t)= 77Z772e_’7 (@it wy) = n;0;

for symmetrical top molecules in the same form as in Ref. © e e
[11] for linear molecules. For symmetric top molecules, the X > > > akohht)sr,
FKKE becomes(in the absence of external fields 1=0 m=-1n=0k=0
X (0, @y, 0,)P|"(cosd), (6)
W W . l, AW IW
T e At T A R PPN Py where
i Dl—“[ﬁ 9 (w wo e aw) bl =(P™(cos®) s (@, wy, @), (7)
= oDt | oW+ ——
Jd e . .
@x @x P|™(cosd) are the associated Legendre functi§2g], and
d kgT dW J the functionssy(wy,wy,w;) (1,n,k=0, 1, 2,..; —I<m
+B¢9_wy “’yWJF|_(9_wy +:82,9_wz <I) are expressed as finite series of products of Hermite
polynomialsH ,(z) [20] in the components, ,», andw, of
kgT oW i i
% wZW+i , @) the angular velocity, viz.,
I, dw,
_ M am—m(N,0)
2m-M 2m—-M
S ’ ’ = H I N
whereg=¢/1, B,=¢,11,, {, and{, are the viscous damping ¥ (0x,@y,02) =Hl 7IZwZ)qu g'(n—q)!
coefficients kgT is the thermal energy; is an intertrapping
time scale(see below which we identify with the Debye ><H2n*2q+Mfsm( "wx)H2q+sm(77wy)-
relaxation timel/(2kgT) for normal diffusion of symmetri- @)

cal top molecules, and is the exponent characterizing the

anomalous diffusion process. The operatgD; “  Here n=v1/(2kgT), 7,=I,/(2kgT), =0 for m=0,

= (dldt)oD, * in EQ. (4) is defined in terms of the convolu- ¢,=1 for m<0, M=0 or 1 and the coefficients
tion (the Riemann-Liouville fractional integral definitipn r,,m(N,q) of the finite series are determined by the recur-
[17] rence relation$16]
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1 2q9+1
r2p(n1q): n_q+§ 1-5— 2p—1 lop— 1(n,q)
1
+(n— q) 1 2p-2(N.q+1), )]
q
Mop+1(N,Q) = 1+IO rap(n,q)— r2p(nq 1), (10
2q+2
r_op(n,q)=(n—q) 1_2p——1 r(2p-1)(N,Q)
2q+3
2p 51" (20~ 1H(n,g+1) |, (11
2q+1
r—p+1y(N,Q)=| 1+ 2p r—2p(N,Q)
2p n—q+1, 2 a4,
(12

with ro(n,q)=r.4(n,q)=1 andp=0. The above recurrence
relations and the orthogonality of the Hermite polynomials
ensure that the functions] (wy,w,,0,) are orthogonal,
viz.,

o0 o0 oo m’
J J’ J Snm’k(wx’wy’wZ)Sn’,k’(wx vaawz)
—0J—nJ)—xw

X e~ T 00 10, dary oy~ Sy Sy &
€ 4 WxUwyUw;™ 0n n' Omm’ Ok’

and that they form a complete set in angular velocity space.

The angular brackets denote ensemble averages over the d
tribution functionW, viz.,

[ Mt

XW( I, wy 0y, 05 ,t)Sinﬁdﬂdwxdwydwz.
(13

and so on. Herg8' = n{/l,
linear molecules8=0,8,/B—0), Eqgs.(17), (18) yield the
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773/222”+k+M+1k!(|+m)!
21+ 1)(1—m)!
n 2
Mom-— )

XE ( 2m M(n CD)

é=o \ q!(n—q)!
X(2n—=2q+M—e)!(2q+em!.

l,2m—My —1_
(an,lin ) -

(16)

Substituting Eq(6) into Eq.(4), taking the inner product,
and utilizing the orthogonal properties and known recurrence
relations[20] for the associated Legendre functions and the
Hermite polynomials, then yields the infinite hierarchy of
differential recurrence relations for t}mé;'f,?(t) governing the
orientational relaxation of the system, viz.,

7 g Prk= —[2nB' +kB;/B] T oD “byk

+= b' fF2pt

(17

d
ndtb' W=—[(2n+1)B'+kBy/BIT*(Di byt

o+ 7 b'nifk (1= 6.1 DI(I+1)(n+1)

1,0
bn k+ bn+lk

’

+ \/—( blnﬁl*'kblnﬁll

(18

d
I, =2 __
7 Gt Pk =

is-

—[2np’ +kp;/BD; 7 by i+ b iy

+
| =

2P = (1 +2)(1= D (n+ Dbp*

'*1}—2(( b'n‘ﬁl+kb'n’_;21), (19

B,=mn{, I, andB=1,/1. For

results of Ref[11].

The normalizing constanEt{;f‘k‘ are obtained by means of the
orthogonality properties of th®"(cos®) and H,(z), viz.
[20],

IV. DIELECTRIC RELAXATION OF AN ENSEMBLE
OF SYMMETRIC TOP MOLECULES

In dielectric relaxationl =1 so that by taking the Laplace

fP,’“(cosﬁ)Pr,"(cosﬂ)sinﬂdﬁ
0

o 2(+m)!
21+ 1) (I—m)!

I,I’5m,m’ ’
f Hn(X)Hp (x)e ¥ dx=\72"n1 8,

so that

transform of Eqs(17)—(19) over the time variables and not-
ing the generalized integral theorem for Laplace transforms
[17,21,23, namely,

(14
1=df(g)— (D; *“f(t)]o (0<a<l),
L{ODg.faf(t)}: Sl_ ~(S) oYt ()|t 0 a
(15) st 4f(s) (I=sa<?2),
(20)
where
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The subvectorc:™(s) has the dimensiom+1. The three
index recurrence Eqs21)—(23) for byR(s) can then be
transformed into the matrix three-term differential-
we then have a system of algebraic recurrence relations fgECUrrence equation

the Laplace transform ofoﬁ;r,?(t) (m=0,=1) [so that g ~ ~
bad(t)=(cose)(t)] governing the dielectric response. These [ 75130~ Qn(8)1Cn(S) ~ Qy Cps1(8) — Q, Co-1(S)
equations can be written as a system of algebraic recurrence

T(s)=L{f(t)}=J:e—stf(t)dt,

relations in the frequency domain using Laplace transforma- =n1nCa(0)  (n=1), @7
tion, namely,
where
[75+2np(s) +kp(s)/BIby 0 q 0 0 0 o
1~ - - _ — +_ + _nt
= pb5J0) ot pBEEF 2B, @) Q7[00 TPl Qe O P
0 p, 0 0 p, 0
[7s+(2n+1)p(s) +kp,(s)/BIB} a(s) 12 0
1 _ _ Qu(s)=| 2(r—1p) ax(s) 0 |,
- _ 1,0 _ 1,0 n
- 2(n+1)bn+l,k 2(n+1)bn,k 0 0 (ﬁ(S)
1 -, —1_
- E\/E(b%:kil'i_Zkb#k}l : (22 and
0
[ 7s+(2n+1)p(s)+Kp,(s)/Blbp 01 - 0
1 ~ ~ g, =2 ,
=5 VB(byk 1+ 2Kby k). (23) "o o )
Here 00 -0 nx(n—1)
! —a ! —a n O
p()=B'(19)'7%  ps)=By(9)" (24
L 1 n—-1
and we have noted that all ttgh%(0) vanish with the ex- =72 '

ception of n+k=0, viz, bgg0)=¢/3, where & o 0 - 1 0

= wE/(kgT). This initial condition follows from the linear- D)
ized initial (at t=0) distribution function, which has the 0 0
Maxwell-Boltzmann form
1 0
2 — .
MM 20024 0d) r2ul p.=\B| i . : ,
WY, wy, ,0)2—3726 7(wyt @)~ m 0y n
(DoneyO= o 0 n-2 0
2 0 -~ 0 n-1
X 1+§cosl‘}+%co§ﬁ +0(&%). nx(n-1)
(25) o1 - 00
B :
In order to solve the hierarchy of recurrence E@4)—(23), Pn =75~ 1 ,
we introduce a supercolumn vectB(s) comprising three . 0 1
subvectors: nx(n+1)
~=1,0 by5(s) n-1 0 0
Cn-1(9) B (s) 0 n-2 =+ 0
Ca9)=| Tra(s) |, gM(g)=| "L (26 e T
o7 : : : oo
Chi(9) ~
bam(s) o 0 - 0/,
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i) 0 - 0 C1(0) is
ay'(s)= 0 frade 0 &3
n : A c.(0)=| 0
0 0 - fopoa(s) 0

nxn

Herefmk(s)= —(2n+M)p(s) —kp,(s)/B andl, is the unit andC,(0)=0 for all n=2. The exact solution fo€,(s) is
matrix which has dimensionxn. The initial value vector then given by the matrix continued fracti¢®3]

- |
Ci(s)=7 &

- C1(0), (28)
77S|3_Q1(5)_QIr Q,

I
7l5=Qu(9)- Qs L0 5~ %

where the fraction lines denote matrix inversion. Having dewherey’ (0)=Nyu?/3kgT is the static susceptibility arid,
termined the spectrutbg Yiw) from Eq. (28), one can also is the number of dipoles per unit volume.

evaluate the normalized complex susceptibilify(w) For linear and spherical top molecules, the solution can be
=%'(w)—iX"(w) from linear response theory &Ref.[23],  considerably simplified and presented as ordinary continued
p. 203 fractions. For linear moleculed /=0), such a solution was
~10 obtained in Ref[11]. For spherical tops4’=p,, andB
- x(o) - bgdio) =1), the corresponding solution {see Appendix
x'(0) bsJ0)
BLY s)
L ! EG
boo(0) N 1
S7 o . (3-12)12
ST Pt e 209 e 2
sn+2p(s) (5-1/3)12
sp+3p(s)+

6[sn+4p(s)] * sp+4p(s)+---

Fora=1, p(s)= B’ and Eq.(30) coincides with that of Sack consideration$24,25. The results of numerical calculations
[14] for normal rotational diffusion with a corrected misprint indicate that the matrix continued fraction solutidugs.(28)
[16]. In the high damping limit B’>1), Eq.(30) can be and(29)]and the ordinary continued fraction solution of Ref.
simplified yielding the generalization to fractional dynamics[11] for linear molecules and E¢30) for spherical tops yield

of the Rocard 16] equation, namely, the same resullts.
The approach we have developed may also be extended to

treat all the other averagé®,(cosd))(t) characterizing ori-
X(w)= T+ (iwn)’—(w07)?’ (31 entational relaxation in fluidg2,3], in particular, to evaluate
g the average of the second-order Legendre polynomial
(P,(cos))(t) (this quantity describes the dynamic Kerr-

here NS . .
W effec) which is given in Appendix B.
g=2-a (32) V. RESULTS AND DISCUSSION
On neglecting inertial effects7(—0), Eq.(31) reduces to The infinite matrix continued fraction Eq28) is easily

Eq. (1), i.e., the result previously proposed from empirical computed so that the complex dielectric susceptibility Eq.
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103 a=05 T
JLI': =05 1.2
422 a=10
133 :a=15
T 10'{b'=b=5 . 08
N 8= S
™~
107 0.4-
10_5: . 0.0- :
T T 4] oy T oy T T 0.01 0.1 1
10° 107 107 10° 10°
now nw
FIG. 1. Dielectric loss spectr@”(w) for 8'=p,=5 and vari- FIG. 3. Dielectric loss spectrg”(w) for «=0.5, '=p;=5

ous values of: «=0.5 (curves 1 and 1), a=1.0 (curves 2 and and various values d8: B=0.1 (curve 1, B=1 (curve 2, B=2
2’), ande=1.5 (curves 3 and 3. Solid lines(1, 2, and 3 Eqgs.  (curve 3; circles: Eq.(31); asterisks: Eq(1).
(28) and(29); asterisks (1, 2’, and 3): Eq. (2).

o mNp®
f Wy (w)deT. (33
0

(29) can be readily evaluated for typical values of the model
parametersy, 8’, B,, B, anda. Dielectric lossy”(w) spec-
tra for various values of, B', B, andB are shown in Figs. It is significant that the right hand side of E@3) is deter-
1-5. It is apparent that the half-width and the shape of thénined by molecular parameters only andrisependenbf
dielectric spectra strongly depend an(here pertaining to the temperature and the model parameterg’, andp, . In
anomalous diffusion in velocity spages’, 3., (which char-  contrast, the fractional noninertial rotational diffusion model
acterize the effects of damping and molecular ingréadB [3] [yielding Eq.(1)] predicts infinite integral absorption.
(which accounts for the shape of the molegulEor high We remark that all the above results are obtained by using

damping,8’, B> 1, the low frequency part of”(w) may the Barkai-Silbey{9] fractional form of the Klein-Kramers

. - tion for the evolution of the probability distribution
be approximated by the Cole-Cole Ed) (see Figs. 1-b equation : .
On the other hand, the high-frequency behaviof®f) is function in phase space. In that equation, the fractional de-

ntirelv determinedy the inertia of tem. Just in nor rivative, or memory term, acts only on the right-hand side,
entirely dete edy thenertia of system. Just as O™ that is, on the diffusion or dissipative term. Thus, the form of
mal Brownian dynamics, it is apparent that inertial effects

_ s ) the Liouville operator, or convective derivative is preserved
produce a much more rapid falloff §f'(w) at high frequen- [cf. the right-hand side of Eq4)]. Thus, Eq.(4) has the
cies. Indeed, one can show that our fractional model satisfi€gnyentional form of a Boltzmann equation for the single
the Gordon sum rule for the dipole integral absorp{if],  particle distribution function. The preservation of the Liou-
viz.,

0.4 .
=15
B=F=>5
0.34 A =
1:B=0.1 A S
2:B=1 ..'. <N
= 3:B=2 **
S 02 aliEaN
<}Q ***
*50:
0.1 e,
0.0 . . .
107 10° 10" 10° 10"
nw

FIG. 4. Dielectric loss spectrg”’(w) for a=1.5, B=1 and

FIG. 2. Dielectric loss spectr”(w) for a=1.5, 8'=p,=5 various values of3' =3, : B’'=1 (curve 1, 8’=10 (curve 2, B

and various values d8: B=0.1 (curve 1, B=1 (curve 2, B=2 =100 (curve 3, B’ =10° (curve 4, andB’=10* (curve 5. Aster-
(curve 3; circles: Eq.(31); asterisks: Eq(1). isks: Eq.(1).
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10' 5 predicted by Eq(34), is physically unacceptable, unlike that
] B=1l, a=05 predicted by the Barkai-Silbey equation. For example, the
In 2.2 1L generalization of the Rocard equation gained using(&4),
‘ ' viz.,
R ; (35

X = T o™ 7 2wn?

predicts a divergent absorption coefficient. The root of the
problem appears to be the supposition that the fractional de-
rivative (or memory function with a power law kernel so that
the process depends on the history of the systts on the
FIG. 5. Dielectric loss spectrg”(w) for «=0.5,B=1 and convective terms. If it is allowed to act on these terms, then

various values o3’ =g, : 8'=1 (curve 3, B'=10(curve 2, 8’ the high frequency behavior is no longer entirely inertia con-
=100 (curve 3, B'=10° (curve 4, and’ = 10" (curve 5. Aster-  trolled, it depends on the dissipation through the anomalous
isks: Eq.(1). exponent, with the result, that the Gordon sum rules are vio-

lated, and infinite absorption ensues. This is the reason for

ville operator is equivalent to stating that the Newtonianthe use of the Barkai-Silbey equation. We also remark that

form of the equations of motion underlying the Klein- the_ Ba_rkai-SiIt_)ey equation was originally given_for .SUb.dif'
Kramers equation is preserved. Thus, the high frequency bduSion in velocity spaceq<1), or for enhanced diffusion in
havior is entirely controlled by the inertia of the system, andconfiguration spaces>1). However, the most interesting
does not depend on the anomalous exponent. Consequentf#Se IS subdiffusion in co.nflggratlor} space, corrgspondlng to
the fundamental sum rule, E33), for the dipole integral the que-CoIe equation in dlelect.rlc theory. ThI.S suggests
absorption of single axis rotators is satisfied, ensuring a re€xtending the Barkai-Silbey equation émhanceddiffusion

turn to transparency at high frequencies as demanded dR Velocity space, corresponding subdiffusionin configu-
physical grounds. _rathn space, smce=2—a'. The Justlflcatlon fpr doing thl_s
At this stage, it is appropriate to mention yet another gen!S simply that this generalization yields physically meaning-
eralization to fractional dynamics of the Klein-Kramers ful results for the broad-band spectrum of the complex sus-
equation, which has been proposed in R@l. Here, unlike ~ Ceptibility (), as well as yielding the Cole-Cole equation
Eq. (4), the fractional derivative acts on the convective asin the limit y—0. Itis also apparent that the Barkai-Silbey
well as the diffusive terms in the normal Klein-Kramers €quation must have its origin in a \e (rather than a purely
equation. This equation, in the notation of Ed), reads fracta) time random walK7], as unlike Eq(34), it does not
separate into temporal and spatial parts, moreover, the expo-
nential decay of the normal diffusion theory is not replaced
o ~1-a IW , by a Mittag-Leffler function, as in a fractal time random
=7 %Dt % moxgg | oycotd— To, walk [7]. Such behavior is indicative of coupling between
the jump length probability distribution and the waiting time

IW
9t

probability distribution, that is, the jump length and waiting
3 ﬂ_w ﬂ) [Bi( 0 ksT ‘9W) time are not independent random variables.
Yowy T dwy dog\ X I dwy As far as comparison with experimental data is con-
cerned, the fractional Klein-Kramers model under discussion
9 keT oW 9 may be suitable for the explanation of dielectric relaxation of
+,8(9—( wyW+ - a—) dilute solution of polar moleculessuch as CHGI, CH;ClI,
@y @ etc) in nonpolar glassy solventsuch as decalin at low tem-
peratures, see, e.g., RE27]). Here, in contrast to the normal
diffusion, the model can explain qualitatively the inertia-
: (34 corrected anomaloug$Cole-Cole-like dielectric relaxation
behavior of such solutions at low frequencies. However, one
Equation(34) may also be solved exactly in terms of a scalarwould expect that the model is not applicable at high fre-
continued fraction just as E@4) for the complex suscepti- quencies(in the far-infrared region where the librational
bility of an assembly of noninteracting dipoles. However, thecharacter of the rotational motion must be taken into ac-
complex susceptibility so rendered does not satisfy the Goreount. The failure of the fractional Klein-Kramers model to
don sum rule, the absorption coefficiang”(w) showing a account for the high-frequencyPoley absorption even
marked divergence at high frequencieseasicreases. Thus, though it explains the return to transparency at high frequen-
the high frequency behavior of the dielectric susceptibilitycies is to be expected in view of the assumption made in the

X

z
y Jw,

X

kgT aw)

I, dw,

Wz
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theory that all electrical interactions between dipoles may be APPENDIX A: ORDINARY CONTINUED FRACTION
neglected. SOLUTION FOR SPHERICAL TOP MOLECULES

ACKNOWLEDGMENTS A solution of the system of moment equatiof@g)—(23)

The support of this work by USAF, EOARIContract can be obtained in terms of ordinary continued fractions for
No. FA8655-03-01-3027 the Enterprise Ireland-CNRS SPherical top moleculesf(=p;, andB=1) as follows.
France scheme 2003, and the Russian Foundation for Basien substituting Egs(21) and (23) into Eq.(22) and intro-
ResearchProject No. 01-02-16050is gratefully acknowl- ducing a new quantitya,  defined asan‘kzbﬁék/k!, we
edged. obtain

2(n+k)+3 2(n+Kk) +2

ns+[2(n+k)+1]p(s)+ 2{ns+[2(n+k)+2]p(s)} + 2[ 7s+2(n+Kk)p(s)] Ank

2 10015 n+1 k+1
~ 5P 0%k g (K T 21p(8)] K A{ys[2(nF K T 2]p(s)]

4(n+1) 4k—2
T st 2(ntk)p(s) T st a(ntkyp(s) kL (A1)
Further, for the series
m
0=, -

(where the summation is taken over the elementg with n+k=m, e.g.,Sy=ag0, S;=a; gt ap1, S;=a,0ta;1+ap 2,
etc), we have from Eqs(Al) and (A2)

) 1 2m+3 2m+2
7S M DS o s 2 (mt Dp(s)] | 2L ns+ 2mp(s)]
_ 2b1005 m+1 4m+6 s A3
= P00 ome” 2 s o mT Dp(8)] T st 2mp(s) T (A3)
|
or The continued fraction solution of the three-term recurrence
Eq. (A4) is
+ — 2 1,0,
(75— Um)Sm=UmSm+1= AmSm-1= — gbojo(0)5m,o.
(A4) 2 nbgJ0)
So=— = . (A8)
where Y 75— Go 91
po G a;dz
2m—+3 I NI
__ _ 7S—Qzx— .
Un= = (2m+ D e(8) = o s 2(m+ Dp(s)]
S The quantitybyg is then given by
7ns+2mp(s)’ (AS) 00
N m+1 _ bgJ0) 1
=— , AG 10 007,
n= " 2 ys+2(m+ 1)p(s)] (A6) boo=—¢—+ 277330- (A9)
. 4m+6 A7
Im=" 7Ss+2mp(s) (A7) Taking into account EqQgA4)—(A9) and noting the equality
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2n+3 (n+1)(2n+5) 1 we obtain
2A 2A2 n+2
A Bézg(S) U Al10
ons 3 1 bgd0) sn+Z, (A10)
1 20T
_ n ,
2(n+2)A A n+2 where the infinite continued fractiafy, is determined by the
B recurrence relation
. n/2 A1l
" 1 n(n+3) ' (ALD)

PN S isy (5] | 2(n+ 2057+ np(9)+ Zo )

Equations(A10) and(A1l) yield Eq. (30). [ s+ 2np(s)+ kpz(s)/B]Eﬁ';z
APPENDIX B: DYNAMIC KERR EFFECT RESPONSE = —nb2 '—4(n+1)b2 "1, + VB(DZZ, ,+2KB2Z ),
One may also readily derive differential-recurrence equa- (BS)

tions for the statistical moments involving the associate Leg-

endre functions of order 2¢€2) pertaining to the dynamic ) _ ~
Kerr effect, viz. b2 "(t) [so thatb? o(t) (P,(cosH))(®)]. Then the hierarchy of equations fbﬁ «(s) Egs.(B1)—(B5)

These equat|ons can be written as a system of algebraic réan be transformed into the matrix three-term differential-
currence relations in the frequency domain using Laplacé€currence equation
transformation, namely,

[ 78!5n— Qn(S)1Cn(S) = Qp Cps1(5)— Q; Coa(S)
=6,17C1(0)  (n=1), (B6)

[ 7s+2np(s)+kp,(s)/BIbZ

_77000(0)5n+k0+ bﬁi+2bn 1k, (B1)

where the supercolumn vect6¥,(s) comprising of five sub-

[ #s+(2n+ l)p(s)—i—kpz(s)/B]'Bﬁ:ﬁ vectors
:__(n+1)b“+1k 6(n+1)b7k+ b2+1k+b i« T20.(s) =2m
’“21 A(s) tz’n 0(s)
_—\/—(bn k+l+2kbnk 1 (BZ) 6n(s): "“2 l(s) , ’éﬁ’m(s): b 11(5) , (B7)
~22 ()
~2 2(s) bojnm(s)

[ 7S+ (2n+1)p(s)+kp,(s)/BIBZ

and the matrice®, , Q,, andQ, are given b
bn+1k+b2k2+ \/_(b2 +1+2kbnk o &+ Qn Qn g y

(B3) 0qg 0 0 0
0 0 -p. O 0

[ 75+ 2np(s)+kp,(s)/BIb2% Q=0 pr 0o o0 o |,
= —nbZi—4(n+1)b2,  — VB(bZ 2, + 2kbZ 2 0 v, O 0 -—2p,
(B4) 0 0 v 2p, O
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0 0 0 0 0 above and the submatrices are
37 0 —py vi 0 o o
Q= 0 pm O O v [, 0 n-1 0
0O 0 O 0 -2p} Vo=—4 . |
0 0 0 2p; 0 2
0 0 B
an(s) /2 0 0 0 nx(n—1)
1 0
6(rp—1y) Gxs) O I, O
110 1
Qn(s)= 0 0 qs) 0 1, |. =
0 r 0 O(s 0
n qn()0 00 10
0 0 I 0 gys) nx(n+1)

L. The exact solution, for the Laplace transfofﬁi(s) is
Here the submatriceg, , g, , r,, and q,'\{'(s) are defined then given by the matrix continued fraction, viz.,

s

Cils)=17 » C1(0) (B8)
7sls—Q1—Qy I Qz
sli—Q—Q; ———=—Q3
7Sl10— Q2= Q; 7Sl 16— Qs . 3
|
with initial conditions andC,(0)=0 for all n=2.
) As an example the results of numerical calculations for linear
€715 (I,=0) molecules based on the above matrix continued frac-
0 tion solution have been compared with that of Ré&f] pre-
C,(0)= 0 sented in terms of ordinary continued fractions. The numeri-
0 cal calculations show that both matrix and ordinary
0 continued fraction solutions yield the same results.
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