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Anomalous diffusion and dielectric relaxation in an N-fold cosine potential
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The fractional Klein-Kramers~Fokker-Planck! equation describing the fractal time dynamics of an assembly
of fixed axis dipoles rotating in anN-fold cosine potential representing the internal field due to neighboring
molecules is solved using matrix continued fractions. The result can be considered as a generalization of the
solution for the normal Brownian motion in a cosine periodic potential to fractional dynamics~giving rise to
anomalous diffusion! and also represents a generalization of Fro¨hlich’s model of relaxation over a potential
barrier. The solution includes both inertial and strong internal field effects, which in combination produce a
strong resonance peak~Poley absorption! at high frequencies due to librations of the dipoles in the potential, an
anomalous relaxation band at low frequencies mainly arising from overbarrier relaxation, and a weaker relax-
ation band at midfrequencies due to the fast intrawell modes. The high-frequency behavior is controlled by the
inertia of the dipole, so that the Gordon sum rule for dipolar absorption is satisfied, ensuring a return to optical
transparency at very high frequencies. Application of the model to the broadband~0–THz! dielectric loss
spectrum of a dilute solution of the probe dipolar molecule CH2Cl2 in glassy decalin is demonstrated.
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I. INTRODUCTION

The theory of rotational Brownian motion in the presen
of a potential arising from internal fields is of fundamen
importance in a number of problems involving relaxati
and resonance phenomena in stochastic systems@1#. A rudi-
mentary example is the theory of dielectric relaxation of no
interacting polar molecules due to Debye@2#, which is based
on a kinetic equation, namely, the~approximate! Smolu-
chowski equation for the rotational diffusion of the mo
ecules. There, because interactions between dipoles ar
nored, the only potential arises from the spatially unifo
weak external ac field. The complex dielectric susceptibi
from this theory agrees substantially with experimental d
in the microwave region, predicting the observed broadb
absorption. The Debye theory has very recently been ge
alized to anomalous dielectric relaxation which~excluding
inertial effects! is characterized by a nonexponential diele
tric decay function@3#. In general, for noninteracting dipole
the usual exponential decay function of the Debye theor
replaced by a Mittag-Leffler function which exhibit
stretched exponential behavior at short times and a long
tail @4,5#. The complex dielectric susceptibility yielded b
that function~Cole-Cole behavior! @6# is substantially in ac-
cord with experimental data on dielectric relaxation of am
phous polymers, glass-forming liquids, etc.@5,6#. Moreover,
Nigmatullin and Ryabov@6# have shown how other relax
ation behaviors such as the Davidson-Cole function may
be modeled using fractional calculus@6#.

In the context of this paper, we emphasize that neither
Debye theory nor its various@3,6# extensions to fractiona
1063-651X/2003/67~6!/061115~11!/$20.00 67 0611
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Brownian motion include the inertia or internal field effect
Inertial effects in the theory of the normal Brownian motio
were studied by Rocard@7#, Gross@8#, and Sack@9#. Gross
and Sack@8,9# studied these effects by solving the Fokke
Planck equation~which for a separable and additive Ham
tonian is known as the Klein-Kramers equation! for the dis-
tribution function of dipolar rotators in phase space. Th
obtained the complex susceptibility in exact continued fr
tion form, so predicting a return to optical transparency
high frequencies, unlike the infinite integral absorption p
dicted by the Debye theory. The earlier Rocard result may
recovered from their continued fraction solution for sm
inertial effects. Their calculations have very recently be
extended to fractional Brownian motion by Coffeyet al.
@10,11#, ensuring a return to optical transparency at high f
quencies in fractional dynamics just as in the conventio
Brownian dynamics. The approach developed in@10,11# was
based on the fractional Klein-Kramers equation proposed
Barkai and Silbey@12#. The solution for the complex suscep
tibility given in Refs. @10,11# emerges in continued fractio
form in a manner entirely analogous to the conventio
Brownian motion result because of a useful generalization
the integration theorem of Laplace transformation to fra
tional calculus@4#.

As far as the inclusion of an internal field potential com
bined with inertial effects is concerned, the problem is mu
more difficult than that of including inertia alone, in both th
normal and fractional Brownian dynamics. Thus, referring
normal Brownian dynamics, all the initial attempts to sol
the problem were made in the noninertial limit@13–16#. In
particular, in Ref.@16# it was shown by representing the co
©2003 The American Physical Society15-1
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figuration space distribution function in Fourier series h
the complex susceptibility, etc., could be obtained exactly
scalar continued fraction form by Laplace transformation
the differential recurrence relations for the Fourier coe
cients. The particular problem treated was the Brownian m
tion of a rotator about a fixed axis in the presence of a cou
potential, whereu is the angular coordinate of the rotato
Moreover, it was demonstrated, using the final value theo
@17# for Laplace transforms, how the correlation time of t
dielectric decay function could be obtained in closed fo
@16#. The relevance to the present problem of this potentia
that it is possible to model relaxation effects involving e
cape of dipoles over a potential barrier@16#. We remark in
passing that, in the context of the present work, overbar
relaxation due to normal diffusion has been extensively d
cussed by Fro¨hlich @18#. This model again gives rise t
Debye-like relaxation behavior; however, the relaxation ti
depends exponentially on the barrier height through
Arrhenius law. Fro¨hlich used transition state theory@19,20#
and a rate equation approach originally suggested by De
@2# so that a discrete set of orientations for the dipoles of
assembly is implicitly assumed. A continuous distribution
orientations may be treated by the use of methods base
the Klein-Kramers equation or its fractional equivale
These diffusion equations also allow one to include explic
in Fröhlich’s model in both discrete~normal! and fractal time
dynamics the influence of~i! the dissipative coupling to the
heat bath on the Arrhenius~overbarrier! process and~ii ! mo-
lecular librations and the fast~high-frequency! intrawell re-
laxation modes on the relaxation process. Moreover, the
fusion equation method when applied to a system of dipo
with an internal field potential also indicates how the origin
kinetic equation approach of Debye may be reconciled w
his rate equation treatment.

The Fokker-Planck equation approach described in R
@16# was subsequently extended to many problems in die
tric relaxation of liquid crystals and magnetic relaxation
single domain ferromagnetic particles involving rotation
space. These are comprehensively summarized in Ref.@1#.
Although the noninertial rotational motion in space in t
presence of a mean field potential has been fully describ
almost all the discussion concerninginertial effectsand an
internal fieldpotential has been in the context of the moti
of a rotator about a fixed axis in a periodic potential rep
senting the internal field@21–23#. This problem, on expand
ing the phase space distribution function in the Kle
Kramers equation in a Fourier series, leads to a differen
recurrence relation in two characteristic numbers, nam
the ordern of the Hermite polynomialsHn(hu̇) in the angu-
lar velocity u̇ and q of the circular functionse2 iqu, where
h5AI /2kT, I is the moment of inertia of a rotator, andkT is
the thermal energy. The differential recurrence relation
two variables is a particular example of that given by Brin
man @24# in his attempt to justify the approximate Smol
chowski equation for the distribution function in configur
tion space from the Klein-Kramers equation for t
translational Brownian motion in phase space~for a sum-
mary of the applications to dielectric relaxation, see Re
06111
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@22#, @23#!. There the problem of calculating the comple
susceptibility has been formulated, and numerical soluti
for the angular velocity correlation function have been giv
in Ref. @23#. However, the complex polarizability was no
calculated.

The first attempt to calculate the complex polarizabil
including inertial effects and a potential arising from the i
ternal field was made by Reid@25#, who gave numerical
results in a limited number of specialized cases. Only v
recently, however, has it became possible to treat the ca
lation of the Fourier coefficients in a systematic way for t
conventional Brownian motion. The difficulty arises becau
when inertial effects are included the two recurring numb
n and q always give rise to a matrix recurrence relatio
Matrix continued fractions are therefore an ideal way
solving such recurrence relations. This has been acc
plished in Ref.@26#, where it was shown that the linear an
nonlinear responses of an assembly of fixed axis rotator
the presence of a strong spatially uniform external field~that
is, a cosu potential! may be systematically solved using th
matrix continued fraction method. This method has also b
extended to calculate the linear dielectric response of
cage model of polar liquids originally proposed by H
@27,28#.

It is the purpose of this paper to generalize the res
@10,11# by including the effect of an internal field potentia
~and so dielectric relaxation due to barrier crossing by
poles! in the fractional Brownian dynamics. As in@10,11#,
our approach is based on the fractional Klein-Kramers eq
tion for the translational Brownian motion in a potential pr
posed by Barkai and Silbey@12#. The solution of the rota-
tional analog of this fractional Klein-Kramers equation
accomplished using the matrix continued fraction meth
and the generalized integration theorem~i.e., the properties
of the inverse linear differential operator! of Laplace trans-
formation @17,29#. These methods also allow us to consid
the mechanism underlying the high-frequency~far infrared!
absorption peak in fractional dynamics. Moreover, they
cilitate the extension of the important cage model of po
fluids @27,28# to fractional dynamics. In order to simplify ou
presentation we confine ourselves to the linear response
small ac applied field.

II. RECURRENCE RELATIONS FOR STATISTICAL
AVERAGES FOR ROTATION ABOUT A FIXED AXIS

We illustrate by considering one of the simplest micr
scopic models of dielectric relaxation, namely, an assem
of rigid dipoles each of momentm rotating about a fixed axis
through its center@8,9,23#. A dipole has moment of inertiaI
and is specified by the angular coordinateu so that it consti-
tutes a system of one~rotational! degree of freedom. The
internal field due to molecular interactions is represented
an N-fold cosine potential:

V~u!52V0 cosNu. ~1!

We suppose that a uniform fieldE ~having been applied to
the assembly of dipoles at a timet52` so that equilibrium
5-2
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conditions prevail by the timet50) is switched off att
50. In addition, we suppose that the field is weak~i.e., mE
!kT, which is the linear response condition@30#!. For t
<0 andt→`, the distribution functions are linearized Bol
zmann distributions, viz.@31,32#,

Wt<0'
e2~hu̇ !21jV cosNu@11j cos~u2Q!#

E
V

e2~hu̇ !21jV cosNu@11j cos~u2Q!#dV

5W0~u,u̇ !@11j cos~u2Q!2j^cos~u2Q!&0#

~2!

and

Wt→`[W0~u,u̇ !5Z21e2~hu̇ !21jV cosNu, ~3!

respectively. HereZ is the partition function,Q is the angle
betweenE and thez axis in the planezx,

j5
mE

kT
, jV5

V0

kT
, ~4!

and ^ &0 means the equilibrium statistical average ov
W0(u,u̇).

Our goal is to evaluate the transient relaxation of the e
tric polarization defined as@31,32#

PE~ t !5mN0@^cos~u2Q!&~ t !2^cos~u2Q!&0#

5~cosQ!Pi~ t !1~sinQ!P'~ t !, ~5!

where

Pi~ t !5mN0@^cosu&~ t !2^cosu&0#, ~6!

and

P'~ t !5mN0@^sinu&~ t !2^sinu&0# ~7!

are the longitudinal and transverse components of the po
ization, N0 is the concentration of dipoles, and the angu
bracketŝ &(t) denote the statistical averages over the ass
bly of rotators. According to linear response theory@31,32#,
the decay of the longitudinal and transverse component
the polarization of a system of noninteracting planar dipo
when a small uniform external fieldE is switched off at time
t50, is

Pi~ t !5~cosQ!ECi~ t ! ~8!

and

P'~ t !5~sinQ!EC'~ t !, ~9!

where@28,29#

Ci~ t !5
m2N0

kT
@^cosu~0!cosu~ t !&02^cosu~0!&0

2# ~10!

and
06111
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C'~ t !5
m2N0

kT
@^sinu~0!sinu~ t !&02^sinu~0!&0

2# ~11!

are the longitudinal and transverse relaxation functions. T
longitudinal and transverse components of the complex s
ceptibility tensor are defined as

xg~v!5xg8~v!2 ixg9~v!

5Cg~0!2 ivE
0

`

e2 ivtCg~ t !dt ~g5i ,' !.

~12!

By supposing that the local configuration potential is u
formly distributed in a plane, we may define the averag
susceptibilityx~v! as

x~v!5@x i~v!1x'~v!#/2, ~13!

which yields after elementary manipulation of Eqs.~10! and
~11!

x~v!5
m2N0

2kT F12 ivE
0

`

^cosDu~ t !&0e2 ivtdtG , ~14!

whereDu(t)5u(t)2u(0).
The starting point in our calculation ofx~v! from Eq.~14!

is the fractional Klein-Kramers equation for the probabili
density functionW(u,u̇,t) in the phase space (u,u̇) @10,11#,
which is identical to that for the one-dimensional trans
tional Brownian motion of a particle@12#, except that rota-
tional quantities~angleu, moment of inertiaI, etc.! replace
translational ones~position x, massm, etc.!, so that for t
.0 the hydrodynamical derivative is

]W

]t
1 u̇

]W

]u
2NV0 sinNu

]W

I ]u̇

50Dt
12at12abS ]

]u̇
~ u̇W!1

kT

I

]2W

]u̇2 D . ~15!

Hereb5z/I , z is the damping coefficient of a dipole,t is the
intertrapping time scale, which we identify with the Deby
relaxation timez/kT ~at ambient temperatures,t is of the
order 10211 s for molecular liquids and solutions!, anda is
the anomalous exponent or order of the fractional deriva
characterizing the fractal time process. Thus the fractio
dynamics emerges from the competition of Brownian mot
events of average durationt interrupted by trapping event
whose duration is broadly distributed@4#. Equation~15! with
anomalous exponenta such that 1<22a<2 describes
anomalous enhanced diffusion in configuration space acc
ing to Barkai and Silbey@12#. The valuea51 corresponds
to normal diffusion. Here the operator 0Dt

12a

[(]/]t)0Dt
2a in Eq. ~15! is defined in terms of the convo

lution ~the Riemann-Liouville fractional integral definition!
@4#
5-3
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0Dt
2aW~u,u̇,t !5

1

G~a!
E

0

t W~u,u̇,t8!dt8

~ t2t8!12a . ~16!

Thus, the fractional derivative is a type of memory functi
@4#. Moreover, a slowly decaying power-law kernel in th
Riemann-Liouville operator~16! is typical of memory effects
in complex systems.

We seek a solution of the fractional Klein-Kramers equ
tion, Eq.~3!, for the caseE50 at t.0 by using the method
of separation of variables in the form of the Fourier serie

W~u,u̇,t !5 1
2 hp23/2e2h2u̇2

3 (
n50

`

(
q52`

`
1

2nn!
f n,q~ t !Hn~hu̇ !eiqu, ~17!

whereHn(x) are the Hermite polynomials. Noting that@33#

d

dx
Hn11~x!52nHn21~x!, ~18!

Hn11~x!52xHn~x!22nHn21~x!, ~19!

and

E
2`

`

Hn~x!Hm~x!e2x2
dx5Ap2nn!dn,m , ~20!

we have the recurrence relation for

f n,q~ t !5^Hn~hu̇ !e2 iqu&~ t !, ~21!

which is given by

h ḟ n,q~ t !1
iq

2
@ f n11,q~ t !12n fn21,q~ t !#

1
inNjV

2
@ f n21,q1N~ t !2 f n21,q2N~ t !#

520Dt
12at12anb8 f n,q~ t !, ~22!

where b85bh. On using the integration theorem@17# of
Laplace transformation generalized to fractional calculus@4#,
viz.,

L$0Dt
12a f ~ t !%5H s12a f̃ ~s!2Dt

2a f ~ t !u t50 ~0,a,1!,

s12a f̃ ~s! ~1<a,2!,
~23!

where f̃ (s)5L$ f (t)%5*0
`e2stf (t)dt, we have from Eq.~22!

2hs f̃0,q~s!1 iq f̃ 1,q~s!52h f 0,q~0!, ~24!

@2hs1ng822a~hs!12a# f̃ n,q~s!1 iq@ f̃ n11,q~s!

12n f̃n21,q~s!#1 inNjV@ f̃ n21,q1N~s!2 f̃ n21,q2N~s!#

50 ~n>1!. ~25!
06111
-

Hereg85t/h5zA2/IkT is the inertial effects parameter~so
that largeg8 characterizes small inertial effects, and vi
versa;g85A2/gS, wheregS5IkT/z2 is the inertial param-
eter used by Sack@9#! and f n,q(0)50 for n>1 because

^Hne2 iqu&050 ~26!

for the equilibrium Maxwell-Boltzmann distribution@1#. We
remark that the calculation of the longitudinal and transve
components of the complex susceptibility tensor differs o
in the term f 0,q(0) which must be evaluated atQ50 and
p/2, respectively. The calculation of the averaged susce
bility from Eqs.~13! and~14! can be carried out formally by
solving Eqs.~24! and ~25! for the functions

cn,q~ t !5^Hn~hu̇ !e2 i @qu~ t !2u~0!#&0 , ~27!

which obey the same recurrence Eq.~22! as thef n,q(t). The
complex susceptibility is then given by

x~v!5
m2N0

2kT
@12 iv c̃0,1~ iv!#. ~28!

III. MATRIX CONTINUED FRACTION SOLUTION OF
EQS. „24… AND „25… FOR NÄ2

As we already mentioned in the Introduction, we choo
as an example of an internal field potential a double-w
potential (N52) which will allow us to treat overbarrie
relaxation@16# ~for N51 corresponding to a uniform electri
field this process does not exist!. In order to solve Eqs.~24!
and~25!, we shall use matrix continued fractions@1,26#. This
is accomplished as follows. We introduce the column vect

C̃1~v!5S ]

c̃0,22~ iv!

c̃0,21~ iv!

c̃0,1~ iv!

c̃0,2~ iv!

]

D , C̃n~ iv!5S ]

c̃n21,22~ iv!

c̃n21,21~ iv!

c̃n21,0~ iv!

c̃n21,1~ iv!

c̃n21,2~ iv!

]

D
~n>2!. ~29!

Now, from the recurrence Eqs.~24! and ~25! we have the
matrix recurrence equations

@2ihv2Qn~v!#C̃n~v!2Qn
1C̃n11~v!2Qn

2C̃n21~v!

52hdn,1C1~0! ~n>1!, ~30!

where
5-4
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C1~0!5
1

I 0~jV! 1
]

I 3~jV!

0
I 2~jV!

0
I 1~jV!

I 0~jV!

0
I 1~jV!

0
I 2~jV!

]

2 ~31!

and the matricesQn(v), Qn
1 , and Qn

2 are defined by
06111
Qn~v!52g822a~ ihv!12a~n21!I , ~32!

Qn
152 iS � ] ] ] ] ] �

¯ 22 0 0 0 0 ¯

¯ 0 21 0 0 0 ¯

¯ 0 0 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯

� ] ] ] ] ] �

D , ~33!
Qn
2522i ~n21!S � ] ] ] ] ] ] ] ] ] �

¯ 2jV 0 22 0 jV ¯ 0 0 0 ¯

¯ ¯ 2jV 0 21 0 jV ¯ 0 0 ¯

¯ 0 ¯ 2jV 0 0 0 jV ¯ 0 ¯

¯ 0 0 ¯ 2jV 0 1 0 jV ¯ ¯

¯ 0 0 0 ¯ 2jV 0 2 0 jV ¯

� ] ] ] ] ] ] ] ] ] �

D , ~34!

and I is the unit matrix of infinite dimension. The exceptions are the matricesQ1
1 andQ2

2 , which are given by

Q1
152 iS � ] ] ] ] ] �

¯ 22 0 0 0 0 ¯

¯ 0 21 0 0 0 ¯

¯ 0 0 0 1 0 ¯

¯ 0 0 0 0 2 ¯

� ] ] ] ] ] �

D , ~35!

Q2
2522iS � ] ] ] ] ] ] ] ] �

¯ 2jV 0 22 0 0 0 0 0 ¯

¯ 0 2jV 0 21 jV 0 0 0 ¯

¯ 0 0 2jV 0 0 jV 0 0 ¯

¯ 0 0 0 2jV 1 0 jV 0 ¯

¯ 0 0 0 0 0 2 0 jV ¯

� ] ] ] ] ] ] ] ] �

D . ~36!

Here we have taken into account the initial conditions forc0,q(0), viz.,
5-5
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c0,q~0!5^e2 i ~q21!u&05

E
0

2p

e2 i ~q21!uejV cosNudu

E
0

2p

ejV cosNudu

5dq21,mN

I m~jV!

I 0~jV!
, ~37!

where I n are modified Bessel functions of the first kind
ordern @33#. In order to prove Eq.~37!, we noted that@33#

e2 i ~q21!uejV cosNu5 (
m52`

`

I m~jV!ei ~mN2q11!u. ~38!

By invoking the general method for solving the matr
recurrence Eq.~30! @1,26#, we have the exact solution for th
spectrumC̃1(v) in terms of a matrix continued fraction, viz

C̃1~v!52hD1~ iv!C1~0!, ~39!

where the matrix continued fractionDn( iv) is defined by

Dn~ iv!5@2ihvI2Qn2Qn
1Dn11~ iv!Qn11

2 #21. ~40!

IV. RESULTS AND DISCUSSION

The exact matrix continued fraction solution@Eq. ~39!#
we have obtained is very convenient for the purpose of co
putation~various algorithms for calculating matrix continue
fractions are discussed in Ref.@21#, Chap. 9!. As far as prac-
tical calculation of the infinite matrix continued fraction E
~40! is concerned, we approximate that by some matrix c
tinued fraction of finite order~by setting Qn

2 , Qn
150 at

somen5N). Simultaneously, we restrict the dimensions
the matricesQn

2 , Qn
1 , and Qn to some finite numberM.

Both of the numbersN andM depend on the barrier heigh
jV and dampingg8 parameters and must be chosen by tak
into account the desired degree of accuracy of the calcula
~with decreasingg8 and increasingjV bothN andM must be
increased!. Having calculatedC̃1(v) from Eqs. ~39! and
~40!, we may evaluate the complex dielectric susceptibi
x~v! from Eq.~28! for all values of the model parametersh,
g8, jV , anda.

The realx8(v) and imaginaryx9(v) parts of the com-
plex susceptibility for various values ofa ~which in the
present context pertains toanomalous diffusion in velocity
space!, jV ~which is the barrier height parameter!, and g8
~which characterizes the effects of molecular inertia:g8→0
and g8→` characterize large and small inertial effects,
spectively! are shown in Figs. 1–7~the calculations were
carried out form2N0/2kT51). For jV50, the calculation
shows that the matrix continued fraction algorithm yields
same results as the exact analytic solution for the free r
tional diffusion obtained in Ref.@10#. viz.,
06111
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x~v!5
m2N0

2kT H 12
~ i tv!22a

11~ i tv!22a

3M „1,11B@11~ i tv!22a#,B…J , ~41!

whereB52g822( ivt)2(a21) andM (a,b,z) is the confluent
hypergeometric~Kummer! function @33#.

The shape of the dielectric spectra strongly depends
the anomalous exponenta ~Fig. 1!, jV ~Figs. 2–4!, andg8
~Figs. 5–7!. In general,threebands may appear in the diele
tric lossx9(v) spectra; the corresponding dispersion regio
are visible in the spectra ofx8(v). One anomalous relax
ation band dominates the low-frequency part of the spe
and is due to the slow overbarrier relaxation of the dipoles
the double-well cosine potential as identified by Fro¨hlich
@18#. The characteristic frequencyvR of this low-frequency
band strongly depends on the barrier heightjV and the fric-
tion parameterg8 as well as on the anomalous exponenta.
Regarding the barrier height dependence, the frequencyvR
decreases exponentially as the barrier heightjV is raised.
This behavior occurs because the probability of escape
dipole from one well to another over the potential barr
exponentially decreases with increasingjV ~cf. Figs. 2–4!.
As far as the dependence of the low-frequency part of
spectrum for small inertial effects (g8.10) is concerned, the

FIG. 1. Real and imaginary parts of the complex susceptibi
x~hv! vs normalized frequencyhv for g8510 andjV53 and vari-
ous values of the fractional parametera.
5-6
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frequencyvR decreases asg8 increases as is apparent b
inspection of curves 3–6 in Figs. 5–7. For large inertial
fects (g8,0.1) the frequencyvR decreases with decreasin
g8 for given values ofjV for the enhanced diffusion in con
figuration space (a,1) and for normal diffusiona51 ~cf.
curves 1–3 in Figs. 5 and 6!; for the subdiffusion (a.1),
however, this frequency does not show such a behavior.

We remark that a very high-frequency band is visible
all the figures. This band is due to the fast inertial libratio
of the dipoles in the potential wells. This band correspon
to the terahertz~far-infrared! range of frequencies and is us
ally associated with the Poley absorption@22#. ForjV@1, the
characteristic frequency of librationsvL increases as
;AV0 /I ~this frequency is weakly dependent ona!. As far
as the behavior as a function ofg8 is concerned, the ampli
tude of the high-frequency band decreases progressively
increasingg8 for small inertial effectsg8@1, as one would
intuitively expect. On the other hand, for large inertial effe
g8!1, a fine structure appears in the high-frequency par
the spectra@due to resonances at high harmonic frequenc
of the almost free motion in the~anharmonic! cosine poten-
tial#, again in accordance with intuition. We further rema
that the high-frequency (v@vL) behavior ofx̂9(v) is en-
tirely determined by the inertia of the system. Moreover, j
as in the normal Brownian dynamics, the inertial effects p
duce a rapid falloff ofx̂9(v) at high frequencies. It is easil

FIG. 2. Real and imaginary parts of the complex susceptibi
x~hv! vs normalized frequencyhv for a51.5 andg850.4 and
various values of the barrier height parameterjV .
06111
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demonstrated@10# that the fractional model under conside
ation satisfies the Gordon sum rule for the dipole integ
absorption of rotators in a plane, viz.,

E
0

`

vx9~v!dv5
pN0m2

4I
. ~42!

It is significant that the right hand side of Eq.~42! is deter-
mined by molecular parameters only and is independen
the model parametersa, jV , andz. Fora51, the anomalous
rotational diffusion solution coincides with that for norm
rotational diffusion.

Finally, it is apparent that between the low-frequency a
very high-frequency bands, at some values of model par
eters, athird band exists in the dielectric loss spectra~see,
e.g., Fig. 5!. This band is due to the high-frequency rela
ation modes of the dipoles in the potential wells~without
crossing the potential barrier! which will always exist in the
spectra even in the noninertial limit@16#. Such relaxation
modes are generally termed theintrawell modes. The char-
acteristic frequency of this band depends on the bar
heightjV and the anomalous exponenta.

In Fig. 8, a comparison is shown of experimental data
a 10% v/v solution of a probe molecule CH2Cl2 in glassy
decalin at 110 K@34# with the theoretical dielectric loss spec
trum «9(v);(«02«`)x9(v)/x8(0) calculated from Eqs.
~28! and ~39!. The reduced moment of inertiaI r used in the
calculation is defined byI r

215I b
211I c

21, whereI b andI c are

y FIG. 3. The same as Fig. 1 fora51.0.
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the principal moments of inertia about molecular axes p
pendicular to the principal axisa along which the dipole
moment vector is directed. For the CH2Cl2 molecule I r
50.24310238 g cm2 @22#. The use of the reduced momentI r
allows one to obtain the correct value for the dipolar integ
absorption for two-dimensional models. The phenomenolo
cal model parametersjV , g8, anda were adjusted by using
the best fit of experimental data. It is known that in order
describe the low-frequency dielectric relaxation in such
ganic glasses, one must consider anomalous diffusion
relaxation@22#. The high-frequency Poley absorption is al
observed in molecular glasses in the far-infrared region~e.g.,
@22,34#!. Figure 8 indicates that our generalized Fro¨hlich
model explains qualitatively the main features of thewhole
broadband ~0–THz! dielectric loss spectrum of th
CH2Cl2/decalin solution, in contrast to the normal diffusio
in a periodic potential~curve 2!, which cannot explain the
anomalous dielectric relaxation behavior at low frequenc
One can also see in Fig. 8 that the low-frequency part of
loss spectrumx̂9(v), which may be approximated by th
modified Debye~Cole-Cole! equation

x~v!

x8~0!
5

1

11~ iv/vR!22a , ~43!

is also explained by the generalized Fro¨hlich model.
We remark that all the above results are obtained by us

the Barkai-Silbey@12# fractional form of the Klein-Kramers

FIG. 4. The same as Fig. 1 fora50.5.
06111
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e
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equation for the evolution of the probability distributio
function in phase space. In that equation, the fractional
rivative, or memory term, acts only on the right hand sid
that is, on the diffusion or dissipative term. Thus, the form
the Liouville operator, or convective derivative is preserv
@cf. the right-hand side of Eq.~15!#. Thus, Eq.~15! has the
conventional form of a Boltzmann equation for the sing
particle distribution function. The preservation of the Lio
ville operator is equivalent to stating that the Newtoni
form of the equations of motion underlying the Klein
Kramers equation is preserved. Thus, the high-frequency
havior is entirely controlled by the inertia of the system a
does not depend on the anomalous exponent. Conseque
the fundamental sum rule for the dipole integral absorpt
of single axis rotators is satisfied, ensuring a return to tra
parency at high frequencies as demanded on phys
grounds. These conclusions have been verified by solving
Barkai-Silbey equation for the simple problem of the diele
tric relaxation of an assembly of noninteracting dipoles f
lowing the removal of a constant field@10#. That equation is
simply Eq.~15! in the absence of an external potential.

At this stage, it is appropriate to mention yet another g
eralization to fractional dynamics of the Klein-Krame
equation, which has been proposed in Refs.@35#, @36#, and in
a modified form in@37#. Here, unlike Eq.~15!, the fractional

FIG. 5. Real and imaginary parts of the complex susceptibi
x~hv! vs normalized frequencyhv for a51.5 andjV53 and vari-
ous values of the friction parameterg8.
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derivative acts on the convective as well as the diffus
terms in the normal Klein-Kramers equation. This equati
in the notation of Eq.~15!, reads

]W

]t
50Dt

12at12aH 2 u̇
]W

]u
1NV0 sinNu

]W

I ]u̇
1bF ]

]u̇
~ u̇W!

1
kT

I

]2W

]u̇2 G J . ~44!

Equation~44! may also be solved exactly@38# in terms of a
scalar continued fraction just like Eq.~15! for the complex
susceptibility of an assembly of noninteracting dipole
However, the complex susceptibility so rendered does
satisfy the Gordon sum rule, the absorption coeffici
vx9(v) showing a marked divergence at high frequencies
v increases@38#. Thus, the high-frequency behavior of th
dielectric susceptibility predicted by Eq.~44! is physically
unacceptable, unlike that predicted by the Barkai-Silb
equation. The root of the problem appears to be the sup
sition that the fractional derivative, or memory function, a
on the convective terms. If it is allowed to act on these ter
then the high-frequency behavior is no longer entirely ine

FIG. 6. The same as Fig. 4 fora51.0.
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FIG. 7. The same as Fig. 4 fora50.5.

FIG. 8. Broadband dielectric loss spectrum of 10%~vol/vol!
solution of probe molecule CH2Cl2 in glassy decalin at 110 K.
Symbols are the experimental data@34#. Curve 1 is the best fit for
the anomalous diffusion in the double-well cosine potentiala
51.5, jV58, andg50.003); curve 2 is the best fit for the norma
diffusion (a51, jV57, andg50.001) in the double-well cosine
potential; filled circles are the noninertial Eq.~43!. The dashed line
~3! is the Cole-Cole equation~43!.
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controlled; it depends on the dissipation through the ano
lous exponent, with the result that the Gordon sum rules
violated, and infinite absorption ensues. This is the reason
the use of the Barkai-Silbey equation. We also remark t
the Barkai-Silbey equation was originally given for subd
fusion in velocity space (a,1), or for enhanced diffusion in
configuration space (s.1). However, the most interestin
case is subdiffusion in configuration space, correspondin
the Cole-Cole equation in dielectric theory. This sugge
extending the Barkai-Silbey equation toenhanceddiffusion
in velocity space, corresponding tosubdiffusionin configu-
ration space, sinces522a. The justification for doing this
is simply that this generalization yields physically meanin
ful results for the broadband spectrum of the complex s
ceptibility x̂(v), as well as yielding the Cole-Cole equatio
in the limit g→0. It is also apparent that the Barkai-Silbe
equation must have its origin in a Le´vy ~rather than a purely
fractal! time random walk@36#, as unlike Eq.~44! it does not
separate into temporal and spatial parts. Moreover, the e
nential decay of the normal diffusion theory is not replac
by a Mittag-Leffler function, as in a fractal time rando
walk @36#. Such behavior is indicative of coupling betwee
the jump length probability distribution and the waiting tim
probability distribution, that is, the jump length and waitin
time are not independent random variables.

Concerning the previous paragraph, we remark that a g
eral characteristic of the systems we have treated is that
,

s.

E

E

al-

is

06111
a-
re
or
at

to
ts

-
s-

o-
d

n-
ey

are nonlocal in both space and time and so give rise
anomalous diffusion@39#. The generalized Fro¨hlich model
we have outlined incorporates both resonance and relaxa
behavior and so may simultaneously explain both the ano
lous relaxation~low-frequency! and far-infrared absorption
spectra of complex dipolar systems. Moreover, a third m
frequency relaxation band may appear in the dielectric l
spectra at low temperatures due to intrawell relaxat
modes. The present calculation also constitutes an exam
of the solution of the fractional Klein-Kramers equation f
anomalous diffusion in a periodic potential and is to o
knowledge the first example of such a solution. The a
proach, which is grounded in a theorem@29# of operational
calculus generalized to fractional exponents@39# and contin-
ued fraction methods, clearly indicates how many exist
results of the classical theory of Brownian motion in a p
tential may be extended to fractional dynamics.
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