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Anomalous diffusion and dielectric relaxation in an N-fold cosine potential
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The fractional Klein-KramergFokker-Planckequation describing the fractal time dynamics of an assembly
of fixed axis dipoles rotating in aN-fold cosine potential representing the internal field due to neighboring
molecules is solved using matrix continued fractions. The result can be considered as a generalization of the
solution for the normal Brownian motion in a cosine periodic potential to fractional dyndgiidag rise to
anomalous diffusionand also represents a generalization ofhfich’s model of relaxation over a potential
barrier. The solution includes both inertial and strong internal field effects, which in combination produce a
strong resonance pe@Roley absorptionat high frequencies due to librations of the dipoles in the potential, an
anomalous relaxation band at low frequencies mainly arising from overbarrier relaxation, and a weaker relax-
ation band at midfrequencies due to the fast intrawell modes. The high-frequency behavior is controlled by the
inertia of the dipole, so that the Gordon sum rule for dipolar absorption is satisfied, ensuring a return to optical
transparency at very high frequencies. Application of the model to the broadBafidHz) dielectric loss
spectrum of a dilute solution of the probe dipolar molecule,CH in glassy decalin is demonstrated.
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[. INTRODUCTION Brownian motion include the inertia or internal field effects.
Inertial effects in the theory of the normal Brownian motion
The theory of rotational Brownian motion in the presencewere studied by Rocarf], Gross[8], and SacK9]. Gross

of a potential arising from internal fields is of fundamentaland SacK8,9] studied these effects by solving the Fokker-

importance in a number of problems involving relaxation Planck equatiorfwhich for a separable and additive Hamil-

and resonance phenomena in stochastic sysi@im# rudi-  tonian is known as the Klein-Kramers equajidar the dis-

mentary example is the theory of dielectric relaxation of non-tribution function of dipolar rotators in phase space. They
interacting polar molecules due to Dekjy&, which is based obtained the complex susceptibility in exact continued frac-

on a kinetic equation, namely, th@pproximatg¢ Smolu- tion form, so predicting a return to optical transparency at

chowski equation for the rotational diffusion of the mol- high frequencies, unlike the infinite integral absorption pre-
ecules. There, because interactions between dipoles are idicted by the Debye theory. The earlier Rocard result may be

nored, the only potential arises from the spatially uniformrecovered from their continued fraction solution for small
weak external ac field. The complex dielectric susceptibilityinertial effects. Their calculations have very recently been
from this theory agrees substantially with experimental date&xtended to fractional Brownian motion by Coffet al.

in the microwave region, predicting the observed broadban{l10,11], ensuring a return to optical transparency at high fre-

absorption. The Debye theory has very recently been genequencies in fractional dynamics just as in the conventional
alized to anomalous dielectric relaxation whi@wxcluding  Brownian dynamics. The approach developeflid, 11 was

inertial effects$ is characterized by a nonexponential dielec-based on the fractional Klein-Kramers equation proposed by

tric decay functiorf3]. In general, for noninteracting dipoles Barkai and Silbey12]. The solution for the complex suscep-
the usual exponential decay function of the Debye theory isibility given in Refs.[10,11] emerges in continued fraction
replaced by a Mittag-Leffler function which exhibits form in a manner entirely analogous to the conventional
stretched exponential behavior at short times and a long timBrownian motion result because of a useful generalization of
tail [4,5]. The complex dielectric susceptibility yielded by the integration theorem of Laplace transformation to frac-
that function(Cole-Cole behavigr[6] is substantially in ac- tional calculug4].

cord with experimental data on dielectric relaxation of amor- As far as the inclusion of an internal field potential com-
phous polymers, glass-forming liquids, €ef6,6]. Moreover,  bined with inertial effects is concerned, the problem is much
Nigmatullin and Ryabo\6] have shown how other relax- more difficult than that of including inertia alone, in both the
ation behaviors such as the Davidson-Cole function may alsnormal and fractional Brownian dynamics. Thus, referring to
be modeled using fractional calcul[&]. normal Brownian dynamics, all the initial attempts to solve

In the context of this paper, we emphasize that neither théhe problem were made in the noninertial lifhit3—14. In

Debye theory nor its varioug3,6] extensions to fractional particular, in Ref[16] it was shown by representing the con-
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figuration space distribution function in Fourier series how[22], [23]). There the problem of calculating the complex
the complex susceptibility, etc., could be obtained exactly irsusceptibility has been formulated, and numerical solutions
scalar continued fraction form by Laplace transformation offor the angular velocity correlation function have been given
the differential recurrence relations for the Fourier coeffi-in Ref. [23]. However, the complex polarizability was not
cients. The particular problem treated was the Brownian mocalculated.

tion of a rotator about a fixed axis in the presence of a @os2  The first attempt to calculate the complex polarizability
potential, whereg is the angular coordinate of the rotator. mcludln_g inertial effects and a.potentlal arising from the in-
Moreover, it was demonstrated, using the final value theorerff™a! field was made by ReifP5], who gave numerical
[17] for Laplace transforms, how the correlation time of the €Sults in & limited number of specialized cases. Only very
dielectric decay function could be obtained in closed form"€Cently, however, has it became possible to treat the calcu-

[16]. The relevance to the present problem of this potential iéatlon Of. the Founer_coefﬂu_ents In a systematic way for the
that it is possible to model relaxation effects involving es_conventlonal Brownian motion. The difficulty arises because

cape of dipoles over a potential barrfdi]. We remark in when inertial effects are included the two recurring numbers

. . . n and q always give rise to a matrix recurrence relation.
passing that, in the context of the present work, OverbarrleK/Iatrix continued fractions are therefore an ideal way of
relaxation due to normal diffusion has been extensively dis

- . o ; solving such recurrence relations. This has been accom-
cussed by Fiilich [18]. This model again gives rise 0 pjished in Ref[26], where it was shown that the linear and

Debye-like relaxation behavior; however, the relaxation timengpinear responses of an assembly of fixed axis rotators in
depends exponentially on the barrier height through thehe presence of a strong spatially uniform external fiat
Arrhenius law. Fralich used transition state theo[&g,Zq iS, a coy potentia} may be Systematica”y solved using the
and a rate equation approach originally suggested by Deby@atrix continued fraction method. This method has also been
[2] so that a discrete set of orientations for the dipoles of thexxtended to calculate the linear dielectric response of the
assembly is implicitly assumed. A continuous distribution ofcage model of polar liquids originally proposed by Hill
orientations may be treated by the use of methods based ¢p7 2g.
the Klein-Kramers equation or its fractional equivalent. |t is the purpose of this paper to generalize the results
These diffusion equations also allow one to include explicitly[10,11] by including the effect of an internal field potential
in Frohlich’s model in both discret@hormal) and fractal time  (and so dielectric relaxation due to barrier crossing by di-
dynamics the influence df) the dissipative coupling to the poleg in the fractional Brownian dynamics. As {i10,11,
heat bath on the Arrheniusverbarriey process andii) mo-  our approach is based on the fractional Klein-Kramers equa-
lecular librations and the faghigh-frequency intrawell re-  tjon for the translational Brownian motion in a potential pro-
laxation modes on the relaxation process. Moreover, the difposed by Barkai and Silbeji2]. The solution of the rota-
fusion equation method when applied to a system of dipole§onal analog of this fractional Klein-Kramers equation is
with an internal field potential also indicates how the 0rigina|accomp|ished using the matrix continued fraction method
kinetic equation approach of Debye may be reconciled withand the generalized integration theoréire., the properties
his rate equation treatment. of the inverse linear differential operajasf Laplace trans-
The Fokker-Planck equation approach described in Refiormation[17,29. These methods also allow us to consider
[16] was subsequently extended to many problems in dieleghe mechanism underlying the high-frequeritar infrared
tric relaxation of liquid crystals and magnetic relaxation of ghsorption peak in fractional dynamics. Moreover, they fa-
single domain ferromagnetic particles involving rotation in cjlitate the extension of the important cage model of polar
space. These are comprehensively summarized in [Ref.  fluids[27,28 to fractional dynamics. In order to simplify our

Although the noninertial rotational motion in space in the presentation we confine ourselves to the linear response to a
presence of a mean field potential has been fully describeémall ac applied field.

almost all the discussion concerningertial effectsand an
internal field potential has been in the context of the motion
of a rotator about a fixed axis in a periodic potential repre-
senting the internal fielf21—23. This problem, on expand-

ing the phase space distribution function in the Klein- e jllustrate by considering one of the simplest micro-
Kramers equation in a Fourier series, leads to a differentiadcopic models of dielectric relaxation, namely, an assembly
recurrence relation in two characteristic numbers, namelypf rigid dipoles each of moment rotating about a fixed axis
the ordem of the Hermite polynomials-ln(né) in the angu-  through its centef8,9,23. A dipole has moment of inertia

lar velocity # and q of the circular functionse~'9?, where ~ and is specified by the angular coordinatso that it consti-
n=+172kT, | is the moment of inertia of a rotator, akd is ~ tutes a system of ongotationa) degree of freedom. The
the thermal energy. The differential recurrence relation ifnternal field QUe to mollecular interactions is represented by
two variables is a particular example of that given by Brink-2an N-fold cosine potential:

man[24] in his attempt to justify the approximate Smolu-

chowski equation for the distribution function in configura- V(6)=—VqcosNé. 1)

tion space from the Klein-Kramers equation for the

translational Brownian motion in phase spaéer a sum-  We suppose that a uniform fiel (having been applied to
mary of the applications to dielectric relaxation, see Refsthe assembly of dipoles at a tinhe — so that equilibrium

II. RECURRENCE RELATIONS FOR STATISTICAL
AVERAGES FOR ROTATION ABOUT A FIXED AXIS
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conditions prevail by the timé=0) is switched off att Ny . _ )

=0. In addition, we suppose that the field is weak., uE CL(t)=— 7 [(sinB(0)sin6(t))o—(sin6(0))5] (11)
<kT, which is the linear response conditi¢80]). For t

<0 andt—oo, the distribution functions are linearized Bolt- 4re the longitudinal and transverse relaxation functions. The
zmann distributions, viZ:31,32, longitudinal and transverse components of the complex sus-
ceptibility tensor are defined as

e—(;yb)2+§v cosNO[ 1 + £ cog — ©)]

Wg ~ - — ! i
e fe_(”0)2+§VCOSN0[1+§COS(0—)]dQ Xy(w) Xy(w) IX?’(w)
Q o
_ =cy(0)—iwf e '“'C(tydt (y=I,L).
=Wy (6,0)[1+&coq 6—0)—¢(cog —0)),] 0

2) (12
and By supposing that the local configuration potential is uni-
A formly distributed in a plane, we may define the averaged
V\/t_mzwo(g,g)zzfle*wﬁ)z%v cosN6. (3)  susceptibilityy(w) as
respectively. Her& is the partition function® is the angle x(o)=[x(w)+x (0)]/2, (13

betweenE and thez axis in the planex,
which yields after elementary manipulation of E¢E0) and

_ uE Vo 1D
=17 ST (4)
_ H 0 i ” —iwt
and ()g means the equilibrium statistical average over x(w)= 2kT [1 'wfo (cosA6(t))oe™ " dt], (14)
Wo(6,6).
Our goal is to evaluate the transient relaxation of the elecwhereA 6(t) = 6(t) — 6(0).
tric polarization defined ag31,32 The starting point in our calculation gfw) from Eq.(14)
is the fractional Klein-Kramers equation for the probability
Pe(t)=uNo[{cog §—6))(t) —(cod - 0)),] density functionW( 4, 6,t) in the phase spaced(6) [10,11],
=(cos®)P,(t)+(sin®)P, (1), (5)  Which is identical to that for the one-dimensional transla-
tional Brownian motion of a particlgl2], except that rota-
where tional quantities(angle §, moment of inertia, etc) replace
translational onegposition x, massm, etc), so that fort
Py(t)=uNo[(cosd)(t) —(cosb)o], (6) >0 the hydrodynamical derivative is
e awwaw NV, si Naaw
. . —+ 60— sinNg—
P, (1) = uNo[(sin 6)(t) —(sin 6)o] v a0 i ap
are the longitudinal and transverse components of the polar- 9 . 2
ization, N is the concentration of dipoles, and the angular =0Dtl’“71*“ﬁ3 —(6OW)+ — —) (15
bracketq )(t) denote the statistical averages over the assem- a0 I 66?

bly of rotators. According to linear response thefgg,37,

the decay of the longitudinal and transverse components dflere=¢/1, {is the damping coefficient of a dipolejs the
the polarization of a system of noninteracting planar dipolesintertrapping time scale, which we identify with the Debye
when a small uniform external fiel is switched off at time  relaxation timel/kT (at ambient temperatures,is of the

t=0, is order 10 ' s for molecular liquids and solutionsand a is
the anomalous exponent or order of the fractional derivative
Py(t)=(cos®)EC(t) (8)  characterizing the fractal time process. Thus the fractional
dynamics emerges from the competition of Brownian motion
and events of average durationinterrupted by trapping events

L whose duration is broadly distribut¢d]. Equation(15) with
PL1)=(siN®)EC, (1), © anomalous exponentr such that &=2—a<2 describes
where[28,29 anomalous enhanced diffusion in configuration space accord-
ing to Barkai and Silbey12]. The valuea=1 corresponds
12N, ) to normal diffusion. Here the operator thl’“
Ci(t) =7 [(cosf(0)cosb(t))o—(cost(0))o] (100 = (54t),D, * in Eq. (15) is defined in terms of the convo-
lution (the Riemann-Liouville fractional integral definitipn
and [4]
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1 [tW(6,6,t")dt’
(a) Jo (t—t)17«

oDy “W(8,6,t)= T (16)

Thus, the fractional derivative is a type of memory function
[4]. Moreover, a slowly decaying power-law kernel in the
Riemann-Liouville operatofl6) is typical of memory effects
in complex systems.

We seek a solution of the fractional Klein-Kramers equa
tion, Eq.(3), for the cas€e=0 att>0 by using the method
of separation of variables in the form of the Fourier series

W(8,0,t)=1% 32 70"

o1
x> 2
n=0 q

“~. 2" fn'q(t)Hn( nb)eiq”, (17)

whereH,(x) are the Hermite polynomials. Noting thi&3]

g Hn100=2nH,_1(), (18)
Hpt1(X)=2xHp(x) —2nH, _1(X), (19
and
f Ho(X)Hm(x)e dx= 72! 8, m,  (20)
we have the recurrence relation for
frg(D)=(Hn(n8)e 9% 1), (22)
which is given by
. iq
an,q(t)+ ?[fn+1,q(t)+2nfn—1,q(t)]
inNé&
5 [ fn-1gen(O o 1g-n(D)]
=—oDi TN f, (1), (22

where 8’ = 8%. On using the integration theorefd7] of
Laplace transformation generalized to fractional calc{#s
viz.,

s (s) =Dy “f(D)]=o (0<a<1l),

L{oD; ™ “f(t)}= odi(s

(1=sa<?2),
(23
wheref(s)=L{f(t)}=/5e S'(t)dt, we have from Eq(22)

275To4(S) +iqT14(S)=27f04(0), (24)

[27s+ny' 2 %(99)t ™ F o(S) +ia[T oy 14(S)

+2nT0-1(8)]+INNELTro 1 gen(S) —Tho1g-n(S)]

=0 (n=1). (25
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Herey' =7/ = {~2/IKT is the inertial effects parametéso
that large y’ characterizes small inertial effects, and vice
versa;y' =\/2/ys, where ys=1kT/¢? is the inertial param-
eter used by Sacl9]) andf, ,(0)=0 for n=1 because

(Hae '9%=0 (26)

for the equilibrium Maxwell-Boltzmann distributiofi]. We
remark that the calculation of the longitudinal and transverse
components of the complex susceptibility tensor differs only
in the termfy4(0) which must be evaluated & =0 and
72, respectively. The calculation of the averaged suscepti-
bility from Eqgs.(13) and(14) can be carried out formally by
solving Eqgs.(24) and (25) for the functions

Cng() =(Hp(n@)e o =e0) (27)

which obey the same recurrence E2p) as thef, ,(t). The
complex susceptibility is then given by

MZNO

x(©)= 5= [1- i i) (28)

IIl. MATRIX CONTINUED FRACTION SOLUTION OF
EQS. (24) AND (25) FOR N=2

As we already mentioned in the Introduction, we choose
as an example of an internal field potential a double-well
potential N=2) which will allow us to treat overbarrier
relaxation[16] (for N=1 corresponding to a uniform electric
field this process does not exisin order to solve Eq924)
and(25), we shall use matrix continued fractiofs26]. This
is accomplished as follows. We introduce the column vectors

% lio) e
Cilw)= Co-alle) | Clio)=| Tridio)
Coqliw) n < ’(iw)
"o i

(n=2). (29

Now, from the recurrence Eq$24) and (25 we have the
matrix recurrence equations

[2i 70— Qn()]Ch(w)—Qp Cry1(0)—Q, Cpo1(w)
=2738,,C1(0) (n=1), (30)

where

061115-4
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: Qn(w)=—y"*"inw)'"*(n-1)I, (32
13(&v)
0
12(&v)
0
1 11(&v)
Cl(o)_|o(§v) lo(év) 3D : o
0 : S
1 (&y) -2 0 0 0 O -
0 0O -1 0 0 O -
12(v) Q=i 0 0 00 0|, (33
: 0O 0 01 0-
0 O 0 0 2 -
and the matricesQ,(»), Q. , and Q, are defined by : : Lo
|
— &y 0 -2 0 &y 0
—¢& 0 -1 0 &
Q;:_Zi(n_l) 0 _§V O 0 O é:v 0 , (34)

and| is the unit matrix of infinite dimension. The exceptions are the matgesandQ, , which are given by

00 0 -
X O -1 00 0 -
Q=" 0 0 0 1 0] 39
O 0 00 2-
Yy 2 0 0 0 0 O
0 -& 0 -1 & 0 0 0
Q, =-2i 0 0 -¢& 0 0 & 0 O (36)
0 0 0 -& 1 0 & O
0

o o0 0 0 2 0 &

Here we have taken into account the initial conditionsdgg(0), viz.,
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2 .
f e—|(q—1)0e.§v cosNede
0

Cog(0)=(e (A1), o
&y cosNG
fo e de
_ Im( &)
T o(6y)

37

wherel, are modified Bessel functions of the first kind of
ordern [33]. In order to prove Eq(37), we noted thaf33]

[’

e~ i(a—1) 0ty cosNE_ 2 |m(§v)ei(mN—q+l>€_ (38

1.0

By invoking the general method for solving the matrix
recurrence Eq.30) [1,26], we have the exact solution for the
spectrumC;(w) in terms of a matrix continued fraction, viz., 054

Ci(@)=27A4(iw)C4(0), (39
where the matrix continued fractiak,(i ) is defined by 0.0
An(iw):[Zi77(1)'_Qn_QrTAn+1(iw)QrT+1]7l- (40) 10° 10° 10" 10° ) 1-E)°
nw
IV. RESULTS AND DISCUSSION FIG. 1. Real and imaginary parts of the complex susceptibility

x(nw) vs normalized frequencyw for vy’ =10 andé, =3 and vari-

The exactmatrix continued fraction solutiofEg. (39)]  ous values of the fractional parameter
we have obtained is very convenient for the purpose of com-
putation(various algorithms for calculating matrix continued w?No (itw)2 @
fractions are discussed in R¢21], Chap. 9. As far as prac- x(w)= kT 11 T+ (ra)2 @
tical calculation of the infinite matrix continued fraction Eq.
(40) is concerned, we approximate that by some matrix con-
tinued fraction of finite orderby settingQ,,, Q=0 at XM(1,1+B[1+(itw)* *],B){, (41)
somen=N). Simultaneously, we restrict the dimensions of
the matricesQ, , Q, , andQ, to some finite numbeM.  \whereB=27' ~2(iw7)2@ 1) andM(a,b,z) is the confluent
Both of the number&l andM depend on the barrier height hypergeometri¢Kummep function[33].
&y and dampingy’ parameters and must be chosen by taking  The shape of the dielectric spectra strongly depends on
into account the desired degree of accuracy of the calculatiothe anomalous exponent (Fig. 1), &, (Figs. 2—4, and y'
(with decreasingy’ and increasing, bothN andM must be  (Figs. 5-7. In generalthreebands may appear in the dielec-
increasell Having calculatedC,(w) from Egs. (39 and tric lossy”(w) spectra; the corresponding dispersion regions
(40), we may evaluate the complex dielectric susceptibilityare visible in the spectra of’ (w). One anomalous relax-
x(w) from Eq. (28) for all values of the model parameteps  ation band dominates the low-frequency part of the spectra
v', év, anda. and is due to the slow overbarrier relaxation of the dipoles in

The realy’ (») and imaginaryy”(w) parts of the com- the double-well cosine potential as identified by Hich
plex susceptibility for various values af (which in the [18]. The characteristic frequenayg of this low-frequency
present context pertains @nomalous diffusion in velocity band strongly depends on the barrier heightand the fric-
space, &, (which is the barrier height parameteand v’ tion parametery’ as well as on the anomalous exponent
(which characterizes the effects of molecular inerfia:—0 Regarding the barrier height dependence, the frequency
and vy’ — o characterize large and small inertial effects, re-decreases exponentially as the barrier heigtis raised.
spectively are shown in Figs. 1-Tthe calculations were This behavior occurs because the probability of escape of a
carried out foru?Ny/2kT=1). For &,=0, the calculation dipole from one well to another over the potential barrier
shows that the matrix continued fraction algorithm yields theexponentially decreases with increasiéig (cf. Figs. 2—4.
same results as the exact analytic solution for the free rotaAs far as the dependence of the low-frequency part of the
tional diffusion obtained in Ref.10]. viz., spectrum for small inertial effectgy(>10) is concerned, the
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. 2-£=10
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y'=04
10° 107 0 10° 107 10' w10t w0t 10t 10
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FIG. 2. Real and imaginary parts of the complex susceptibility FIG. 3. The same as Fig. 1 for=1.0.
x(nw) vs normalized frequencyw for «=1.5 andy’=0.4 and
various values of the barrier height paramefer demonstratedl10] that the fractional model under consider-

ation satisfies the Gordon sum rule for the dipole integral

frequencywg decreases ay’ increases as is apparent by absorption of rotators in a plane, viz.,
inspection of curves 3-6 in Figs. 5—7. For large inertial ef- )
fects (y'<0.1) the frequencyy decreases with decreasing fw " _ mNop
. e ox"(w)dw= . (42

v’ for given values oft,, for the enhanced diffusion in con- 4
figuration space ¢<1) and for normal diffusiore=1 (cf.
curves 1-3 in Figs. 5 and)sfor the subdiffusion &>1), It is significant that the right hand side of E@2) is deter-
however, this frequency does not show such a behavior. mined by molecular parameters only and is independent of

We remark that a very high-frequency band is visible inthe model parameters ¢, andZ. For a=1, the anomalous
all the figures. This band is due to the fast inertial librationsrotational diffusion solution coincides with that for normal
of the dipoles in the potential wells. This band correspondsotational diffusion.
to the teraherttfar-infrared range of frequencies and is usu-  Finally, it is apparent that between the low-frequency and
ally associated with the Poley absorpti@2]. For&,>1, the  very high-frequency bands, at some values of model param-
characteristic frequency of librationss, increases as eters, athird band exists in the dielectric loss spectsze,
~+Vo/l (this frequency is weakly dependent e As far  e.g., Fig. 5. This band is due to the high-frequency relax-
as the behavior as a function ¢f is concerned, the ampli- ation modes of the dipoles in the potential weflgithout
tude of the high-frequency band decreases progressively wittrossing the potential barrjewhich will always exist in the
increasingy’ for small inertial effectsy’>1, as one would spectra even in the noninertial limii6]. Such relaxation
intuitively expect. On the other hand, for large inertial effectsmodes are generally termed therawell modes The char-
v'<1, a fine structure appears in the high-frequency part ofcteristic frequency of this band depends on the barrier
the spectrddue to resonances at high harmonic frequencieseightéy, and the anomalous exponemt
of the almost free motion in theanharmonig¢ cosine poten- In Fig. 8, a comparison is shown of experimental data for
tial], again in accordance with intuition. We further remarka 10% v/v solution of a probe molecule GEl, in glassy
that the high-frequency«>w,) behavior ofy”(w) is en-  decalin at 110 K34] with the theoretical dielectric loss spec-
tirely determined by the inertia of the system. Moreover, justtrum &”(w)~(eg—¢.)x"(w)/x'(0) calculated from Egs.
as in the normal Brownian dynamics, the inertial effects pro{28) and(39). The reduced moment of inertla used in the
duce a rapid falloff ofy”(w) at high frequencies. It is easily calculation is defined by, *=1, *+1_*, wherel, andl . are
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FIG. 4. The same as Fig. 1 far=0.5.

the principal moments of inertia about molecular axes per- FIG. 5. Real and imaginary parts of the complex susceptibility
pendicular to the principal axia along which the dipole X(7®) vs normalized frequencyw for a=1.5 andé,=3 and vari-
moment vector is directed. For the QEf, molecule|,  ©us values of the friction parametef.

=0.24x 10 38 gcn? [22]. The use of the reduced momént
allows one to obtain the correct value for the dipolar integra
absorption for two-dimensional models. The phenomenologi

|equation for the evolution of the probability distribution

function in phase space. In that equation, the fractional de-

cal model parameter&,, y', anda were adjusted by usin rivative, or memory term, acts °f?'y on the right hand side,
P B, “ ) y g that is, on the diffusion or dissipative term. Thus, the form of

the best fit of experimental data. It is known that in order to D1 . L
describe the low-frequency dielectric relaxation in such orihe Liouville operator, or convective derivative is preserved

ganic glasses, one must consider anomalous diffusion ar{ﬁf' thet_rightl-k]land sifde OEf) IIZtc(lS)]. Thus, Eq.(lfS) TES the |
relaxation[22]. The high-frequency Poley absorption is also conventional form ot a boilzmann equation 1or the single
observed in molecular glasses in the far-infrared re¢gog. p_art|cle d'St”bl.Jt'on fqncﬂon. The preservation of the L|qu-
[22,34). Figure 8 indicates that our generalized"lﬁl'rdw, ville operator is equivalent to stating that the Newtonian
model explains qualitatively the main features of thieole form of the eguapons of motion underly_lng the Kiein-
broadband (0—TH2 dielectric loss spectrum of the KfameFS equ_atlon is preserved. Th_us, the high-frequency be-
CH,Cl,/decalin solution, in contrast to the normal diffusion havior is entirely controlled by the inertia of the system and

in a periodic potentialcurve 3, which cannot explain the does not depend on the anomalous exponent. Consequently,

anomalous dielectric relaxation behavior at low frequenciesthe fundamental sum rule for the dipole integral absorption

One can also see in Fig. 8 that the low-frequency part of thé’f single axis rotators is satisfied, ensuring a return to trans-

~ ; : parency at high frequencies as demanded on physical
lr?f)fjiﬁggcggk:?/)(e(g;)l,e-\(,:vz:gheg:;\);iobr? approximated by the grounds. These conclusions have been verified by solving the

Barkai-Silbey equation for the simple problem of the dielec-
tric relaxation of an assembly of noninteracting dipoles fol-

x(@) — 1 (43) lowing the removal of a constant fiefd0]. That equation is
X' (0) 1+ (iw/wg)®™®’ simply Eq.(15) in the absence of an external potential.
At this stage, it is appropriate to mention yet another gen-
is also explained by the generalized Rlioh model. eralization to fractional dynamics of the Klein-Kramers

We remark that all the above results are obtained by usingquation, which has been proposed in RE3S8], [36], and in
the Barkai-Silbey[12] fractional form of the Klein-Kramers a modified form in37]. Here, unlike Eq(15), the fractional
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FIG. 6. The same as Fig. 4 far=1.0. FIG. 7. The same as Fig. 4 far=0.5.
derivative acts on the convective as well as the diffusive
terms in the normal Klein-Kramers equation. This equation,
in the notation of Eq(15), reads
10°
JW e 1o . OW _ IJW a .
—=oD; 7Y — 00—+ NVysinNd— + 8| — (W)
ot a0 196 a0
KT 0°W 44
— %
I 962

Equation(44) may also be solved exactl38] in terms of a
scalar continued fraction just like E¢L5) for the complex

susceptibility of an assembly of noninteracting dipoles. L i R P R i Rl Piia Rl i R Mt Rl A
L 10 10 10 10 10 10 10

However, the complex susceptibility so rendered does nof

satisfy the Gordon sum rule, the absorption coefficient L

wx"(w) showing a marked divergence at high frequencies as ¢ g proadband dielectric loss spectrum of 1G96l/vol)

o increaseg38]. Thus, the high-frequency behavior of the g4 ytion of probe molecule CIEI, in glassy decalin at 110 K.
dielectric susceptibility predicted by E@44) is physically  symbols are the experimental d4&]. Curve 1 is the best fit for
unacceptable, unlike that predicted by the Barkai-Silbe\he anomalous diffusion in the double-well cosine potential (

equation. The root of the problem appears to be the suppa-1 5, &y=8, andy=0.003); curve 2 is the best fit for the normal
sition that the fractional derivative, or memory function, actsdiffusion (a=1, &,=7, and y=0.001) in the double-well cosine

on the convective terms. If it is allowed to act on these termspotential; filled circles are the noninertial E@3). The dashed line
then the high-frequency behavior is no longer entirely inertia) is the Cole-Cole equatiot3).
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controlled; it depends on the dissipation through the anomaare nonlocal in both space and time and so give rise to
lous exponent, with the result that the Gordon sum rules aranomalous diffusiorf39]. The generalized Fhdich model
violated, and infinite absorption ensues. This is the reason fave have outlined incorporates both resonance and relaxation
the use of the Barkai-Silbey equation. We also remark thabehavior and so may simultaneously explain both the anoma-
the Barkai-Silbey equation was originally given for subdif- lous relaxation(low-frequency and far-infrared absorption
fusion in velocity spaced<1), or for enhanced diffusion in spectra of complex dipolar systems. Moreover, a third mid-
configuration spaced>1). However, the most interesting frequency relaxation band may appear in the dielectric loss
case is subdiffusion in configuration space, corresponding tepectra at low temperatures due to intrawell relaxation
the Cole-Cole equation in dielectric theory. This suggestsnodes. The present calculation also constitutes an example
extending the Barkai-Silbey equation émhanceddiffusion  of the solution of the fractional Klein-Kramers equation for
in velocity space, corresponding swubdiffusionin configu- anomalous diffusion in a periodic potential and is to our
ration space, since=2— «a. The justification for doing this knowledge the first example of such a solution. The ap-
is simply that this generalization yields physically meaning-proach, which is grounded in a theor¢@®] of operational
ful results for the broadband spectrum of the complex susealculus generalized to fractional exponel88] and contin-
ceptibility ¥(w), as well as yielding the Cole-Cole equation ued fraction methods, clearly indicates how many existing
in the limit y— 0. It is also apparent that the Barkai-Silbey results of the classical theory of Brownian motion in a po-
equation must have its origin in a \ag (rather than a purely tential may be extended to fractional dynamics.
fractal) time random walK36], as unlike Eq(44) it does not
separate into temporal and spatial parts. Moreover, the expo- ACKNOWLEDGMENTS
nential decay of the normal diffusion theory is not replaced
by a Mittag-Leffler function, as in a fractal time random  The support of this work by the Enterprise Ireland Re-
walk [36]. Such behavior is indicative of coupling between search Collaboration Fund, CNRS-Enterprise Ireland-France
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