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Inertial effects in the anomalous dielectric relaxation of rotators in space
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The linear dielectric response of an assembly of noninteracting linear~needlelike! dipole molecules~each of
which is free to rotate in space! is evaluated in the context of fractional dynamics. The infinite hierarchy of
differential-recurrence relations for the relaxation functions appropriate to the dielectric response is derived by
using the underlying inertial fractional Fokker-Planck~fractional Klein-Kramers! equation. On solving this
hierarchy in terms of continued fractions~as in the normal rotational diffusion!, the complex dynamic suscep-
tibility is obtained and is calculated for typical values of the model parameters. It is shown that the model can
reproduce nonexponential anomalous dielectric relaxation behavior at low frequencies~vt<1, wheret is the
Debye relaxation time! and the inclusion of inertial effects ensures that optical transparency is regained at very
high frequencies~in the far infrared region! so that Gordon’s sum rule for integral dipolar absorption is
satisfied.
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I. INTRODUCTION

An extension of the Debye model@1# of dielectric relax-
ation of an assembly of noninteracting dipolar molecules
fractional dynamics for the purpose of providing a theore
cal basis for the understanding of the phenomenon of
anomalous dielectric relaxation arising from diffusion pr
cesses in disordered fractal structures has recently been g
by Coffey et al. @2#. The initial Debye treatment of the di
electric relaxation problem@1#, although considering assem
blies of both fixed axis and space rotators, does not incl
the inertial effects of the molecules and so is valid only in
low frequency or small inertial effects limit. The neglect
inertia in the dynamical processes then leads to the phen
enon of infinite dielectric absorption at high frequencies b
in the fractional and in the conventional Brownian dynam
that arises from the normal diffusion in regular space. B
the Debye theory@1# and its subsequent extension to fra
tional dynamics are based on the Smoluchowski equa
generalized to fractional dynamics@2,3#. Both are approxi-
mate equations for the evolution of the distribution functi
of the orientations of the dipoles in configuration space a
exclude inertial effects. Thus, as in the original Einste
theory of Brownian motion, conclusions about the relaxat
processes based on these equations will be invalid atshort
times, corresponding tohigh frequencies. In the frequenc
domain this will give rise to the absurd result of infini
integral absorption so that a return to optical transparenc
very high frequencies is impossible. Hence, an accu
theory that ensures finite integral absorption and a retur
optical transparency may only be constructed by using
Klein-Kramers equation or its fractional dynamics equivale
1063-651X/2002/65~5!/051105~9!/$20.00 65 0511
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for the evolution of the distribution function in phase spac
For rotation in space, the phase space comprises the an
momenta and Euler angles. Thus the present calculat
also serve as a simple example of the solution of the fr
tional Klein-Kramers equation for a multiple degree of fre
dom system.

Mindful of the limitations imposed on the Debye theo
and its fractional extension by using a diffusion equation
Smoluchowski type, Coffeyet al. @4# have shown~by gener-
alizing the approach given by Gross@5# and Sack@6,7#, for
normal rotational diffusion including inertial effects of fixe
axis rotators! how inertial effects may be included in th
fractional dynamics of an assembly of noninteracting fix
axis rotators. The starting point of the solution outlined
Ref. @4# is the generalization of the Klein-Kramers equati
to fractional dynamics, originally proposed by Barkai a
Silbey @9# for translational motion, as adapted to rotation
motion about a fixed axis. The inclusion of inertial effects
the fractional dynamics just as in the conventional Brown
dynamics thus ensures the desired return to optical trans
ency at high frequencies. Moreover, Gordon’s sum rule@8#
for the integral dipolar absorption is satisfied. In additio
just as in normal diffusion@6#, the complex susceptibility
may be written in closed form in terms of Kummer’s fun
tions or as a continued fraction@4#. We have also demon
strated in Ref.@4# that this generalized model can reprodu
nonexponential~Cole-Cole type! anomalous dielectric relax
ation behavior, and how the unphysical high frequency
havior of the absorption coefficient due to the neglect
inertia may be removed in fractional relaxation as in iner
corrected Debye relaxation.

Although the fixed axis rotator model considered in R
©2002 The American Physical Society05-1
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COFFEY, KALMYKOV, AND TITOV PHYSICAL REVIEW E 65 051105
@4# reproduces the principal features of dielectric relaxat
of an ensemble of dipolar molecules and allows one con
erable mathematical simplification of the problem@6,7#, this
model may be used only for the qualitative evaluation
dielectric spectra. The quantitative theory of dielectric rela
ation requires an analysis of molecular reorientations in th
dimensions@8#. In the present paper, we shall generalize
results of Ref.@4# and demonstrate how the analogous fra
tional Klein-Kramers equation~FKKE! pertaining to rotation
in space may also be solved to yield the complex dielec
susceptibility in terms of continued fractions, thus extend
the results of Sack@7# originally given for normal rotationa
diffusion in space including inertial effects to fractional d
namics. Our starting point will be the separation of variab
method of solution of the FKKE coupled with a generaliz
tion of the integral theorem@10,11# of Laplace transforma-
tion to fractional indices. We shall also confine ourselves
the simplest model of rotation in space, namely, an assem
of noninteracting needlelike dipolar molecules~treated origi-
nally by Sack @7# and later by McConnell@12#, Coffey
@13,14#, and Coffeyet al. @15#!. The results for the more
complicated sphere model then follow, if desired, by analo
with the work of Sack@7# for normal diffusion. The afteref-
fect solution for the dynamic Kerr effect@16# may be treated
in analogous fashion and is also presented.

II. THE FRACTIONAL KLEIN-KRAMERS EQUATION
FOR THE NEEDLE MODEL

Let us consider the rotational motion of a thin rod,
rotator, representing the polar molecule, which is subjec
to an external electric fieldE @7,12#. We assume that the fiel
E is parallel to theZ axis of the laboratory coordinate syste
OXYZ. In the molecular coordinate systemoxyzrigidly con-
nected to the rotator, the components of the angular velo
v of the rotator and of the torquesK produced by the fieldE
are @12#

v5~vx ,vy ,vz!5~q̇,ẇ sinq,ẇ cosq!, ~1!

K5~2mE sinq,0,0!, ~2!

whereq(t) andw(t) are the polar and azimuthal angles, a
m is the dipole moment of the rotator. Here, the internal fi
effects are ignored, which means that the effects of lo
range torques due to the interaction between the average
ments and the Maxwell fields are not taken into accou
Such effects may be discounted for dilute systems in fi
approximation. Thus, the results obtained here are releva
situations where dipole-dipole interactions have been eli
nated by extrapolation of data to infinite dilution.

In order to describe the fractional Brownian rotation
motion, we use the FKKE for the evolution of the probabili
density functionW in configuration-angular-velocity spac
for linear molecules in the same form as in Ref.@4# for fixed
axis rotators~this form of the FKKE was suggested by Ba
kai and Silbey@9# for one-dimensional translational Brown
ian motion!. For rotators in space, the FKKE becomes
05110
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]W

]t
1vx

]W

]u
1vy cotqS vy

]W

]vx
2vx

]W

]vy
D

2
mE

I
sinq

]W

]vx
50Dt

12aLFPW, ~3!

where

0Dt
12aLFPW50Dt

12aQbF ]

]vx
S vxW1

kBT

I

]W

]vx
D

1
]

]vy
S 2vyW1

kBT

I cos2 q

]W

]vy
D G ~4!

is the fractional Fokker-Planck operator,b5z/I , z is the
viscous damping coefficient of a dipole,kBT is the thermal
energy,I is the moment of inertia of the rotator about the ax
of rotation,Q5t12a, t is the intertrapping time scale whic
we identify with the Debye relaxation timez/(2kBT) for
linear molecules, anda is the exponent characterizing th
anomalous diffusion process. The operator0Dt

12a

[(]/]t)0Dt
2a in Eq. ~4! is defined in terms of the convolu

tion ~the Riemann-Liouville fractional integral definition! @3#

0Dt
2aW~ ,t !5

1

G~a!
E

0

t W~ ,t8!dt8

~ t2t8!12a , ~5!

so that the fractional derivative is a type of memory functi
@3,8# or stosszahlansatzfor the Boltzmann equation@17,18#
underlying the FKKE. Fora51, the fractional Fokker-
Planck operator of Eq.~4! reduces to that corresponding
normal inertia corrected rotational diffusion considered
Sack @7#. Just as fora51, Eq. ~3! is independent of the
azimuthal anglew and thez component of the angular veloc
ity vz so that for the problem in question one may ignore
dependence ofW on w andvz .

III. CONTINUED FRACTION SOLUTION FOR
DIELECTRIC RELAXATION

Let us suppose that the uniform fieldE, having been ap-
plied to the assembly of dipoles at a timet52` so that
equilibrium conditions prevail by the timet50, is switched
off at t50. In addition it is supposed that the field is wea
~i.e., mE!kBT, which is the linear response condition!. We
seek a solution of the FKKE, Eq.~3!, for the caseE50 at
t.0 by using the method of separation of variables in
form of the series

W~q,vx ,vy ,t !5h2e2h2~vx
2
1vy

2
!(
l 50

`

(
m50

l

(
n50

`

an
l ,mcn

l ,m~ t !

3sn
m~vx ,vy!Pl

m~cosq!, ~6!

where

cn
l ,m~ t !5^sn

m~vx ,vy!Pl
m~cosq!&, ~7!
5-2
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INERTIAL EFFECTS IN THE ANOMALOUS . . . PHYSICAL REVIEW E 65 051105
Pl
m(z) are the associated Legendre functions of orderl (m

< l ) @19#, h5AI /(2kBT), and the angular brackets^ & denote
ensemble averages over the distribution functionW, viz.,

^A&~ t !5E
2`

` E
2`

` E
0

2p

A~q,vx ,vy!W~q,vx ,vy ,t !

3sinq dq dvxdvy . ~8!

The orthogonal functionssn
m(vx ,vy) are given in terms of

finite series of products of Hermite polynomialsHn @19# in
the components of the angular velocity as

sn
2m1M~vx ,vy!5 (

q50

n
r 2m1M~n,q!

q! ~n2q!!
H2n22q1M~hvx!

3H2q~hvy! ~M50,1!, ~9!

where the coefficientsr 2m1M(n,q) can be determined from
the following recurrence relations:

r 2m~n,q!5S n2q1
1

2D S 12
2q11

2m21D r 2m21~n,q!

1~n2q!
2q11

2m21
r 2m21~n,q11!,

r 2m11~n,q!5S 11
q

mD r 2m~n,q!2
q

m
r 2m~n,q21!

with r 0(n,q)5r 1(n,q)51 @for example,r 25n22q, r 35n
24q, r 45n(n21)28q(n2q), etc.#. The normalizing con-
stantsan

l ,m are obtained by means of the orthogonality pro
erties of thePl

m(cosq) andHn(z), viz. @19#,

E
0

p

Pl
m~cosq!Pl 8

m8~cosq!sinq dq

5
2~ l 1m!!

~2l 11!~ l 2m!!
d l ,l 8dm,m8 , ~10!

E
2`

`

Hn~x!Hn8~x!e2x2
dx5Ap2nn!dn,n8 ~11!

so that

~an
l ,m!215

~ l 1m!!bn
m

p~2l 11!~ l 2m!!24n21 ,

where bn
051, bn

151/@2(n11)#, bn
251/n2,... . Our separa-

tion of the variables procedure based on Eq.~6! differs from
that introduced by Sack@7# and allows us to solve the FKKE
in a simpler manner.

Substituting Eq.~6! into the FKKE Eq.~3!, taking the
inner product, and utilizing the orthogonal properties a
known recurrence relations@19# for the associated Legendr
functionsPl

m(cosq), Eq. ~10!, and the Hermite polynomials
05110
-
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Hn(z), Eq. ~11!, then yields an infinite hierarchy of differen
tial recurrence relations for thecn

l ,m(t) governing the orien-
tational relaxation of the system, viz.,

h
d

dt
cn

l ,0~ t !522nh0Dt
12aQbcn

l ,0~ t !1 1
2 cn

l ,1~ t !12cn21
l ,1 ~ t !,

~12!

h
d

dt
cn

l ,1~ t !52~2n11!h0Dt
12aQbcn

l ,1~ t !1cn
l ,2~ t !

1 1
4 cn11

l ,2 ~ t !2 l ~ l 11!~n11!

3@cn
l ,0~ t !1 1

4 cn11
l ,0 ~ t !#, ~13!

h
d

dt
cn

l ,2~ t !522nh0Dt
12aQbcn

l ,2~ t !2
~ l 12!~ l 21!n

4
cn

l ,1~ t !

2~ l 12!~ l 21!~n11!cn21
l ,1 ~ t !1cn21

l ,3 ~ t !

1 1
4 cn

l ,3~ t !, ~14!

and so on.
In dielectric relaxationl 51 so that by taking the Laplac

transform of Eqs.~12!–~14! over the time variables and no
ing the generalized integral theorem for Laplace transfor
@3,10,11#, namely,

L$0Dt
12a f ~ t !%5H s12a f̃ ~s!20Dt

2a f ~ t !u t50 ~0,a,1!

s12a f̃ ~s! ~1<a,2!,
~15!

where f̃ (s)5L$ f (t)%5*0
`e2stf (t)dt, we then have a system

of algebraic recurrence relations for the Laplace transform
cn

1,m(t) (m50,1) governing the dielectric response, name

@hs12nx# c̃n
1,0~s!22c̃n21

1,1 ~s!2 c̃n
1,1~s!/25dn,0hc0

1,0~0!,
~16!

@hs1~2n11!x# c̃n
1,1~s!12~n11!@ c̃n

1,0~s!1 c̃n11
1,0 ~s!/4#50.

~17!

Here x5g8(ts)12a/2, g85zA2/IkBT is the inertial effects
parameter~largeg8 corresponds to small inertial effects an
vice versa!, and we have taken into account that all t
cn

1,0(0) vanish with the exception ofn50, viz., c0
1,0(0)

5j/3, wherej5mE/(kBT). The last equality follows from
the linearized initial~at t50! distribution function, which
has the Maxwell-Boltzmann form

W~q,vx ,vy,0!5
1

2p
h2e2h2~vx

2
1vx

2
!

3S 11j cosq1
j2

4p2 cos2 q D 1o~j2!.

~18!
5-3
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The solution of Eqs.~16! and~17! can obtained as a scala
continued fraction as follows. First of all, Eqs.~16! and~17!
can be rearranged to yield

~hs2qn!c̃n
1,0~s!2qn

1c̃n11
1,0 ~s!2qn

2c̃n21
1,0 ~s!5dn,0hc0

1,0~0!,
~19!

where

qn52
n

~2n21!x1hs
22nx2

~n11!

~2n11!x1hs
,

-

-
re

m

05110
qn
152

~n11!/4

~2n11!x1hs
,

qn
252

4n

~2n21!x1hs
.

Equation~19! can now be solved using the continued fra
tion
c̃0
1,0~s!5

hc0
1,0~0!

hs2q02
q0

1q1
2

hs2q12
q1

1q2
2

hs2q22¯

.

~20!

Equation~20! can be further rearranged to yield

c̃n
1,0~s!

c0
1,0~0!

5
h

hs1
1

x1hs1
1

2x1hs1
2

3x1hs1
2

4x1hs1
3

5x1hs1¯

.

~21!
t all
l

ial
r-

tric
s

rtial
ti-

.

An alternative approach to the evaluation ofc0
1,0̃(s) in terms

of matrix continued fractions@14# is presented in Appendix
A.

Having determinedc̃0
1,0(s)5^P1(cosq&̃(s), one can calcu-

late the normalized complex susceptibilityx̂(v)
5x(v)/x8(0) @x8(0)5m2N/(3kBT) is the static suscepti
bility and N is the number of dipoles per unit volume#, which
is given by linear response theory as@20#

x̂~v!5x̂8~v!2 i x̂9~v!512 iv
c̃0

1,0~ iv!

c0
1,0~0!

. ~22!

Here, the quantityc̃0
1,0( iv)/c0

1,0(0) coincides with the one
sided Fourier transform of the normalized dipole autocor
lation function C1(t)5^cosq(0)cosq(t)&0/^cos2q(0)&0,
namely,

c̃0
1,0~ iv!

c0
1,0~0!

5E
0

`

C1~ t !e2 ivtdt. ~23!

The zero on the angular brackets denotes that the ense
average is taken in the absence of the field.
-

ble

The approach developed may also be extended to trea
the other averageŝPn(cosq)&(t) characterizing orientationa
relaxation in fluids@8#. In particular, the evaluation of the
average of the second order Legendre polynom
^Pn(cosq)&(t) ~this quantity describes the dynamic Ker
effect @16#! is given in Appendix B.

IV. RESULTS AND DISCUSSION

The infinite continued fraction Eq.~21! is very convenient
for the purpose of calculations so that the complex dielec
susceptibility Eq.~22! can be readily evaluated for all value
of the model parametersh, g8, anda. For a51, the anoma-
lous rotational diffusion solution Eq.~21! coincides with that
of Sack@7# for normal rotational diffusion@in order to obtain
a complete agreement, one has to introduce Sack’s ine
parameterg52/g82 and to carry out elementary mathema
cal transformations in Eq.~21!#. Moreover, in a few particu-
lar cases, Eqs.~21! and ~22! can be considerably simplified
In the free rotation limit (z50), which corresponds to the
continued fraction Eq.~21! evaluated atx50, that fraction
can be expressed~just as for normal rotational diffusion@7#!
in terms of the exponential integral functionE1(z) @19# so
that the normalized complex susceptibility is

x̂~v!511h2v2e2h2v2
E1~2h2v2!. ~24!
5-4
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Furthermore, just as in the one degree of freedom fixed
rotation model@4#, in the high damping limit (g8@1), Eq.
~22! can be simplified yielding the generalization to fra
tional dynamics of the Rocard@16# equation, namely,

x̂~v!5
1

11~ ivt!s2~vh!2 , ~25!

wheres522a. On neglecting inertial effects (h→0), Eq.
~25! becomes

x̂~v!5
1

11~ ivt!s , ~26!

i.e., the result previously proposed from empirical consid
ations @21,22#. For s51, Eq. ~26! reduces to the Debye
equation@1#.

FIG. 1. Dielectric loss spectrax̂9(v) for g8510 and various
values ofa. a50.5 ~curves 1 and 18!, 1.0 ~curves 2 and 28!, and
1.5 ~curves 3 and 38!. Solid lines~1, 2, and 3!, Eqs.~21! and~22!;
crosses~18, 28, and 38!, Eq. ~26!.

FIG. 2. Dielectric absorption spectravx̂9(v) for a50.5 ~en-
hanced diffusion! and various values ofg8:g85104 ~curves 1 and
18!, 103 ~curves 2 and 28!, 102 ~curves 3 and 38!, 10 ~curves 4 and
48!, and 1~curves 5 and 58!. Solid lines~1, 2, 3, 4, and 5!, Eqs.~21!
and ~22!; crosses~18, 28, 38, 48, and 58!, Eq. ~26!.
05110
is

r-

Dielectric lossx̂9(v) and absorptionvx̂9(v) spectra for
various values ofa and g8 are shown in Figs. 1–3. The
Cole-Cole plot@x̂9(v) vs x̂8(v)# is presented in Fig. 4. It is
apparent that the half-width and the shape of the dielec
spectra strongly depend on botha ~which in the present con
text pertains toanomalous diffusion in velocity space! andg8
~which characterizes the effects of molecular inertia!. In the
high damping limit (g8@1) and fora.1 corresponding to
s,1 ~subdiffusion in configuration space!, the low fre-
quency part ofx̂9(v) may be approximated by the modifie
Debye equation~26!. On the other hand, the high frequenc
behavior ofx̂9(v) is entirely determinedby the inertia of the
system. For a given value ofg8, the inertial effects become
more pronounced whena→2 ~see Fig. 4!. Just as in Brown-
ian dynamics, it is apparent that inertial effects produce
much more rapid falloff ofx̂9(v) at high frequencies. One
can show that the fractional model under consideration
isfies the Gordon sum rule for the dipole integral absorpt
of rotators in space@23#, viz.,

E
0

`

vx9~v!dv5
pNm2

3I
. ~27!

FIG. 3. The same as in Fig. 2 fora51.5 ~subdiffusion!.

FIG. 4. The Cole-Cole plot forg85100 and variousa ~subdif-
fusion!: a51 ~curve 1!, 1.25 ~curve 2!, 1.5 ~curve 3!, and 1.6
~curve 4!. Solid lines~1, 2, 3, and 4!, Eqs.~21! and~22!; symbols,
Eq. ~26!.
5-5
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TABLE I. Comparison of the results for fixed axis rotators and rotators in space.

Fixed axis rotators@4# Rotators in space

Characteristic
relaxation time

t5z/(kBT)5hg8 t5z/(2kBT)5hg8/2

Static
susceptibility

x8(0)5m2N/(2kBT) x8(0)5m2N/(3kBT)

Generalized
Rocard equation x̂~v!5

1

11~ivt!s22~vh!2 x̂~v!5
1

11~ivt!s2~vh!2

Gordon’s sum rule
*0

`vx9~v!dv5
pNm2

4I
*0

`vx9~v!dv5
pNm2

3I
Dielectric loss atz50

~free rotation limit! x̂FR9 (v)5Aphve2h2v2
x̂FR9 (v)5ph2v2e2h2v2
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It is significant that the right hand side of Eq.~27! is deter-
mined by molecular parameters only and isindependentof
the temperature and the model parametersa and z. In con-
trast, the fractional Debye model does not predict the cor
value of the integral absorption: e.g., fora.1, it predicts
infinite integral absorption~see Fig. 3!.

The behavior of the dielectric spectra for the two ro
tional degree of freedom~needle! model is similar but not
identical to that for fixed axis rotators~one rotational degree
of freedom model! @4#. Here, the one and two rotational d
gree of freedom models~fractional or normal! predict dielec-
tric parameters that may considerably differ from each oth
The differences in the results predicted by these two mo
are summarized in Table I. Here, one can readily see tha
model of rotational Brownian motion of a fixed axis rotat
treated in Ref.@4# only qualitatively reproduces the principa
features~return to optical transparency, etc.! of dielectric re-
laxation of dipolar molecules in space, for example, the
electric relaxation time obtained in the context of these m
els differs by a factor of 2.

The result we have obtained for the complex suscepti
ity is of particular interest in the theory of dielectrics as
demonstrates how the unphysical high frequency diverge
of the absorption coefficient in the far infrared region due
the neglect of inertia may be removed in fractional relaxat
just as in inertia corrected Debye relaxation~see Figs. 1–3!.
We remark that the advantage of using the generalized i
gral theorem of Laplace transformation combined with co
tinued fraction methods is that solutions for the comp
susceptibility, etc., may be easily obtained, to any des
degree of accuracy, by elementary algebra manipula
without using special functions. Moreover, the generaliz
integral theorem indicates how existing normal diffusion s
lutions may easily be extended to include anomalous di
sion, which is again of particular interest in simplifying th
problem of solution of the FKKE for multiple degree of fre
dom systems. We further remark that the continued frac
solutions that we have given, with a few elementary mod
cations, also yield the Laplace transform of the characteri
function of the configuration space distribution function i
cluding inertial effects. Thus all desired statistical avera
such as the mean square angular displacement, etc., ma
simply calculated by differentiation.
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To conclude, we have demonstrated how conventio
Brownian motion solutions for dielectric relaxation@7# may
be generalized to fractional dynamics simply by using
generalized integral theorem of Laplace transformation@Eq.
~15!# combined with the existing continued fraction solutio
so providing one with a rigorous method of treating the
tational diffusion in disordered fractal systems. These s
tems generally have a waiting time probability density fun
tion, which governs the random time intervals betwe
microscopic reorientations. Moreover, unlike the classi
theory of Brownian motion, which has a characteristic m
croscopic time scale, namely,the mean duration of an el
ementary step in the underlying random walk~here micro-
scopic reorientations!, the characteristic waiting time is
divergent as the system may maintain itself in a given ori
tation for an arbitrarily long time period. In other words, on
is dealing with a fractal time random walk@24#. A general
characteristic of the systems we have treated is that they
nonlocal in time and exhibit memory effects which give ri
to anomalous rotational diffusion. For a further discuss
couched in terms of the Langevin equation we refer the re
ers to a recent paper of Lutz@25#, where anomalous relax
ation of a free particle moving along thex-axis is discussed
This problem is the fractional dynamics equivalent of t
Uhlenbeck-Ornstein process@26#. The present calculation
also constitutes a good example of the solution of the FK
for a multipledegree of freedom system and is to our kno
edge the first example of such a solution. The methods
have outlined are also of importance when extended to o
relaxation models such as the itinerant oscillator@27#, which
attempt to incorporate both resonance and relaxation be
ior in a single model for the purpose of simultaneously e
plaining the Debye~low frequency! and far infrared absorp
tion spectra of complex dipole systems.
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APPENDIX A: SOLUTION OF EQS. „16… AND „17… IN
TERMS OF MATRIX CONTINUED FRACTIONS

Equations~16! and ~17! can also be solved in terms o
matrix continued fractions@5,14#. This is accomplished a
follows. Let us introduce the column vectors

C̃n~s!5S c̃n21
1,0 ~s!

c̃n21
1,1 ~s! D ~n>1!. ~A1!

Then the scalar recurrence relations~16! and ~17! may be
recast in the form of the matrix recurrence relations

~hs2Qn!C̃n~s!2Qn
1C̃n11~s!2Qn

2C̃n21~s!

5d1,nhC1~0! ~n>1!, ~A2!
h
io
n

ta
x-

e
ity

-
e

o

rr

05110
ywhere

Qn
25S 0 2

0 0D , Qn5S 22~n21!x 1/2

22n 2~2n21!x
D ,

Qn
15S 0 0

2n/2 0D ,

and

C1~0!5S c0
1,0~0!

0 D .

Equation~A2! has the solution
C̃1~s!5h
I

hsI2Q12Q1
1

I

hsI2Q22Q2
1

I

hsI2Q3¯
Q3

2

Q2
2

C1~0!. ~A3!
-

where the fraction lines denote the matrix inversion. T
calculation shows that the matrix continued fraction solut
rendered by Eqs.~A3! and the ordinary continued fractio
solutions Eq.~21! coincide.

APPENDIX B: THE DYNAMIC KERR-EFFECT RESPONSE

The physical quantity of interest from an experimen
point of view and which is appropriate to Kerr effect rela
ation is the electric birefringence functionK(t) defined by
@16#

K~ t !5B2

2pN0

n̄
~a i

02a'
0 !^P2~cosq!&~ t !,

whereN0 denotes the number of molecules per unit volum
a i

0 and a'
0 are the components of the optical polarizabil

due to the electric field~optical frequency! of the light beam
passing through the liquid medium, andn̄ is the mean refrac-
tive index. The coefficientB2 depends on the particle depo
larization factors and the dielectric susceptibility of the m
dium.

In the transient~step-off! Kerr effect response, it is als
possible to obtain from Eqs.~12!–~14! for l 52 the system of
recurrence equations for the Laplace transforms of the co
sponding relaxation functionscn

2,m(t) (m50,1,2) pertaining
to that response, viz.,
e
n

l

,

-

e-

@hs12nx# c̃n
2,0~s!2 1

2 c̃n
2,1~s!22c̃n21

2,1 ~s!5dn,0hc0
2,0~0!,

~B1!

@sh1~2n11!x# c̃n
2,1~s!1

3~n11!

2
c̃n11

2,0 ~s!

16~n11!c̃n
2,0~s!2 c̃n

2,2~s!2 1
4 c̃n11

2,2 ~s!50,

~B2!

@sh12nx# c̃n
2,2~s!1nc̃n

2,1~s!14~n11!c̃n21
2,1 ~s!50.

~B3!

Here, we have taken into account that all thecn
2,m(0) vanish

with the exception ofn50 andm50, viz., c0
2,0(0)5j2/15.

This follows from the initial Maxwell-Boltzmann distribu
tion Eq. ~18!.

Just as in the dielectric response, Eqs.~B1!–~B3! can be
rearranged as a three-term recurrence equation forc̃n

2,1(s) so
that the exact solution forc̃0

2,1(s) in terms of an infinite con-
tinued fraction combined with the relation

sc̃0
2,0~s!5c0

2,0~0!1
1

2h
c̃0

2,1~s!

is @that is, Eq.~B1! at n50#,
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c̃0
2.0~s!

c0
2,0~0!

5
h

hs1
3

hs1x1
5

hs12x
2

b0

hs1a12
b1

hs1a22
b2

hs1a32¯

~B4!
t

where

an5~2n11!x1
4n13

2nx1hs
1

4n15

2~n11!x1hs

and

bn5
16~n11!~n12!

@2~n11!x1hs#2 .

The scalar recurrence Eqs.~B1!–~B3! may also be recas
in the form of the matrix three-term recurrence relation~A2!,
viz.,

~hs2Qn!C̃n~s!2Qn
1C̃n11~s!2Qn

2C̃n21~s!

5d1,nhC1~0! ~n>1!, ~B5!

whereC̃0(s)50,

C̃n~s!5S c̃n21
2,0 ~s!

c̃n21
2,1 ~s!

c̃n21
2,2 ~s!

D ~n>2!,
,

s.

E

i,
op

s

r

05110
C1~0!5S c0
2,0~0!

0
0

D , ~B6!

Qn
25S 0 2 0

0 0 0

0 24n 0
D , ~B7!

Qn
15S 0 0 0

23n/2 0 1/4

0 0 0
D , ~B8!

Qn5S 22x~n21! 1/2 0

26n 2x~2n21! 1

0 2~n21! 22x~n21!
D .

~B9!

The solution of Eq.~B5! is also given by Eq.~A3!, where the
column vectorC1(0) and the matricesQn

2 , Qn
1 , andQn are

defined by Eqs.~B6!–~B9!.
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