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Inertial effects in the anomalous dielectric relaxation of rotators in space
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The linear dielectric response of an assembly of noninteracting lineadlelike dipole moleculegeach of
which is free to rotate in spagés evaluated in the context of fractional dynamics. The infinite hierarchy of
differential-recurrence relations for the relaxation functions appropriate to the dielectric response is derived by
using the underlying inertial fractional Fokker-Plan@kactional Klein-Kramers equation. On solving this
hierarchy in terms of continued fractiof@as in the normal rotational diffusipnthe complex dynamic suscep-
tibility is obtained and is calculated for typical values of the model parameters. It is shown that the model can
reproduce nonexponential anomalous dielectric relaxation behavior at low frequeneied, wherer is the
Debye relaxation timeand the inclusion of inertial effects ensures that optical transparency is regained at very
high frequencieqin the far infrared regionso that Gordon's sum rule for integral dipolar absorption is
satisfied.
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[. INTRODUCTION for the evolution of the distribution function in phase space.
For rotation in space, the phase space comprises the angular
An extension of the Debye modEl] of dielectric relax- momenta and Euler angles. Thus the present calculations
ation of an assembly of noninteracting dipolar molecules talso serve as a simple example of the solution of the frac-
fractional dynamics for the purpose of providing a theoreti-tional Klein-Kramers equation for a multiple degree of free-
cal basis for the understanding of the phenomenon of thdom system.
anomalous dielectric relaxation arising from diffusion pro- Mindful of the limitations imposed on the Debye theory
cesses in disordered fractal structures has recently been givand its fractional extension by using a diffusion equation of
by Coffey et al. [2]. The initial Debye treatment of the di- Smoluchowski type, Coffegt al.[4] have showr(by gener-
electric relaxation problerfil], although considering assem- alizing the approach given by Grofs] and SacK6,7], for
blies of both fixed axis and space rotators, does not includaormal rotational diffusion including inertial effects of fixed
the inertial effects of the molecules and so is valid only in theaxis rotators how inertial effects may be included in the
low frequency or small inertial effects limit. The neglect of fractional dynamics of an assembly of noninteracting fixed
inertia in the dynamical processes then leads to the phenonaxis rotators. The starting point of the solution outlined in
enon of infinite dielectric absorption at high frequencies bothRef. [4] is the generalization of the Klein-Kramers equation
in the fractional and in the conventional Brownian dynamicsto fractional dynamics, originally proposed by Barkai and
that arises from the normal diffusion in regular space. BothSilbey [9] for translational motion, as adapted to rotational
the Debye theory1] and its subsequent extension to frac- motion about a fixed axis. The inclusion of inertial effects in
tional dynamics are based on the Smoluchowski equatiothe fractional dynamics just as in the conventional Brownian
generalized to fractional dynami¢g,3]. Both are approxi- dynamics thus ensures the desired return to optical transpar-
mate equations for the evolution of the distribution functionency at high frequencies. Moreover, Gordon’s sum f@éle
of the orientations of the dipoles in configuration space andor the integral dipolar absorption is satisfied. In addition,
exclude inertial effects. Thus, as in the original Einsteinjust as in normal diffusior{6], the complex susceptibility
theory of Brownian motion, conclusions about the relaxationmay be written in closed form in terms of Kummer’s func-
processes based on these equations will be invalghatt  tions or as a continued fractid#]. We have also demon-
times, corresponding tbigh frequencies. In the frequency strated in Ref[4] that this generalized model can reproduce
domain this will give rise to the absurd result of infinite nonexponentialCole-Cole type& anomalous dielectric relax-
integral absorption so that a return to optical transparency attion behavior, and how the unphysical high frequency be-
very high frequencies is impossible. Hence, an accuratbavior of the absorption coefficient due to the neglect of
theory that ensures finite integral absorption and a return tmertia may be removed in fractional relaxation as in inertia
optical transparency may only be constructed by using theorrected Debye relaxation.
Klein-Kramers equation or its fractional dynamics equivalent Although the fixed axis rotator model considered in Ref.
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[4] reproduces the principal features of dielectric relaxation W W IW IW
of an ensemble of dipolar molecules and allows one consid- —— t oyt wy COtY| oy——— wy——
. P . ot a0 dwy dwy
erable mathematical simplification of the problg&7], this
model may be used only for the qualitative evaluation of ME ma
dielectric spectra. The quantitative theory of dielectric relax- - I—smﬁ— =oD¢ “LepW, ©)

. - . . . . Jw
ation requires an analysis of molecular reorientations in three X

dimensiond8]. In the present paper, we shall generalize theynere
results of Ref[4] and demonstrate how the analogous frac-
tional Klein-Kramers equatiofFKKE) pertaining to rotation

in space may also be solved to yield the complex dielectric oDI L W= oD11a®,3[i( 0 W+ kB_T aw)
susceptibility in terms of continued fractions, thus extending dwy I dwy

the results of Sack7] originally given for normal rotational 9 kT oW

diffusion in space including inertial effects to fractional dy- + _(zwyw+ 78_ _) (4
namics. Our starting point will be the separation of variables dwy I cos & dwy

method of solution of the FKKE coupled with a generaliza-. . _ .
tion of the integral theoreril0,11] of Laplace transforma- IS the frgctloqal FokI;fe.r-.PIancfk ogeralltqfl,_—.g/lr,] ¢ rl15 thel
tion to fractional indices. We shall also confine ourselves to/'SCOUS damping coetficient of a ipolle;T is the therma .
the simplest model of rotation in space, namely, an assemb nergy,_l is the mlo_ment_ of |ne_rt|a of the_rotajtor about the axis
of noninteracting needlelike dipolar moleculgeated origi-  ©f rotation,@ =7"", 7is the intertrapping time scale which
nally by Sack[7] and later by McConnel[12], Coffey we identify with the Debye relaxation timé/(2kgT) for
[13,14, and Coffeyet al. [15]). The results for the more linear molecules, and is the exponent characterizing the

) ) . . . . 170(
complicated sphere model then follow, if desired, by analogypomalous diffusion - process. The operatqiD;
with the work of SacK7] for normal diffusion. The afteref- =(d/dt)oD “ in Eq. (4) is defined in terms of the convolu-
fect solution for the dynamic Kerr effeft6] may be treated tion (the Riemann-Liouville fractional integral definitipf]
in analogous fashion and is also presented.

1 tW( ,t")dt’

D, *W(,t)= f —a
Il. THE FRACTIONAL KLEIN-KRAMERS EQUATION 0=t () I'(a) o (t—t")1 @

FOR THE NEEDLE MODEL

®)

, , ) . so that the fractional derivative is a type of memory function
Let us consider the rotational motion of a thin rod, orrg 8] or stosszahlansatior the Boltzmann equatiofl7,1§
rotator, representing the polar molecule, which is subjecte n,derlying the FKKE. Fora=1. the fractional Foi<ker-
toan external eIectric_fieIE [7,12]. We assume t_hat the field pjanck operator of Eq4) reduces to that corresponding to
E is parallel to theZ axis of the laboratory coordinate systém o ma) inertia corrected rotational diffusion considered by
OXYZ In the molecular coordinate systemyzrigidly con- gk [7]. Just as fore=1, Eq. (3) is independent of the

nected to the rotator, the components of the angular velocity i thal anglep and thez component of the angular veloc-
w of the rotator and of the torqués produced by the fiel& i, 'sq that for the problem in question one may ignore the

are[12] dependence diV on ¢ and w, .

0= (0,,0,,0,)=(9,¢sinY,¢ cosd), 1) Ill. CONTINUED FRACTION SOLUTION FOR
DIELECTRIC RELAXATION

K=(—uE sin,0,0), 2 Let us suppose that the uniform fiely having been ap-
plied to the assembly of dipoles at a tinhe — so that
whered(t) ande(t) are the polar and azimuthal angles, andequilibrium conditions prevail by the time=0, is switched
p is the dipole moment of the rotator. Here, the internal fieldoff at t=0. In addition it is supposed that the field is weak
effects are ignored, which means that the effects of long{i.e., uE<kgT, which is the linear response conditjoiVe
range torques due to the interaction between the average meeek a solution of the FKKE, E@3), for the caseE=0 at
ments and the Maxwell fields are not taken into accountt>0 by using the method of separation of variables in the
Such effects may be discounted for dilute systems in firstorm of the series
approximation. Thus, the results obtained here are relevant to
situations where dipole-dipole interactions have been elimi- s o 2 I
nated by extrapolation of data to infinite dilution. _ W( 8, 0y, @y ,t)= 7€ " (@re)> > > ahmehmt)
In order to describe the fractional Brownian rotational [=0 m=0n=0

motion, we use the FKKE for the evolution of the probability

m m
density functionW in configuration-angular-velocity space X Sn (@, 0y)Pr(cOSD), ©)
for linear molecules in the same form as in Héf| for fixed where
axis rotatorgthis form of the FKKE was suggested by Bar-
kai and Silbey{9] for one-dimensional translational Brown- m m "
ian motion. For rotators in space, the FKKE becomes Cp (1) = (s (wx, wy) P{'(cosd)), ()
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P"(z) are the associated Legendre functions of oldem

<I) [19], »=JI/(2kgT), and the angular brackets denote
ensemble averages over the distribution functignviz.,

W= [ [TawweWo.000,0
®

The orthogonal functionsnm(wx,wy) are given in terms of
finite series of products of Hermite polynomidfs, [19] in
the components of the angular velocity as

Xsind dd dodo, .

n S Fomem(n,Q)
Sﬁ +M(wxrwy):qzoﬁ 2n72q+M(77wx)
XHZq(W‘Uy) (MZO,].), (9)

where the coefficients,,, . y(n,q) can be determined from
the following recurrence relations:

2q9+1

2m—1

Fam(n0)=| N0+ 3 Fam-1(0,0)

2q+1
WL(YW—Q)mrzm—l(n,qJr 1),

q
lNom+1(N,Q)= 1+ rom(n,q)— r2m(n q-1)

with ry(n,q)=r4(n,q)=1 [for exampler,=n—2q, rz=n

—4q, r,=n(n—1)—-8q(n—q), etc]. The normalizing con-
stantsa:™
erties of theP|"(cos®) andH(2), viz. [19],

f P"(cos®) P,”T/(cosf})sin 9do
0

o 20+m)! 5 0
= 2+ D —m)1 O Omam (10
f Hn(X)Hy (x)e ¥ dx= 7201 5, (11)
so that
[+m)lbm
(ay™t= ( !on Zn=1:
m(2l+1)(I—m)!2
whereb’=1, b}=1[2(n+1)], b2=1/n?,.... Oursepara-

tion of the variables procedure based on &j.differs from
that introduced by Sadk/] and allows us to solve the FKKE
in a simpler manner.

Substituting Eq.(6) into the FKKE Eq.(3), taking the

inner product, and utilizing the orthogonal properties and

known recurrence relatiorj49] for the associated Legendre
functionsP"(cos®), Eqg. (10), and the Hermite polynomials

are obtained by means of the orthogonality prop-
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H,.(2), Eq.(11), then yields an infinite hierarchy of differen-

tial recurrence relations for thel,;m(t) governing the orien-
tational relaxation of the system, viz.,

d
7 g o (D)= —2n70Di "0 By () + 3 (B +2¢y2 (1),

(12)
d 1-«a 1,1 1,2
7 g o (D)= (2n+1) 70D}~ “0® Be'(t) + (1)
+icza (D —1(1+1)(n+1)

X[ey %) +5c 2 (0], (13)

n(;jtc'z(t)_—ZnnoDl “0 pey (t)—wdﬁ(t)
—(1+2)(I1-1)(n+ 1)k () +cl3 (1)
+ien), (14)

and so on.

In dielectric relaxatiod =1 so that by taking the Laplace
transform of Eqs(12)—(14) over the time variables and not-
ing the generalized integral theorem for Laplace transforms
[3,10,11, namely,

st 4f(s)—

st~ 4f(s)

D¢ “f(D)]i=0
(1=a<?2),

(0<axl)
L{oD{ “f(t)}=

(15

wheref(s)=L{f(t)}=/5e S'f(t)dt, we then have a system
of algebraic recurrence relations for the Laplace transform of
cﬁ'm(t) (m=0,1) governing the dielectric response, namely,
[ s+ 2nx]ELAs) — 28521 (s) —Thl(s)/2= 6, 0mC5(0),
(16)

[ 7s+(2n+1)xTELY(s) +2(n+ 1)[E-%s) +TL0, (s)/4]=0.
17)

Here x=17' (7)1 %2, y' =\2IkgT is the inertial effects
parameteflarge y’' corresponds to small inertial effects and
vice versa, and we have taken into account that all the
ct%0) vanish with the exception oh=0, viz., cg%0)
=¢/3, whereé= uwE/(kgT). The last equality follows from
the linearized initial(at t=0) distribution function, which
has the Maxwell-Boltzmann form

1
W(, 0y, 0y,0)= —ne (0t o))

2

g 2
X| 1+ ¢cosd+ —cos 9 | +0(£2).
41

(18
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The solution of Eqs(16) and(17) can obtained as a scalar . (n+1)/4
continued fraction as follows. First of all, Eq4.6) and(17) an, =— m
can be rearranged to yield
(75— AnErAS) ~ AnTRY1(8) — Un Er01(5) = 8, 07c5X0),
(19 - 4n
here I =" 2n—Dx+ s’
_ n Conx— (n+1) Equation(19) can now be solved using the continued frac-
An (2n—1)x+ s (2n+1)x+ ps’ tion
1,0,
~1.0, 77Co' (0)
Co(s)= = (20)
0 S Qo do U1
° yo s a1 9,
Yogs—dp—
Equation(20) can be further rearranged to yield
~1,0,
¢ (s) U
= 21
c5'10) 1 (21)
7S+ 1
X+ ns+ >
2x+ ps+ 5
3X+ ps+ 3
4x+ s+ BXF et
|
An alternative approach to the evaluationogf)(s) in terms The approach developed may also be extended to treat all
of matrix continued fraction§l14] is presented in Appendix the other average®,(cos))(t) characterizing orientational

A relaxation in fluids[8]. In particular, the evaluation of the
' i i 10 —_— average of the second order Legendre polynomial
Having determine@; (s) = (P1(cosv)(s), one can calcu-  (p (cosd))(t) (this quantity describes the dynamic Kerr-
late the normalized complex susceptibilityy(w) effect[16]) is given in Appendix B.
=x(w)/x'(0) [x'(0)=u?N/(3kgT) is the static suscepti-
bility and N is the number of dipoles per unit volufevhich IV. RESULTS AND DISCUSSION

's given by linear response theory )] The infinite continued fraction E¢21) is very convenient

for the purpose of calculations so that the complex dielectric
_ - i) susceptibility Eq(22) can be readily evaluated for all values
X(w)=x"(0)-iY"(0)=1l-iw I0) (22 of the model parameters y', anda. For a=1, the anoma-
0 lous rotational diffusion solution Eq21) coincides with that
10 10 o ) of Sack[7] for normal rotational diffusiofin order to obtain
Here, the quantitfy(iw)/cy"(0) coincides with the one- 3 complete agreement, one has to introduce Sack’s inertial
sided Fourier transform of the normalized dipole autocorreparametery=2/y'2 and to carry out elementary mathemati-
lation  function C,(t)=(cosd(0)cosd(t))y/(coSH(0)),, cal transformations in Eq21)]. Moreover, in a few particu-
namely, lar cases, Eq921) and(22) can be considerably simplified.
In the free rotation limit {=0), which corresponds to the

T w) . continued fraction Eq(21) evaluated ak=0, that fraction
01,0—=f C,(t)e '“tdt. (23 can be expressggust as fqr r!ormal rotatiqnal diffusiolv])
cg (0) 0 in terms of the exponential integral functid,(z) [19] so

that the normalized complex susceptibility is
The zero on the angular brackets denotes that the ensemble -
average is taken in the absence of the field. Y (0)=1+ p’w’e " E(— p’w?). (24)
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FIG. 1. Dielectric loss spectrg”(w) for y'=10 and various
values ofa. @=0.5 (curves 1 and 1), 1.0 (curves 2 and 2, and
1.5 (curves 3 and 3. Solid lines(1, 2, and 3, Egs.(21) and(22);
crosseq1’, 2’, and 3), Eq.(26).

FIG. 3. The same as in Fig. 2 far=1.5 (subdiffusion.

Dielectric lossy”(w) and absorptionwy”(w) spectra for
various values ofa and v’ are shown in Figs. 1-3. The
Cole-Cole plof ¥"(w) vs ¥’ (w)] is presented in Fig. 4. It is
Furthermore, just as in the one degree of freedom fixed axigPparent that the half-width and the shape of the dielectric
rotation model[4], in the high damping limit ¢’>1), Eq.  SPectra strongly depend on batf{which in the present con-
(22) can be simplified yielding the generalization to frac- text pertains tanomalous diffusion in velocity spacndy’
tional dynamics of the Rocarfd 6] equation, namely, (which characterizes the effects of molecular ingrtia the

high damping limit (/'>1) and fora>1 corresponding to
1 o<1 (subdiffusion in configuration spagethe low fre-

TF (o0 (@2’ (25  quency part ofy”(w) may be approximated by the modified

K Debye equatiori26). On the other hand, the high frequency
behavior ofy”(w) is entirely determinedy the inertia of the
system. For a given value aof, the inertial effects become
more pronounced whes— 2 (see Fig. 4. Just as in Brown-
ian dynamics, it is apparent that inertial effects produce a
much more rapid falloff ofy”(w) at high frequencies. One
can show that the fractional model under consideration sat-
isfies the Gordon sum rule for the dipole integral absorption
‘of rotators in spacg23], viz.,

X(w)=

whereo=2—«a. On neglecting inertial effectsy)(—0), Eq.
(25) becomes

)A((w):m, (26)

i.e., the result previously proposed from empirical consider
ations [21,22. For o=1, Eq. (26) reduces to the Debye
equation[1]. 2

* " — WNM
wx"(w)do= 3 (27)
0
5 a=0.5
1,1:y=10"
1 22:7=10° 11a=1.00 7 '=100
24 aa 10 05 21a=125 1
— 3,3:7= g ’ 3. 2=150
S q 44my=10 g 4.
A 4] 55:y=1 /
g X
[
0,0 '
log, [7] 0,0 0,5 1,0

Re(7 ()]

FIG. 4. The Cole-Cole plot fo’ =100 and variousy (subdif-
fusion): @=1 (curve 1, 1.25 (curve 2, 1.5 (curve 3, and 1.6
(curve 4. Solid lines(1, 2, 3, and 4 Egs.(21) and(22); symbols,
Eq. (26).

FIG. 2. Dielectric absorption spectay”(w) for «=0.5 (en-
hanced diffusionand various values of’:y'=10* (curves 1 and
1), 1¢° (curves 2 and 2, 10 (curves 3 and 3), 10 (curves 4 and
4"), and 1(curves 5 and 5). Solid lines(1, 2, 3, 4, and § Egs.(21)
and(22); crosseq1’, 2’, 3', 4', and 5), Eq. (26).
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TABLE |. Comparison of the results for fixed axis rotators and rotators in space.

Fixed axis rotator$4| Rotators in space
Characteristic , ,
relaxation time 7={l(keT) =7y 7= (kg T) =7y 12
Static 0= 2 "(0)= u?
Generalized o 1 o
Rocard equation Xw)= 1+ (0" —2wn)? Xw)= 1+(iwn"—(wn)?
Gordon’s sum rule . Nu? . Nu?
fsox (@)dw=—, JoX (0)do=—5
Dielectric loss atz=0 o 202 o 202
(free rotation limi) K@) =\Tywe Xi(w)=mn’w’e”"
It is significant that the right hand side of E@7) is deter- To conclude, we have demonstrated how conventional

mined by molecular parameters only andiridependenbf =~ Brownian motion solutions for dielectric relaxati¢i] may

the temperature and the model parametend /. In con-  be generalized to fractional dynamics simply by using the

trast, the fractional Debye model does not predict the corredeneralized integral theorem of Laplace transformafiag.

value of the integral absorption: e.g., far>1, it predicts ~ (15] combined with the existing continued fraction solution,

infinite integral absorptiofisee Fig. 3. so_prowdl_ng one _Wlth_ a rigorous method of treating the ro-
The behavior of the dielectric spectra for the two rota-tational diffusion in disordered fractal systems. These sys-

tional degree of freedorteedié model is similar but not  €MS generally have a waiting time probability density func-

identical to that for fixed axis rotatofene rotational degree 10N Which govems the random time intervals between

of freedom modal[4]. Here, the one and two rotational de- MICrOScopic reorientations. Moreover, unlike the classical
y ' o theory of Brownian motion, which has a characteristic mi-

gree of freedom modeldractional or normalpredict dielec croscopic time scale, namelihe mean duration of an el-

tric parameters that may considerably differ from each otherementary step in the underlying random wakiere micro-

The differences in the results predicted by these two mOde|§c0pic reorientations the characteristic waiting time is

are summarized in Table |. Here, one can readily see that thg, e rgent as the system may maintain itself in a given orien-
model of rotational Brownian motion of a fixed axis rotator tation for an arbitrarily long time period. In other words, one

treated in Ref[4] only qualitatively reproduces the principal jg dealing with a fractal time random walR4]. A general
features(return to optical transparency, etof dielectric re-  characteristic of the systems we have treated is that they are
laxation of dipolar molecules in space, for example, the dinonlocal in time and exhibit memory effects which give rise
electric relaxation time obtained in the context of these modtg anomalous rotational diffusion. For a further discussion
els differs by a factor of 2. couched in terms of the Langevin equation we refer the read-
The result we have obtained for the complex susceptibilers to a recent paper of Luf25], where anomalous relax-
ity is of particular interest in the theory of dielectrics as it ation of a free particle moving along theaxis is discussed.
demonstrates how the unphysical high frequency divergencehis problem is the fractional dynamics equivalent of the
of the absorption coefficient in the far infrared region due toUuhlenbeck-Ornstein proced®6]. The present calculation
the neglect of inertia may be removed in fractional relaxatioralso constitutes a good example of the solution of the FKKE
just as in inertia corrected Debye relaxati@ee Figs. 1-8  for a multipledegree of freedom system and is to our knowl-
We remark that the advantage of using the generalized inteedge the first example of such a solution. The methods we
gral theorem of Laplace transformation combined with con-have outlined are also of importance when extended to other
tinued fraction methods is that solutions for the complexrelaxation models such as the itinerant oscillq®&#], which
susceptibility, etc., may be easily obtained, to any desirecttempt to incorporate both resonance and relaxation behav-
degree of accuracy, by elementary algebra manipulatioior in a single model for the purpose of simultaneously ex-
without using special functions. Moreover, the generalizecplaining the Debydlow frequency and far infrared absorp-
integral theorem indicates how existing normal diffusion so-tion spectra of complex dipole systems.
lutions may easily be extended to include anomalous diffu-
sion, which is again of particular interest in simplifying the ACKNOWLEDGMENTS
problem of solution of the FKKE for multiple degree of free-
dom systems. We further remark that the continued fraction The support of this work by the Enterprise Ireland Re-
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APPENDIX A: SOLUTION OF EQS. (16) AND (17) IN o = 0 2 _(—2(n=1)x 1/2
TERMS OF MATRIX CONTINUED FRACTIONS n\o o) n —-2n —(2n—1)x/’
Equations(16) and (17) can also be solved in terms of
matrix continued fraction$5,14]. This is accomplished as 0 0
follows. Let us introduce the column vectors Qi =
" \-n/2 0)
~1,0
= Cn'1(5)>
Ch(s)=|« n=1). Al
n(S) (C#ll(s) (n=1) (A1) and
Then the scalar recurrence relatiofi$) and (17) may be
recast in the form of the matrix recurrence relations ()
Cl(O)=( 0 )
(75— Qn)Cn(8)—Qy Cpy1(8) — Q, Cp1(9)
=061,mC1(0) (n=1), (A2) Equation(A2) has the solution
|
~ |
Cis)=n | C1(0). (A3)
7sl—Q1—Qf , Q.
sI-Q,—-Q;——=—Q3
n Q2 QZ 7]S| _ Q3 Q3

where the fraction lines denote the matrix inversion. The [ s+ 2nxJ82%s)— 182%(s)— 282, (s)= 68, 97c5%0),
calculation shows that the matrix continued fraction solution ' (B1)
rendered by Eqs(A3) and the ordinary continued fraction

solutions Eq.21) coincide.
o 3(n+1)_,,
[sn+(2n+1)x]Ci(s) + 5 Crr(s

APPENDIX B: THE DYNAMIC KERR-EFFECT RESPONSE

The physical quantity of interest from an experimental +6(n+1)Ta%s) ~Er4(s) — iThE1(5) =0,
point of view and which is appropriate to Kerr effect relax- (B2)
ation is the electric birefringence functidf(t) defined by
16
ol [s7+2nx]E2%(s) + nE2™(s) + 4(n+1)821,(s)=0.

(B3)

K(t)=B ﬂ(a"— a®)(P,(cos®))(t)

Z n AT ’ Here, we have taken into account that all #3€'(0) vanish
with the exception oh=0 andm=0, viz., c5%0)= ¢2/15.
whereN, denotes the number of molecules per unit volume,This follows from the initial Maxwell-Boltzmann distribu-
a? anda? are the components of the optical polarizability tion Eq. (18).
due to the electric fieldoptical frequencyof the light beam Just as in the dielectric response, E@1)—(B3) can be
passing through the liquid medium, ands the mean refrac- rearranged as a three-term recurrence equatioB’ft{s) so
tive index. The coefficienB, depends on the particle depo- that the exact solution chIS'l(s) in terms of an infinite con-
larization factors and the dielectric susceptibility of the me-tinued fraction combined with the relation
dium.

In the transienistep-ofj Kerr effect response, it is also 1
possible to obtain from Eq$12)—(14) for | =2 the system of s@Ys)=c2%0) + —T2X(s)
recurrence equations for the Laplace transforms of the corre- 27
sponding relaxation functionsﬁ'm(t) (m=0,1,2) pertaining
to that response, viz., is [that is, Eq.(B1) at n=0],
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~2.0
Co (s) 7
= B4
30 3 =Y
s 5 bo
7sTXE s+ 2X by
7]S+ a.l_ b
S+a,— 2
T s Y ag—
|
where c2%0)
Ci(0)=| 0 |, (B6)
_ont1 4n+3 4n+5 0
= (2n+x+ 50y 7S * 2(n+1)x+ s
and 0 2 0
Q,=({0 0 0}, (B7)
16(n+1)(n+2) 0 —4n 0
"T[2(n+1)x+ 7s]?
The scalar recurrence Eq81)—(B3) may also be recast 0 0O O
in the form of the matrix three-term recurrence relatié2), + | _
viz., Q,=| —3n2 0 1/4], (B8)
0 0 O
(75— Qn)Ci(8) = Qy Cp1(8) = Q, Ty ()
—-2x(n—1) 1/2 0
=01,1C1(0) (n=1), (B5)
Q.= —6n —X(2n—1) 1
whereCy(s) =0, 0 —(n—=1) —-2x(n—1)
(B9)
20 (s) . . .
- ~231 The solution of Eq(B5) is also given by Eq(A3), where the
Cn(s)= fg;l(s) (n=2), column vectorC,(0) and the matrice®,, , Q; , andQ, are
Cha(s) defined by Eqs(B6)—(B9).
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