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Longitudinal complex magnetic susceptibility and relaxation time of superparamagnetic particles
with cubic magnetic anisotropy
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The magnetic relaxation of single-domain ferromagnetic particles with cubic magnetic anisotropy is treated
by averaging the Gilbert-Langevin equation for an individual particle, so that the system of linear differential-
recurrence relations for the appropriate equilibrium correlation functions is derived without recourse to the
Fokker-Planck equation. The solution of this system~in terms of matrix continued fractions! is determined and
the longitudinal relaxation time and spectrum of the complex magnetic susceptibility are evaluated. It is shown
that in contrast to particles with uniaxial anisotropy, there is an inherent geometric dependence of the complex
susceptibility and the relaxation time on the damping parameter arising from coupling of longitudinal and
transverse relaxation modes.@S0163-1829~98!06829-5#
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I. INTRODUCTION

A single-domain ferromagnetic particle is characteriz
by an internal potential, which has several local states
equilibrium with potential barriers between them. If the pa
ticles are small~;100 Å! so that the potential barriers ar
relatively low, the magnetization vectorM may cross over
the barriers between one potential well and another du
thermal agitation.1 The ensuing thermal instability of magne
tization results in the phenomenon of superparamagne
~so-called!.2 The thermal fluctuations and relaxation of th
magnetization of a single-domain particle currently merit
tention in view of their importance in the context of ma
netic recording media3 and paleomagnetism.4

For the purpose of mathematical simplification, partic
with uniaxial magnetic anisotropy have for the most p
been considered~see, for example, Refs. 2 and 5–12!. Al-
though the use of the uniaxial potential considerably sim
fies the analysis, the results obtained by means of this
proximation have, however, a restricted area
applicability.13 For more realistic anisotropy potentials, su
as a cubic potential, either the discrete orientation appr
mation was used, or only asymptotes of the continuous
fusion model were derived~see, for example, Refs. 2 an
13–19!. Both approaches, however, do not apply to the m
interesting case, where the magnetic anisotropy energ
comparable to the thermal energykT.

The magnetization dynamics of single-domain partic
for the continuous diffusion model is similar to rotation of
Brownian particle in a liquid and obeys the Fokker-Plan
equation for the probability density distributio
W($u%,t).2,20,21The Fokker-Planck equation is derived fro
Gilbert’s equation2,20 with a random white noise field, which
takes into account the thermal fluctuations of the magnet
tion of an individual particle. In general, for magnetic rela
ation of a system of single-domain particles with cubic a
isotropy, the Fokker-Planck equation can be formally solv
PRB 580163-1829/98/58~6!/3267~10!/$15.00
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for example, by means of an expansion of the distribut
function W in spherical harmonics.14,19 In such an approach
the problem is reduced to the solution of an infinite system
linear differential-recurrence relations for the averag
spherical harmonics~moments!:

d

dt
X~ t !5AX ~ t !, ~1!

where X(t) is the column vector consisting of the syste
moments andA is the infinite system matrix. The elemen
of this matrix depend on certain parameters characteriz
the anisotropy energy and dissipation.@The detailed deriva-
tion of Eq. ~1! was given recently by Geogheganet al.19#
The numerical solution of Eq.~1! ~eigenvalues and eigenvec
tors of the system matrix! may be obtained by consecutiv
increase of the number of the equationsN until convergence
is attained. Such an approach to cubic anisotropy has b
used, for example, by Aharoni and Eisenstein in Refs. 14,
and 17, where several low-order eigenvalues were evalu
numerically in the intermediate damping limit. Unfortu
nately, the application of this direct matrix approach to t
present problem is inconvenient, especially for low damp
and intermediate barrier heights~where asymptotic estimate
are unreliable! as it is necessary to carry out calculations f
N;103– 104 and convergence of the solution is cons
quently difficult to achieve. Furthermore, the complex ma
netic susceptibility spectrum for the cubic anisotropy in t
context of the continuous diffusion model has not been c
culated as yet either for high or low damping.

On account of the difficulties encountered in the nume
cal analysis, which we have mentioned, the cubic case i
some extent incomplete.2 This gap in our knowledge of the
solution may, however, be bridged if one uses a matrix c
tinued fraction method for the solution of infinite systems
recurrence relations developed in Refs. 22 and 23. Suc
method was applied by us for particles with the simpl
3267 © 1998 The American Physical Society
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axially symmetric anisotropy in Refs. 9 and 12. Here, t
method is extended to obtain the longitudinal componen
the magnetic susceptibilityx i(v) and the relaxation timet i

of a system of noninteracting single-domain particles w
cubic anisotropy. Our calculations ofx i(v) andt i are based
on linear-response theory.22,23 In order to evaluate thex i(v)
and t i we must first calculate the equilibrium correlatio
function Ci(t) of the magnetization, which is more conv
niently accomplished directly from Gilbert’s equation24

rather than from the Fokker-Planck equation.12 Thus, we by-
pass the Fokker-Planck equation entirely. The behavio
x i(v) is investigated for all ranges of the anisotropy ene
~s! and dissipation~a! parameters. The results obtained a
compared both with previously available solutions a
asymptotic estimates based on the Kramers escape
theory.

II. DERIVATION OF DIFFERENTIAL-RECURRENCE
RELATIONS FROM GILBERT’S EQUATION
AUGMENTED BY A RANDOM FIELD TERM

Gilbert’s equation24 in the presence of thermal agitatio
is6

d

dt
M ~ t !5g$M ~ t !3@H~ t !1h~ t !2hṀ ~ t !#%, ~2!

whereg is the gyromagnetic ratio,h is the damping param
eter,H(t) is the magnetic field acting on the particle, whic
may consist of externally applied magnetic fields and
crystalline anisotropy field, and a random Gaussian wh
noise fieldh(t), which has the properties

hi~ t !50,

hi~ t !hj~ t8!5~2kTh/n!d i j d~ t2t8!.

v is the volume of the particle. Here the overbar means
statistical average over an ensemble of particles that all h
at time t the samemagnetizationM . If V($M%) is the free
energy per unit volume expressed as a function of com
nents ofM , then

H52
]

]M
V~$M%!, ~3!
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where

]

]M
5 i

]

]Mx
1 j

]

]M y
1k

]

]Mz
.

Mx5Ms sinq cosw5Msux , M y5Ms sinq sinw5Msuy ,
Mz5Ms cosq5Msuz, Ms is the saturation magnetization
andq,w are the polar and azimuthal angles, respectively. I
assumed throughout this analysis that the magnetizatio
uniform inside the particle andonly the orientation and no
the magnitude of the magnetization is subject to variatio
The assumptions made in the derivation of Gilbert’s equat
were discussed elsewhere~e.g., Ref. 13!.

We shall use the representation for the free energy of
volume of a particle possessing cubic magne
anisotropy,2,23 viz.,

V5K~ux
2uy

21ux
2uz

21uy
2uz

2!5
K

4
~sin4q sin22w1sin22q!,

~4!

where K is the anisotropy constant, which may have bo
positive and negative values. ForK.0, the potential~4! has
6 minima, 8 maxima, and 12 saddle points~for example, in
the directions@100#, @111#, and @110#, accordingly!.2 If K
,0, the maxima and minima are interchanged.

Gilbert’s equation~2! may be rearranged explicitly usin
the properties of the vector triple product formula to yield2

d

dt
M ~ t !5Msg8$M ~ t !3@H~ t !1h~ t !#%1h8„$M ~ t !

3@H~ t !1h~ t !#%3M ~ t !…, ~5!

where

g85
g

~11a2!Ms
, h85

ga

~11a2!Ms
5ag8

and the dimensionless damping constanta is given by

a5ghMs . ~6!

Equation ~5! is of the same mathematical form as th
Landau-Lifshitz equation5 except that both of the paramete
g8 andh8 depend ona.

Expanding Eq.~5! in its Cartesian components we have
1

h8Ms

d

dt
ux~ t !5@12ux

2~ t !#hx~ t !2@a21uz~ t !1ux~ t !uy~ t !#hy~ t !1@a21uy~ t !2uz~ t !ux~ t !#hz~ t !1@12ux
2~ t !#Hx~ t !

2@a21uz~ t !1ux~ t !uy~ t !#Hy~ t !1@a21uy~ t !2uz~ t !ux~ t !#Hz~ t !, ~7!

1

h8Ms

d

dt
uy~ t !5@a21uz~ t !2ux~ t !uy~ t !#hx~ t !1@12uy

2~ t !#hy~ t !2@a21ux~ t !1uy~ t !ux~ t !#hz~ t !

1@a21uz~ t !2ux~ t !uy~ t !#Hx~ t !1@12uy
2~ t !#Hy~ t !2@a21ux~ t !1uy~ t !ux~ t !#Hz~ t !, ~8!

1

h8Ms

d

dt
uz~ t !52@a21uy~ t !1ux~ t !uz~ t !#hx~ t !1@a21ux~ t !2uy~ t !uz~ t !#hy~ t !1@12uz

2~ t !#hz~ t !

2@a21uy~ t !1ux~ t !uz~ t !#Hx~ t !1@a21ux~ t !2uy~ t !uz~ t !#Hy~ t !1@12uz
2~ t !#Hz~ t !. ~9!
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The set of stochastic differential equations~7!–~9! con-
tains multiplicative noise termshi(t)uj (t)uk(t). They pose
an interpretation problem for these equations as has b
discussed in Refs. 22 and 23. We recall, taking the set of
Langevin equations for theN stochastic variables$j(t)%
5$j1(t),j2(t),...,jN(t)%,

dj i~ t !

dt
5hi„$j~ t !%,t…1gi j „$j~ t !%,t…G j~ t ! ~ i , j 51, . . . ,N!,

~10!

with

G i~ t !50, G i~ t !G j~ t8!52Dd i j d~ t2t8!,

and interpreting them as Stratonovich equations, that the
eraged equations for the sharp valuesj i(t)5xi at time t
are22,23

dxi

dt
5 lim

t→0

j i~ t1t!2xi

t
5hi~$x%,t !

1Dgk j~$x%,t !
]

]xk
gi j ~$x%,t ! ~ i , j 51, . . . ,N!,

~11!

where j i(t1t) ~t.0! is the solution of Eq.~10! with the
initial conditionsj i(t)5xi . In Eqs.~10! and~11! summation
.

ua
en
e

v-

over j andk is understood~Einstein’s notation!. The proof of
Eq. ~11! can be found elsewhere~see Ref. 22, pp. 54 and 55!.
We remark that we use the Stratonovich definition for t
average of the multiplicative noise term here because
definition is the mathematical idealization of the physic
relaxation process.24 Thus, it is unnecessary to transform th
Langevin equations~7!–~9! to Itô equations~e.g., Ref. 22!.
Moreover, one can apply the methods of ordinary analysi
the Stratonovich definition is used.22

In like manner one can prove12 that the averaged~accord-
ing to the Stratonovich definition25! equation for an arbitrary
differentiable functionf ($j%) has the following form:

d f~$x%!

dt
5 lim

t→0

f „$j~ t1t!%…2 f ~$x%!

t

5hi~$x%,t !
]

]xi
f ~$x%!1Dgk j~$x%,t !

]

]xk

3Fgi j ~$x%,t !
]

]xi
f ~$x%!G , ~12!

where summation overi, j, andk is understood.
In the study of the magnetic relaxation, the quantities

interest are averages involving the normalized spherical
monicsYn,m defined as
ariable
r

Yn,m5~21!mS ~2n11!~n2m!!

4p~n1m!! D 1/2

eimw~12cos2q!m/2
dmPn~cosq!

d cosmq
, Yn,2m5~21!mYn,m* , m.0,

where thePn(x) are the Legendre polynomials26 and the asterisk denotes the complex conjugate. TheYn,m are expressed in
terms ofux ,uy ,uz as follows:

Yn,m5~21!mS ~2n11!~n2m!!

4p~n1m!! D 1/2

~ux1 iuy!m
dmPn~uz!

duz
m .

Noting that according to the Stratonovich definition the conventional rules of transformation of a stochastic v
~ordinary calculus! may be used,25 we can obtain from Eqs.~7!, ~8!, and~9! the stochastic differential equation of motion fo
Yn,m :

Ẏn,m~ux~ t !,uy~ t !,uz~ t !!5~21!mS ~2n11!~n2m!!

4p~n1m!! D 1/2H m@ u̇x~ t !1 i u̇y~ t !#@ux~ t !1 iuy~ t !#m21
dmPn@uz~ t !#

duz
m

1u̇z~ t !@ux~ t !1 iuy~ t !#m
dm11Pn@uz~ t !#

duz
m11 J . ~13!
,

n-
s

Further on averaging Eq.~13! and using the theorem of Eq
~12!, we obtain after tedious algebra

tNẎn,m~ux ,uy ,uz!5 (
s521

1

(
r 524

4

dn,m,r ,s

3Yn1r ,m14s~ux ,uy ,uz!, ~14!

wheredn,m,r ,2s5dn,2m,r ,s* ~the dn,m,r ,s are listed in Appen-
dix A!. The details of the derivation of such systems of eq
 -

tions may be found elsewhere.19,23,27We remark that all the
Yn,m in Eq. ~14! are functions ofux ,uy ,uz . Also ux ,uy ,uz
in Eq. ~14! andux(t),uy(t),uz(t) in the stochastic Eqs.~7!–
~9! and ~13! have different meanings, namely
ux(t),uy(t),uz(t) in Eqs. ~7!–~9! and ~13! are stochastic
variables (processes)while ux ,uy ,uz in Eq. ~14! are the
sharp (definite) values uk(t)5uk at time t. Instead of using
different symbols for the two quantities, we have disti
guished sharp values at timet from the stochastic variable
by deleting the time argument as in Refs. 22 and 23.
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The quantitiesYn,m in Eq. ~14! are functions of the sharp
valuesuk , which are themselves random variables with d
tribution ~probability density! function W. In the absence o
external perturbations, the system is in equilibrium w
Boltzmann distribution functionW0 given by

W0~q,w!5
1

Z
expF2

nV~q,w!

kT G ,
where Z is the partition function. We may now constru
from Eq. ~14! an infinite hierarchy of differential-recurrenc
relations for any desired equilibrium correlation functions.
particular, upon multiplying Eq.~14! by cosq(0), and aver-
aging the resulting equation over the equilibrium distributi
function W0 at the instantt50, we obtain

tN

d

dt
cn,m~ t !5 (

s521

1

(
r 524

4

dn,m,r ,scn1r ,m14s~ t !, ~15!

where

cn,m~ t !5^cosq~0!Yn,m~ t !&0 ~16!

are the equilibrium correlation functions,

tN5
n

2kTh8
5

nMs~11a2!

2kTga
. ~17!

is the diffusion relaxation time,̂ &0 designates the equilib
rium average att50 defined as

^A&05E
0

2pE
0

p

A~q,w!W0~q,w!sin q dq dw.

We remark that Eq.~15! may also be derived from th
corresponding Fokker-Planck equation,19

2tN

]W

]t
5

1

sin q

]

]q H sin qF n

kT S ]V

]q
2

1

a sin q

]V

]f D
3W1

]W

]q G J 1
1

sin q

]

]f F n

kT S 1

a

]V

]q

1
1

sin q

]V

]f DW1
1

sin q

]W

]f G . ~18!

III. EVALUATION OF THE COMPLEX SUSCEPTIBILITY
IN TERMS OF MATRIX CONTINUED FRACTIONS

Before proceeding, we must first summarize the princi
results oflinear-response theory@Ref. 22, Chap. 7#. The ap-
plication of this theory to magnetic problems predicts th
the decay of the longitudinal component of the magneti
tion ^M i&(t) of a system of noninteracting single-doma
ferromagnetic particles, when a small constant external fi
H1 @n(M•H)1 /kT!1# applied along thez axis ~which is at
the easy axis of the particle forK.0) has been switched of
at time t50, is

^M i&~ t !5x iH1Ci~ t !,

where
-

l

t
-

ld

x i5
N0n2Ms

2

kT S 4p

3 D 1/2

c1,0~0!5
N0n2Ms

2

3kT

is the longitudinal static magnetic susceptibility,N0 is the
number of particles per unit volume, and

Ci~ t !5
c1,0~ t !

c1,0~0!
~19!

is the normalized autocorrelation function of the longitudin
component of the magnetization of the particle. The longi
dinal component of the complex magnetic susceptibi
x i(v) is

x i~v!5x i8~v!2 ix i9~v!5x i$12 ivC̃i~ iv!%, ~20!

where

C̃i~ iv!5E
0

`

Ci~ t !e2 ivtdt.

Another quantity of interest is the integral relaxation~or cor-
relation! time t i , which is defined as the area underCi(t):

t i5E
0

`

Ci~ t !dt5C̃i~0!. ~21!

The t i may equivalently be defined in the context of th
Fokker-Planck equation~18! converted to the Sturm
Liouville problem as

t i5

(
k

Ck /lk

(
k

Ck

,

wherelk andCk are the eigenvalues and their correspond
weight coefficients~amplitudes!, and the correlation function
Ci(t) is given by

Ci~ t !5(
k

Cke
2 ilkt. ~22!

It is usually impossible to evaluatet i andCi(t) analytically
from Eq. ~22! as a knowledge of the law of formation of th
eigenvalues and their corresponding weights~amplitudes! is
required. The approach we shall use below does not atte
to calculatet i and C̃i( iv) by explicitly calculating the ei-
genvalue spectrum as required by Eq.~22!, rather it yieldst i

and C̃i( iv) in terms of matrix continued fractions.
The formal matrix continued fraction approach to the s

lution of the recurrence equations such as Eq.~15!, where
two indexes vary, was described in Ref. 22. However,
practice it is rather inconvenient, as one must use@as in the
initial equation~1!# matrices of infinite dimension. We sha
use below a more sophisticated method of solution of
~15!, so that it is possible to reduce the computational task
operations involving matrices of finite dimensions.

Thus we introduce a column vectorCn(t):



l-

-

rix

-

c-

d

ce

PRB 58 3271LONGITUDINAL COMPLEX MAGNETIC . . .
Cn~ t !5S c4n~ t !
c4n21~ t !
c4n22~ t !
c4n23~ t !

D . ~23!

This vector consist of four column subvectorsc4n2 i(t),
which are given by

c4n2 i~ t !5S c4n2 i ,24~n211d i0!~ t !

c4n2 i ,24~n221d i0!~ t !

]

c4n2 i ,4~n211d i0!~ t !
D , i 50,1,2,3.

~24!

The vectorCn(t) has 8n22 elements. Thus, Eq.~15! can be
transformed into the matrix three-term differentia
recurrence relation

tN

d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1Qn
1Cn11~ t !,

n51,2,3, . . . ~25!

with

C0~ t !50 and C1~ t !5S c4,24~ t !
c4,0~ t !
c4,4~ t !
c3,0~ t !
c2,0~ t !
c1,0~ t !

D . ~26!

The matricesQn ,Qn
1 ,Qn

2 in Eq. ~25! are given by

Qn5S A4n

E4n21

F4n22

G4n23

B4n

A4n21

E4n22

F4n23

P4n

B4n21

A4n22

E4n23

D4n

P4n21

B4n22

A4n23

D , ~27!

Qn
15S H4n

0
0
0

G4n

H4n21

0
0

F4n

G4n21

H4n22

0

E4n

F4n21

G4n22

H4n23

D , ~28!

Qn
25S J4n

D4n21

P4n22

B4n23

0
J4n21

D4n22

P4n23

0
0

J4n22

D4n23

0
0
0

J4n23

D . ~29!

The matricesQn ,Qn
1 ,Qn

2 consist of the three-diagonal sub
matricesA, B, E, D, F, G, H, J, andP, which are described
in detail in Appendix A. The dimensions ofQn ,Qn

1 ,Qn
2 are

(8n22)3(8n22), (8n22)3(8n16), and (8n22)
3(8n210), respectively. The exception is

Q1
25S J4

0
0
0
D , ~30!

which degenerates to a column vector of dimension 6.
On applying the general method of solution of the mat
three-term differential-recurrence relations, Eq.~25!, sug-
gested in Ref. 23, we obtain theexact solution for the
Laplace transformC̃1(s) in terms of matrix continued frac
tions, viz.,

C̃1~s!5tN@tNsI2Q12Q1
1S2~s!#21H C1~0!

1 (
n52

` F )
k52

n

Qk21
1 Sk~s!~Qk

2!21GCn~0!J , ~31!

whereI is the identity matrix, and the matrix continued fra
tion Sn(s) is defined as

Sn~s!5@tNsI2Qn2Qn
1Sn11~s!#21Qn

2 . ~32!

The initial condition vectorsCn(0) may also be evaluate
in terms of matrix continued fractions.22,23 The initial values
cn,m(0) in Eq. ~15! are given by

cn,m~0!5^cosq~0!Yn,m~0!&0

5S ~n11!22m2

~2n11!~2n13! D
1/2

^Yn11,m&0

1S n22m2

~2n11!~2n21! D
1/2

^Yn21,m&0 . ~33!

According to Eq.~14!, the equilibrium averageŝYn,m&0 sat-
isfy the recurrence relation19

(
s521

1

(
r 524

4

dn,m,r ,s^Yn1r ,m14s&050, ~34!

which may be written as the three-term matrix recurren
relation:

Qn
2Rn211QnRn1Qn

1Rn1150, n51,2,3, . . . , ~35!

where

Rn5S r4n

r4n21

r4n22

r4n23

D , R05
1

A4p
. ~36!

The column subvectorr4n2 i is

r4n2 i5S ^Y4n2 i ,24~n211d i0!&0

^Y4n2 i ,24~n221d i0!&0

]

^Y4n2 i ,4~n211d i0!&0

D , i 50,1,2,3. ~37!

The solution of Eq.~35! has the following form:

Rn5Sn~0!Rn215Sn~0!Sn21~0!¯S2~0!S1~0!/A4p,
~38!

where

Sn~0!5@2Qn2Qn
1Sn11~0!#21Qn

2 . ~39!

Thus theCn(0) are given by
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Cn~0!5Kn
2Rn211KnRn1Kn

1Rn11 , n51,2,3 . . . ,
~40!

where

Kn5S 0
V4n21

0
0

U4n

0
V4n22

0

0
U4n21

0
V4n23

0
0

U4n22

0
D ,

Kn
15S 0

0
0
0

0
0
0
0

0
0
0
0

V4n

0
0
0
D , ~41!

Kn
25S 0

0
0

U4n23

0
0
0
0

0
0
0
0

0
0
0
0
D ,

with the submatrixK1
2 degenerating to a column vector o

dimension 6. The matricesKn ,Kn
1 ,Kn

2 are comprised of
submatricesU andV, which are explicitly listed in Appendix
B.

Taking account of Eq.~38!, Eq. ~40! yields

Cn~0!5
1

A4p
$Kn

21@Kn

1Kn
1Sn11~0!#Sn~0!%Sn21~0!¯S1~0!. ~42!

In particular,

C1~0!5
1

A4p
$K1

21@K11K1
1S2~0!#S1~0!%. ~43!

The exact matrix continued fraction solution@Eqs. ~31!
and ~42!# we have obtained is very convenient for the pu
pose of computation. All the matrix continued fractions a
series involved converge very rapidly, thus 10–12 downw
iterations in calculating the continued fractions and 11–
terms in the series~31! are enough to arrive at an accuracy
not less than six significant digits in the majority of cas
The greatest dimension of all the matrices involved is of
order 102, which allows one to carry out the calculations o
a personal computer.

IV. RESULTS AND DISCUSSIONS

The behavior of the relaxation timet i as a function of the
dimensionless parameters5nK/4kT for various values of
the damping parametera is shown in Fig. 1@for K.0 both
the saddle energy and the potential barrier height are equ
s, whereas forK,0 the barrier height5usu/3 while the
saddle energy52usu ~Ref. 2!#. In this figure the results of the
calculation from the exact formulas are compared with th
evaluated from the asymptotic formulas fort i in the low
temperature or high barrier limit~usu@1! for various ranges
of a. The asymptotic formulas in the intermediate to hi
damping~IHD! limit ~a>1! were obtained in Refs. 2 and 1
-

d
4

.
e

to

e

and reviewed in Ref. 19. They can be written as~in our
notation!

t i;
tNpes

2&s~A918/a211!
, s.0 ~44!

t i;
3tNpeusu/3

2&usu~A918/a221!
, s,0. ~45!

In the opposite, low damping limit~a!1! the appropriate
asymptotic solution was given by Klik and Gunther13,18 and
reviewed by Coffey.28 Their formulas applied to the presen
problem yield

t i;
pkTes

2vADE
'

tNpes

8s2 , s.0 ~46!

t i;
2pkTeusu/3

3vADE
'

tNpeusu/3

4s2 , s,0 ~47!

where

vA5H 8sgkT

nMs
~s.0!

16usugkT

3nMs
~s,0!

is the frequency of oscillation in the potential well, and

DE5a R
nV5E0

F ~12uz
2!

]

]w
nVdw2

1

12uz
2

]

]uz
nVduzG

~48!

is the energy loss per cycle of the almost periodic motion
the saddle point energyE0 . Here instead of the numerica
evaluation of the integral in Eq.~48! ~which is of the order of
the barrier height13! we have used an approximation

DE'auE0u5anuKu/4

FIG. 1. log10(t/tN) vs s for various values of the damping
parametera. Solid lines are the numerical calculations from E
~22! at a→` ~curve 1!, 1 ~2!, 0.1 ~3!, and 0.01~4!. Filled circles
and squares are the calculation from Eqs.~44! and ~45! for a→`
and 1, respectively; crosses are the calculation from Eqs.~46! and
~47! at a50.01.
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for both positive and negative values of the anisotropy c
stant. Experimental and theoretical estimations ofa are dis-
cussed, for example, in Refs. 6, 13, and 29. These est
tions give values ofa of the order 0.01–0.1.6,13 It should be
noted thattN in Eqs.~44!–~47! depends ona as defined by
Eq. ~17!.

As far as a physical interpretation is concerned, the re
ation time t i is determined by the slowest low-frequen
relaxation mode, which governs transitions of the magn
zation vector over the barriers from one potential well in
another. The characteristic frequency of this overbarrier
laxation mode is determined by the inverse of the smal
nonvanishing eigenvaluel1 of the Fokker-Planck equatio
~18!. As one can see in Fig. 1, in contrast to uniaxial anis
ropy ~see, for example, Refs. 6, 9, and 10!, t i /tN for par-
ticles with cubic anisotropy strongly depends on the damp
parametera. It should be noted that for crossover values oa
~;a'0.1! neither the IHD formulas~44! and ~45! nor the
low damping Eqs.~46! and ~47! yield reliable quantitative
estimates. Thus a more detailed analysis is necessary.13 The
dependence on the damping parameter is shown also in
spectra of the imaginary part of the complex susceptibi
x i9(v), shown in Fig. 2. In Fig. 3, the spectrum ofx i9(v) is
plotted fora50.1 and various values ofs. ~The calculations
were carried out withn2Ms

2N0 /kT51.) In these figures two

FIG. 2. log10(x i9) vs log10(vtN) for s510 anda→` ~curve 1!,
a51 ~curve 2!, a50.1 ~curve 3!, anda50.01 ~curve 4!.
-

a-

x-

i-

-
st

t-

g

the
y

peaks in the loss spectrum are visible. The first~low-
frequency! peak is located at frequencies of the order of t
average frequency of reorientation of the magnetization v
tor. The characteristic frequency and the half-width of th
low-frequency band are determined byt i . The second, much
weaker peak is caused by the contribution of the hig
frequency intrawell and transverse relaxation modes.

Thus, the longitudinal component of the magnetic susc
tibility x i(v) and relaxation timet i of systems of single-
domain particles with cubic magnetic anisotropy are giv
by the exact equation~31! formulated in terms of matrix
continued fractions. In contrast to the uniaxial anisotropy6,9

where the damping only enters in the diffusion time@Eq.
~17!#, there is an inherent geometric dependence ofx i(v)
and t i /tN for the particles with cubic magnetic anisotrop
on the value of the damping parametera arising from cou-
pling of the longitudinal and transverse relaxation modes
the derivation of the above results, it was supposed tha
particles are identical. In order to take into account the po
dispersity of the particles of a real sample, one must a
average the susceptibility over appropriate distribution fu
tions ~e.g., over that of particle volumes!.
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FIG. 3. log10(x i9) vs log10(vtN) for a50.1 ands50 ~curve 1!,
s51 ~curve 2!, s55 ~curve 3!, ands510 ~curve 4!.
APPENDIX A: EXPLICIT REPRESENTATION OF SUBMATRICES AND THEIR ELEMENTS IN EQS. „27…–„29…

There are three kinds of submatrices in Eqs.~27!–~29!. The submatricesA4n , E4n , F4n , G4n , A4n21 , A4n22 , A4n23 ,
B4n21 , B4n22 , B4n23 , D4n21 , E4n22 , E4n23 , F4n23 , P4n21 , P4n22 have the form

X4n2 i5S x4n2 i ,24~n211d i0!

x4n2 i ,24~n221d i0!
2

0
]

0

x4n2 i ,24~n211d i0!
1

x4n2 i ,24~n221d i0!

x4n2 i ,24~n231d i0!
2

]

0

0
x4n2 i ,24~n221d i0!

1

x4n2 i ,24~n231d i0!

]

0

¯

¯

¯

�

¯

0
0
0
]

x4n2 i ,4~n211d i0!

D ~A1!

( i 50,1,2,3) and have dimension@2(n1d0i)21#3@2(n1d0i)21#. The submatricesB4n , D4n , J4n , P4n , D4n22 , D4n23 ,
J4n21 , J4n22 , J4n23 , P4n23 are defined as
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X4n2 i5S x4n2 i ,24~n211d i0!
1

x4n2 i ,24~n221d i0!

x4n2 i ,24~n231d i0!
2

]

0

0
x4n2 i ,24~n221d i0!

1

x4n2 i ,24~n231d i0!

]

0

0
0

x4n2 i ,24~n231d i0!
1

]

0

¯

¯

¯

�

¯

0
0
0
]

x4n2 i ,4~n211d i0!
2

D ~A2!

( i 50,1,2,3) and have dimension@2(n1d0i)21#3@2(n1d0i)23#. The submatricesH4n , E4n2n , F4n21 , F4n22 , G4n21 ,
G4n22 , G4n23 , H4n21 , H4n22 , H4n23 are given by

X4n2 i5S x4n2 i ,24~n211d i0!
2

0
0
]

0

x4n2 i ,24~n211d i0!

x4n2 i ,24~n221d i0!
2

0
]

0

x4n2 i ,24~n211d i0!
1

x4n2 i ,24~n221d i0!

x4n2 i ,24~n231d i0!
2

]

0

¯

¯

¯

�

¯

0
0
0
]

x4n2 i ,4~n211d i0!
1

D ~A3!

and have the dimension@2(n1d0i)21#3@2(n1d0i)11#. The submatrix elements are

an,m5dn,m,0,05s
9~n21!n~n11!~n12!215m2@6n~n11!2527m2#

~2n23!~2n21!~2n13!~2n15!
2

n~n11!

2
,

an,m
2 5an,2m

1 5dn,m,0,215
15sA~n1m!~n2m14!@n22~m23!2#@n22~m22!2#@n22~m21!2#

2~2n23!~2n21!~2n13!~2n15!
,

bn,m5dn,m21,052
3ism~3n22527m2!

a~4n229! S n22m2

4n221D 1/2

,

bn,m
2 52bn,2m

1 5dn,m21,2152
3is

2a~4n229! S ~n1m24!~n1m!@n22~m23!2#@n22~m22!2#@n22~m21!2#

4n221 D 1/2

,

pn,m5dn,m,22,05
s~2n19!~n22n2227m2!

~2n25!~2n21!~2n13! S @n22m2#@~n21!22m2#

~2n11!~2n23! D 1/2

,

pn,m
2 5pn,2m

1 5dn,m,22,2152
s~2n19!

2~2n25!~2n21!~2n13!

3S ~n1m25!~n1m24!~n1m23!~n1m!@n22~m22!2#@n22~m21!2#

~2n11!~2n23! D 1/2

,

dn,m5dn,m,23,052
7ism

a~2n23!~2n21! S ~n22m2!@~n21!22m2#@~n22!22m2#

~2n25!~2n11! D 1/2

,

dn,m
2 52dn,2m

1 5dn,m,23,215
is

2a~2n23!~2n21! S ~n1m26!~n1m25!¯~n1m21!~n1m!~n2m11!

~2n25!~2n11! D 1/2

,

en,m5dn,m,1,052
i3sm~3n216n2227m2!

a~2n21!~2n15! S @~n11!22m2#

~2n11!~2n13! D
1/2

en,m
2 52en,2m

1 5dn,m,1,215
i3s

2a~2n21!~2n15!

3S ~n1m!~n2m13!~n2m14!~n2m15!@n22~m21!2#@n22~m22!2#

~2n11!~2n13! D 1/2

,

f n,m5dn,m,2,052
s~2n27!~n213n27m2!

~2n21!~2n13!~2n17! S @~n11!22m2#@~n12!22m2#

~2n11!~2n15! D 1/2

,
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f n,m
2 5 f n,2m

1 5dn,m,2,215
s~2n27!

2~2n21!~2n13!~2n17!

3S ~n1m!@n22~m21!2#~n1m22!~n2m13!~n2m14!~n2m15!~n2m16!

~2n11!~2n15! D 1/2

,

gn,m5dn,m,3,052
7ism

a~2n13!~2n15! S @~n13!22m2#@~n12!22m2#@~n11!22m2#

~2n11!~2n17! D 1/2

,

gn,m
2 52gn,2m

1 5dn,m,3,2152
is

2a~2n13!~2n15! S ~n1m!~n2m11!~n2m12!¯~n2m17!

~2n11!~2n17! D 1/2

,

hn,m5dn,m,4,052
7sn

~2n13!~2n15!~2n17! S @~n11!22m2#@~n12!22m2#@~n13!22m2#@~n14!22m2#

~2n11!~2n19! D 1/2

,

hn,m
2 5hn,2m

1 5dn,m,4,2152
sn

2~2n13!~2n15!~2n17! S ~n2m11!~n2m12!¯~n2m17!~n2m18!

~2n11!~2n19! D 1/2

,

j n,m5dn,m,24,05
7s~n11!

~2n25!~2n23!~2n21! S @~n23!22m2#@~n22!22m2#@~n21!22m2#@n22m2#

~2n27!~2n11! D 1/2

,

j n,m
2 5 j n,2m

1 5dn,m,24,215
s~n11!

2~2n25!~2n23!~2n21! S ~n1m27!~n1m26!¯~n1m21!~n1m!

~2n27!~2n11! D 1/2

,

where

s5
nK

4kT

is the dimensionless anisotropy parameter.

APPENDIX B: EXPLICIT REPRESENTATION OF SUBMATRICES IN EQ. „41…

The submatricesU4n21 , U4n22 , U4n23 , V4n , V4n22 , V4n23 in Eq. ~41! are diagonal,

X4n215S x4n2 i ,24~n211d i0!

0
0
]

0

0
x4n2 i ,24~n221d i0!

0
]

0

0
x4n2 i ,24~n231d i0!

]

0

¯

¯

¯

�

¯

0
0
0
]

x4n2 i ,4~n211d i0!

D ~B1!

( i 50,1,2,3) and have dimension@2(n1d0i)21#3@2(n1d0i)21#. The submatrixU4n with the dimension@2n11#3@2n
21# has the form

U4n5S 0
u4n,24n14

0
]

0
0

0
0

u4n,24n18

]

0
0

¯

¯

¯

�

¯

¯

0
0
0
�

u4n,4n24

0

D . ~B2!
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The submatrixV4n21 has dimension@2n21#3@2n11# and is defined as

V4n215S 0
0
�

0

n4n21,24n14

0
�

0

0
n4n21,24n18

�

0

¯

¯

�

¯

0
0
]

n4n21,4n24

0
0
]

0
D . ~B3!

The elements of the submatrices~B1!–~B3! are given by

un,m5S n22m2

~2n11!~2n21! D
1/2

, nn,m5S ~n11!22m2

~2n11!~2n13! D
1/2

~B4!
iz.
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