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The magnetic relaxation of single-domain ferromagnetic particles with cubic magnetic anisotropy is treated
by averaging the Gilbert-Langevin equation for an individual particle, so that the system of linear differential-
recurrence relations for the appropriate equilibrium correlation functions is derived without recourse to the
Fokker-Planck equation. The solution of this syst@mterms of matrix continued fractiopgs determined and
the longitudinal relaxation time and spectrum of the complex magnetic susceptibility are evaluated. It is shown
that in contrast to particles with uniaxial anisotropy, there is an inherent geometric dependence of the complex
susceptibility and the relaxation time on the damping parameter arising from coupling of longitudinal and
transverse relaxation modd&§0163-1828)06829-5

I. INTRODUCTION for example, by means of an expansion of the distribution
function W in spherical harmonic¥:®In such an approach

A single-domain ferromagnetic particle is characterizedthe problem is reduced to the solution of an infinite system of
by an internal potential, which has several local states ofinear differential-recurrence relations for the averaged
equilibrium with potential barriers between them. If the par-spherical harmonicémoments:
ticles are smal(~100 A) so that the potential barriers are
relatively low, the magnetization vectdd may cross over
the barriers between one potential well and another due to
thermal agitatiort. The ensuing thermal instability of magne-
tization results in the phenomenon of superparamagnetismwhere X(t) is the column vector consisting of the system
(so-called.? The thermal fluctuations and relaxation of the moments and\ is the infinite system matrix. The elements
magnetization of a single-domain particle currently merit at-of this matrix depend on certain parameters characterizing
tention in view of their importance in the context of mag- the anisotropy energy and dissipati¢fihe detailed deriva-
netic recording medfaand paleomagnetisfh. tion of Eq. (1) was given recently by Geoghega al°]

For the purpose of mathematical simplification, particlesThe numerical solution of Eq1) (eigenvalues and eigenvec-
with uniaxial magnetic anisotropy have for the most parttors of the system matrjxmay be obtained by consecutive
been considere(see, for example, Refs. 2 and 5312l- increase of the number of the equatidhsintil convergence
though the use of the uniaxial potential considerably simplidis attained. Such an approach to cubic anisotropy has been
fies the analysis, the results obtained by means of this apssed, for example, by Aharoni and Eisenstein in Refs. 14, 16,
proximation have, however, a restricted area ofand 17, where several low-order eigenvalues were evaluated
applicability!® For more realistic anisotropy potentials, suchnumerically in the intermediate damping limit. Unfortu-
as a cubic potential, either the discrete orientation approxinately, the application of this direct matrix approach to the
mation was used, or only asymptotes of the continuous difpresent problem is inconvenient, especially for low damping
fusion model were derivedsee, for example, Refs. 2 and and intermediate barrier heightshere asymptotic estimates
13-19. Both approaches, however, do not apply to the mosare unreliablgas it is necessary to carry out calculations for
interesting case, where the magnetic anisotropy energy id~10°-10" and convergence of the solution is conse-
comparable to the thermal energy. quently difficult to achieve. Furthermore, the complex mag-

The magnetization dynamics of single-domain particlesnetic susceptibility spectrum for the cubic anisotropy in the
for the continuous diffusion model is similar to rotation of a context of the continuous diffusion model has not been cal-
Brownian particle in a liquid and obeys the Fokker-Planckculated as yet either for high or low damping.
equation for the probability density distribution  On account of the difficulties encountered in the numeri-
W({u},1).22%21The Fokker-Planck equation is derived from cal analysis, which we have mentioned, the cubic case is to
Gilbert's equatioA®® with a random white noise field, which some extent incomplefeThis gap in our knowledge of the
takes into account the thermal fluctuations of the magnetizasolution may, however, be bridged if one uses a matrix con-
tion of an individual particle. In general, for magnetic relax- tinued fraction method for the solution of infinite systems of
ation of a system of single-domain particles with cubic an-recurrence relations developed in Refs. 22 and 23. Such a
isotropy, the Fokker-Planck equation can be formally solvedmethod was applied by us for particles with the simplest

d
gt X(t)=AX(t), 1)
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axially symmetric anisotropy in Refs. 9 and 12. Here, thewhere
method is extended to obtain the longitudinal component of

the magnetic susceptibility,(w) and the relaxation time; 9 ;0 T A

of a system of noninteracting single-domain particles with oM IMy 7 IM,, oM,

cubic anisotropy. Our calculations gf(w) and 7, are based ) , ,

on linear-response theofy?*In order to evaluate thg,(w) Mx=Ms sind cosp=Mgl,, My=M; sin & sin o=Myy,

and 7, we must first calculate the equilibrium correlation Mz=Ms cOS#=MsU,, Ms is the saturation magnetization,
function C,(t) of the magnetization, which is more conve- andd.¢ are the polar and azimuthal angles, respectively. Itis
niently accomplished directly from Gilberts equatfén assumed throughout this analysis that the magnetization is
rather than from the Fokker-Planck equati8ihus, we by- uniform inside the particle andnly the orientation and not
pass the Fokker-Planck equation entirely. The behavior of’® magnitude of the magnetization is subject to variations.
xi() is investigated for all ranges of the anisotropy energyThe assumptions made in the derivation of Gilbert's equation
(o) and dissipatior(c) parameters. The results obtained areVere discussed elsewhefeg., Ref. 13 _
compared both with previously available solutions and We shall use the representation for the free energy of unit

asymptotic estimates based on the Kramers escape raf@lume °f23 a particle possessing cubic magnetic
theory. anisotropy>% viz.,

K
Il. DERIVATION OF DIFFERENTIAL-RECURRENCE V=K(uzug+uui+uiul) = 7 (sin*9 sirf2p+ sirf29),
RELATIONS FROM GILBERT'S EQUATION @

AUGMENTED BY A RANDOM FIELD TERM
] ' o ~_ whereK is the anisotropy constant, which may have both

. Gilbert's equatiofi* in the presence of thermal agitation positive and negative values. FSE>0, the potential4) has
IS 6 minima, 8 maxima, and 12 saddle poiiitsr example, in

q the directions[100], [111], and [110], accordingly.? If K

— M(t)=y{M(t)X[H(t)+h(t)— nM(t)]}, 2 <0, the maxima and minima are interchanged.

dt Gilbert’s equation2) may be rearranged explicitly using
Wherey is the gyromagnetic ratio)? is the damp|ng param_ the properties Of the vector trlple prOdUCt formula. to ﬁeld
eter,H(t) is the magnetic field acting on the particle, which
may cqnsist Qf externa}lly applied magnetic fields' and the It M(t)=Mg'{M(t) X [H(t)+h(t)]}+h' M(t)
crystalline anisotropy field, and a random Gaussian white t

noise fieldh(t), which has the properties X[H(t)+h(t) ]} X M(t)) (5)
h;(t)=0, where
hi(t)h;(t")=(2kTx/v) &; 5(t—t'). Y Y
- ’ S R TV I G TV I

v is the volume of the particle. Here the overbar means the _ _ _ o
statistical average over an ensemble of particles that all havand the dimensionless damping constans given by
at time t the samemagnetizationM. If V({M}) is the free

energy per unit volume expressed as a function of compo- a=ynMs. ©6)
nents ofM, then Equation (5) is of the same mathematical form as the
5 Landau-Lifshitz equatiochexcept that both of the parameters
__ 7 g’ andh’ depend or.
H M VMY, @ Expanding Eq(5) in its Cartesian components we have

1 d
i dt (O =11 O Ty = (o U0+ uy Oy hy (D) + [ uy(1) ~ U U Thy(0) + [ 1= UDJHA(D

—[a™ tuy(t) +u(Huy () THy (D) +[a ™ tuy(t) — u(t)u,(H) TH (1), (7)

1 d
- g WD =L uy() = ux(uy () ]hy(1) + [ 1= ug() Thy (1) = [a ™~ fu(t) + uy(Due(D)Thy(1)
Lo (1) = Ug() Uy (1) TH (1) + [ 1= ud() THy (1) —[ @~ fuy(t) + uy (D uy(H) JH,(1), ®)

1 d
M, dt U(t)=—[a ™ Muy(t) + Uy () u(t) The(t) +[a~ () —uy(t)u () Thy(t) +[ 1= uZ()h,(t)

- [a'_luy(t) F U (D U () JHy (1) + [a_lux(t) - uy(t)uz(t)]Hy(t) +[1- ug(t)]Hz(t)- ©)
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The set of stochastic differential equatiof®—(9) con-  overj andk is understoodEinstein’s notation The proof of
tains multiplicative noise termi;(t)u;(t)u,(t). They pose Eq.(11) can be found elsewhefeee Ref. 22, pp. 54 and b5
an interpretation problem for these equations as has beaWe remark that we use the Stratonovich definition for the
discussed in Refs. 22 and 23. We recall, taking the set of thaverage of the multiplicative noise term here because that
Langevin equations for thél stochastic variablegé(t)}  definition is the mathematical idealization of the physical

={&1(1),&(1), ... .En(D) ], relaxation proces¥. Thus, it is unnecessary to transform the
Langevin equation$7)—(9) to 1td equations(e.g., Ref. 22
déi(t) Moreover, one can apply the methods of ordinary analysis if

dt =hiEm0+0; (€} (j=1...., N). " the Stratonovich definition is us@g.

(10 In like manner one can proVethat the averagethccord-
ing to the Stratonovich definitié® equation for an arbitrary

with differentiable functionf({£}) has the following form:

Fi(t)=0, F,(t)rl(t,)ZZD(S”5(t_t,),

and interpreting them as Stratonovich equations, that the av-  4f({X}) _ im f{ét+npH—f({x})
eraged equations for the sharp valugét)=x; at timet dt T

arg>?3 0
T 1 ({XhD) o F({x}) + Dgg (1)
%: lim gi(H—:)X?hi({x},t) | % ’ X
7—0 P
g x| gij({x},1) ax f{xp) |, (12
+Dgy({x},1) e gi{xpt) (i,j=1,... N),

where summation ovet j, andk is understood.

(12) In the study of the magnetic relaxation, the quantities of
where &(t+7) (70) is the solution of Eq(10) with the interest are averages involving the normalized spherical har-
initial conditions¢;(t) =x; . In Egs.(10) and(11) summation monicsY, , defined as

(2n+1)(n—m)!
47(n+m)!

d™P,(cos )
d cos"s ' Yo -m=(~1)

where theP,(x) are the Legendre polynomiafsand the asterisk denotes the complex conjugate. Yif\g are expressed in
terms ofu,,uy ,u, as follows:

1/2
Yom=(—1)" ) e'm¢(1—cog9)™? "Y¥ e M>0,

(2n+1)(n—m)!
47(n+m)!

d™Py(u,)

Yn,m:(_l)m dU;n

12
) (ug+iuy)™

Noting that according to the Stratonovich definition the conventional rules of transformation of a stochastic variable
(ordinary calculusmay be used® we can obtain from Eqd7), (8), and(9) the stochastic differential equation of motion for
Ynm:

(2n+1)(n—m)!
47(n+m)!

d™P[u,(t)]
duy’

. 12
Yi,m(Ux(t), Uy (1), U, (1)) = (= 1)™ ) [m[ux(t)+iuy(t)][ux(t)+iuy(t)]m_l

+U()[ux(t) +iuy(H)]™

dm”Pn[Uz(t)]} 13

m+1
du,

Further on averaging Eq13) and using the theorem of Eq. tions may be found elsewhet&?32"We remark that all the
(12), we obtain after tedious algebra Ynm in Eq. (14) are functions ofu,,uy,u,. Also u,,uy,u,
in Eq. (14) andu,(t),uy(t),u,(t) in the stochastic Eqs7)—
. 4 (99 and (13 have different meanings, namely,
Y (U Uy U)= 2 2 domes ux(t),uy(t),u,(t) in Egs. (7)—(9) and (13) are stochastic
sohr=—a variables (processesyhile u,,uy,u, in Eq. (14) are the
X Ynsrmsas(Ux Uy, Up), (14 sharp (definite) values(t)=u, at timet. Instead of using
different symbols for the two quantities, we have distin-
whered, n, —s=dp _. s (thedp s are listed in Appen- guished sharp values at tintdrom the stochastic variables
dix A). The details of the derivation of such systems of equaby deleting the time argument as in Refs. 22 and 23.

1
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The quantitiesy, ,, in Eq. (14) are functions of the sharp Noszﬁ
valuesu,, which are themselves random variables with dis- XI= T
tribution (probability density function W. In the absence of

external perturbations, the system is in equilibrium withig tne longitudinal static magnetic susceptibility, is the

4_77 l/ZC ): NoVZMg
3 ! 3kT

Boltzmann distribution functioWV, given by number of particles per unit volume, and
1 W(9,9) eLdt)

where Z is the partition function. We may now construct . . . . _
from Eq. (14) an infinite hierarchy of differential-recurrence 'S the normalized autocorr.elat_lon function Of the Iong|tud|nal
relations for any desired equilibrium correlation functions. mcpmponent of the magnetization of the parhple. The Ior'1g_|Fu-
particular, upon multiplying Eq(14) by cosd(0), and aver- dinal (_:omponent of the complex magnetic susceptibility
aging the resulting equation over the equilibrium distributionX“(“’) IS

function W, at the instant=0, we obtain

o xi(@)=x{ (@) —ix|(0)=x{l-ioC(in)}, (20

d
N a Cn,m(t)zszl r=24 dn,m,r,scn+r,m+4s(t)a (15) where

0
Co,m(1) =(COS H(0) Yy m(1))o (16) - - _
o . ) Another quantity of interest is the integral relaxatian cor-
are the equilibrium correlation functions, relation time 7, which is defined as the area undg(t):
v _VMS(1+(12) 1 " 5
NOKTH = 2KTya an 7= cwa=g o). @

is the diffusion relaxation time, ) designates the equilib-

rium average at=0 defined as The 7; may equivalently be defined in the context of the

Fokker-Planck equation(18) converted to the Sturm-
27 (7 Liouville problem as
<A>0=J f A(D, ) Wo( D, @)sin & dd de.
0 0

> Ci/\g
We remark that Eq(15) may also be derived from the _K
corresponding Fokker-Planck equatitn, T S ¢ ’
k
, W 1 9 [ [V 1av) :
NG T sing 99 SN YT % asind dd where\, andC, are the eigenvalues and their corresponding

weight coefficientgamplitude$, and the correlation function

IW 1 o0 |v [1loV ‘e i
—_ I D i C,(t) is given by
XW (91_‘}”+ sind 3¢ | KT (a 70
1 oV 1 oW — —ingt
+— — |W+ ——|. (18 GV Ek: Cye 7K. (22
sind do sind d¢
It is usually impossible to evaluate andC(t) analytically
I1l. EVALUATION OF THE COMPLEX SUSCEPTIBILITY from Eq.(22) as a knowledge of the law of formation of the
IN TERMS OF MATRIX CONTINUED FRACTIONS eigenvalues and their corresponding weiglasiplitude$ is

Bef di i e th .. _required. The approach we shall use below does not attempt
efore proceeding, we must first summarize the pr|n0|pal[0 calculater; and C,(iw) by explicitly calculating the ei-

results oflinear-response theorjRef. 22, Chap. ¥ The ap- ; 2
plication of this theory to magnetic problems predicts thatgenvalue spectrum as required by E2p), rather it yieldsr,

the decay of the longitudinal component of the magnetiza®1dCi(i @) in terms of matrix continued fractions.
The formal matrix continued fraction approach to the so-
&ution of the recurrence equations such as Bdy), where
two indexes vary, was described in Ref. 22. However, in
practice it is rather inconvenient, as one must esein the
initial equation(1)] matrices of infinite dimension. We shall
use below a more sophisticated method of solution of Eq.
(M)(1)=x,H1C,(1), (15), SO that_ itis possible t[O reduge _the (_:ompu_tational task to
operations involving matrices of finite dimensions.
where Thus we introduce a column vect@y,(t):

H; [»(M-H),/kT<1] applied along the axis (which is at
the easy axis of the particle f&r>0) has been switched off
at timet=0, is
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C4n(t)

Can—1(t)
Can—2(1)
CAn—S(t)
This vector consist of four column subvectocs,_i(t),
which are given by

Cn()= (23

Can—i,—a(n—1+5,) (1)

Can—i,—a(n-2+5,5)(t)

Can_i(t)= . ., i=0,1,2,3.

Can—ian-1+450)(1)
24

The vectorC,(t) has &1— 2 elements. Thus, E¢15) can be
transformed into the matrix three-term differential-
recurrence relation

d
7N gt Cn(1)=Qq Co1(1) + QuCa(1) + Qq Csa (1),

n=123... (29
with
Ca—4(1)
Cag(t)
Ca4lt
Co(t)=0 and C,(t)= C;";‘Et; (26)
Cadt)
Cio(t)
The matricesQ,,,Q, ,Q,, in Eq. (25) are given by
Asn Ban Pan Dan
E4n—1 A4n—l B4n—l l:)An—l
= ' 2
Qn I:4n—2 E4n—2 A4n—2 B4n—2 ( 7)
G4n73 F4n73 E4n73 A4n73
Han  Guan Fan Ean
0 Hino1 Gan— Fan_
4 an-1 an-1 an-1
= 28
n 0 0 Hin—o Guan-2 (28)
0 0 0 Han-3
Juan 0 0 0
~ [ Dam-r s OO
Qn = Pan-2 Dan—2  Jan-> 0 @9
BAn—S I:>4n—3 D4n—3 ‘]4n—3

The matricesQ,,,Q, ,Q,, consist of the three-diagonal sub-
matricesA, B, E, D, F, G, H, J, andP, which are described
in detail in Appendix A. The dimensions @},,,Q, ,Q,, are
(8n—2)X(8n—2), (8n—2)X(8n+6), and (&§—-2)

X (8n—10), respectively. The exception is

Ja
(30
0

which degenerates to a column vector of dimension 6.
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On applying the general method of solution of the matrix
three-term differential-recurrence relations, HE85), sug-
gested in Ref. 23, we obtain thexact solution for the

Laplace transfornﬁl(s) in terms of matrix continued frac-
tions, viz.,

Ci(s)= sl —Ql_QISZ(S)]_l[ C1(0)

£ n

+n§2 kljz Q;_ls<<s><ok‘>—1}cn<0>], (31)

wherel is the identity matrix, and the matrix continued frac-
tion S,(s) is defined as

Su(8)=[7nsl = Qn—Qp Sh+2(8)]'Qy -

The initial condition vector€,(0) may also be evaluated
in terms of matrix continued fractiorf$> The initial values
cn,m(0) in Eq. (15) are given by

(32

Cn,m(o) = <COS ﬁ(O)Yn,m(O»O
1/2

(n+1)2—m?
<Yn+1,m>0

(2n+1)(2n+3)

n2—m?

lznrhen-1

1/2
) <Yn—1,m>0- (33)

According to Eq.(14), the equilibrium averagesy,, ) sat-
isfy the recurrence relatioh

\ZES

>

s=—1r

dn,m,r,s<Yn+r,m+45>O:0, (39

-4

which may be written as the three-term matrix recurrence
relation:

Q;Rn*l+Qan+Q;Rn+l:01 n:11213 LN | (35)

where
lan
Fan—1 1
R,= , Rog=—. 36
n lan—2 0 ,—477 ( )
Fan-3
The column subvectary,,_; is
<Y4nfi,74(nfl+6io)>0
Yan—i —an-2+8
Fan—i= s, o 2000 | 0103 37)

<Y4nfi,4(nfl+5i0)>0
The solution of Eq(35) has the following form:

Rn:&<0>Rn_1=sn<0>&_1(0>---sz(msl(owm,(gs)

where

Si(0)=[-Qn=Qn Sh+1(0)]*Q, .
Thus theC,,(0) are given by

(39
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Ch(0)=K, Ry 1+ K Ry +K Ry 1, n=1,23...(, )
40
where
0 Uan 0 0 ~
K = Vian-1 0 Usn-1 0 E:
n 0 Vian-2 0 Usn-2 B
0 0 Vg O g
0 0 0O V4,
KF= 000 0 (41 -10 ' -5 ' 0 5 ' 10
n oo o0 o) -
0 00 O
FIG. 1. logy(7/7y) vs o for various values of the damping
0 0 0 O parametera. Solid lines are the numerical calculations from Eg.
0 00O (22) at a— (curve 1, 1 (2), 0.1 (3), and 0.01(4). Filled circles
Ky = 0 00 ol and squares are the calculation from E@gl) and (45) for a—»
and 1, respectively; crosses are the calculation from E.and
Up-3 0 0 O (47) at a=0.01.

with the submatrixK, degenerating to a column vector of
dimension 6. The matrice&, K, ,K, are comprised of
submatriced) andV, which are explicitly listed in Appendix
B

and reviewed in Ref. 19. They can be written @s our
notation

TnTeT

. Taking account of Eq(38), Eq. (40) yields ~ , >0 44
" oovie(Jor8la?i+1) 49
1
C,(0)= —{K, +[K, 3 gloli3
Var " INT o<0. (45)

" 2vlel(Vot 8lar-1)’

In the opposite, low damping limita<<1) the appropriate

+K 1 Sh+1(0)18,(0)}S,-1(0)--S1(0).  (42)

In particular, asymptotic solution was given by Klik and Gunth&¥’ and
reviewed by Coffey?® Their formulas applied to the present
1 _ roblem yield
Ci(0)= ——{K; +[K;+K{S,(0)1Sy(0)}. (43 P
Vam
7kTe¢” ryme’
. . . . T~ ~ 7 >0 (46)
The exact matrix continued fraction solutigEqs. (31) 2wpAE 8o
and (42)] we have obtained is very convenient for the pur-
pose of computation. All the matrix continued fractions and 27TkTé"|’3~ rymelol
series involved converge very rapidly, thus 10—12 downward TI™ "3wAE | 402 o<0 (47)
iterations in calculating the continued fractions and 11-14
terms in the serieg31) are enough to arrive at an accuracy of where
not less than six significant digits in the majority of cases.
The greatest dimension of all the matrices involved is of the 8o ykT (0>0)
order 13, which allows one to carry out the calculations on s
a personal computer. S Y KT
ol kT o)
3vMy

IV. RESULTS AND DISCUSSIONS

. . . . is the frequency of oscillation in the potential well, and
The behavior of the relaxation time as a function of the

dimensionless parameter= vK/4kT for various values of
the damping parameter is shown in Fig. 1for K>0 both AE=«a 3§ 1-02 0.
the saddle energy and the potential barrier height are equal to W=Eo Uz oz
o, whereas forK <0 the barrier height|o]/3 while the (48)
saddle energy —|o] (Ref. 2]. In this figure the results of the is the energy loss per cycle of the almost periodic motion at
calculation from the exact formulas are compared with thosehe saddle point energl,. Here instead of the numerical
evaluated from the asymptotic formulas fey in the low  evaluation of the integral in Eq48) (which is of the order of
temperature or high barrier lim{{a{>1) for various ranges the barrier heighf) we have used an approximation

of a. The asymptotic formulas in the intermediate to high

damping(IHD) limit (a=1) were obtained in Refs. 2 and 15 AE~ a|Eg|=av|K|/4

vVdu,

1—u? i Vde—
( uz)(?(PV ¢
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log (-Im{y,})

IOgIO('Im{X" })

log, (01,)

log, (@1,)

FIG. 3. log«(x)) Vs log(wTy) for @=0.1 ando=0 (curve J,
o=1 (curve 2, o=5 (curve 3, ando=10 (curve 4.
FIG. 2. log(x;) vs log(w7y) for o=10 anda— o (curve 1,

a=1 (curve 2, a=0.1 (curve 3, anda—0.01 (curve 4. peaks in the loss spectrum are visible. The fifttw-

frequency peak is located at frequencies of the order of the
. _ ) average frequency of reorientation of the magnetization vec-
for both positive and negative values of the anisotropy contor, The characteristic frequency and the half-width of this
stant. EXperImentaI and theoretical estimationsv@ire dis- |0W_frequency band are determined b‘y The Second, much
cussed, for example, in Refs. 6, 13, and 29. These estimaveaker peak is caused by the contribution of the high-
tions give values ofx of the order 0.01-0.3'3It should be  frequency intrawell and transverse relaxation modes.
noted thatry in Egs.(44)—(47) depends orx as defined by Thus, the longitudinal component of the magnetic suscep-
Eq. (17). tibility x,(w) and relaxation timer, of systems of single-
As far as a physical interpretation is concerned, the relaxdomain particles with cubic magnetic anisotropy are given
ation time 7, is determined by the slowest low-frequency by the exact equatioi31l) formulated in terms of matrix
relaxation mode, which governs transitions of the magneticontinued fractions. In contrast to the uniaxial anisotropy,
zation vector over the barriers from one potential well intowhere the damping only enters in the diffusion tifteg.
another. The characteristic frequency of this overbarrier re(17)], there is an inherent geometric dependencey§tv)
laxation mode is determined by the inverse of the smallestnd 7/ 7y for the particles with cubic magnetic anisotropy
nonvanishing eigenvaluk; of the Fokker-Planck equation ©n the value of the damping parameterising from cou-
(18). As one can see in Fig. 1, in contrast to uniaxial anisot!iNg of. the_ longitudinal and transverse relaxation modes. In
ropy (see, for example, Refs. 6, 9, and)18,/r for par- the Qerlvatlor_l of t_he above results, it was supposed that all
ticles with cubic anisotropy strongly depends on the dampin@?‘rt'de? are |dent|cal._ In order to take into account the poly-
parameterr. It should be noted that for crossover valuesrof dispersity of the particles of a real sample, one must also
(~a~0.1) neither the IHD formulag44) and (45) nor the ~ average the susceptibility over appropriate distribution func-
low damping Eqgs(46) and (47) yield reliable quantitative tions (e.g., over that of particle volumes
estimates. Thus a more detailed analysis is neces3ditye
dependence on the damping parameter is shown also in the ACKNOWLEDGMENTS
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APPENDIX A: EXPLICIT REPRESENTATION OF SUBMATRICES AND THEIR ELEMENTS IN EQS.  (27)—(29)

There are three kinds of submatrices in E@)—(29). The submatrice®\s,, Ean, Fans Gan» Aan—1, Asn_2, Asn_3,
Ban-1, Ban-2, Ban-3, Dan—1, Ean—2, Ean-3, Fan-3, Pan—1, Pan—2 have the form

N
Xan—i,—4(n—-1+38,) X4n—i,~4(n-1+ 6 0 0
_ +
Xan—i,—an-2+5y X4n-i,-4n-2+50 Xdn-i,—4(n-2+50) 0
Xan-i= 0 Xan—i,~4(n-3+50 “4n-i-4n-3+50 0 (A1)
0 0 0 ©r Xan—i4n—1+5,)

(i=0,1,2,3) and have dimensig2(n+ &) —1]X[2(n+ &) —1]. The submatriceB,n, Dan, Jdan,» Pans Dan—2, Dan_3,
Jan—1, Jan—2, Jan—3, Pan_3 are defined as
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+
Xan—i,—4(n-1+8) 0 0 0
+
Xan—i,-a(n-2+8, Xan—i,—4(n-2+3,) 0 0
_ +
Xan—i=| Xan—i,—an-3+6,) X4n7i,74.(n73+6i0) X4nfi,74‘(n73+6i0) O (A2)
0 0 0 X;n—i,4(n—1+5i0)

(i=0,1,2,3) and have dimensig2(n+ dg;) — 1] X[2(n+ &p;) —3]. The submatrice$lsn, Ean_ns Fan—1, Fan—2, Gan_1,
Gun—2+ Gan—3, Han—1, Han—2, Hyn—3 are given by

Xan—i,—4(n-1+8, 4n—i,—4(n-1+50) XIn—i,—4(n—1+5io) 0
0 XZn—i,—4(n—2+5i0) Xan-i,—4(n-2+8y " 0
Xan-i= 0 0 Xan—i,-4(n-3+59 0 (A3)
0 0 O in—i,4(n—1+fsi0)

and have the dimensidr2 (n+ 6y;) —1]1X[2(n+ 6y) +1]. The submatrix elements are

B _9(n—1n(n+1)(n+2)—15m’[6n(n+1)~5-7m?] n(n+1)
8n,m=0nm0,0= (2n—3)(2n—1)(2n+3)(2n+5) 2

. _150\(n+m)(n—m+4)[n’—(m~3)][n*~ (m—2)?][n*~ (m—1)°]
A m=an -m=0nmo-1= 2(2n—3)(2n—1)(2n+3)(2n+5) ’

3iom(3n?—5-7m?) ( n%— mz) 12

bn,m:dn,m—l,O: - a(4n2_9) 4n2_1
_ . 3io (n+m—4)(n+m)[n*~(m—3)?][n?—(m—2)?][n?—(m—1)2]\ 2
bn,m:_bn,fm:dn,m—l,—lz_ 2a(4n2—9) 4n2_1 ’

B _a(2n+9)(n*~n—2-7m?) ([nz—mz][(n—l)z—m2]> 172
Pn,m=nm, 2,0 (2n—5)(2n—1)(2n+3) (2n+1)(2n—23) '

e B a(2n+9)
Prm=Pn-m=0nm,-2-17 2(2n—=5)(2n—-1)(2n+3)

(n+m—5)(n+m—4)(n+m—3)(n+ m)[nz—(m—2)2][n2—(m—1)2]) 12
(2n+1)(2n-3) ’

_ _ 7igm ((n2—mz)[(n—1)2—m2][(n—2)2—m2]>1’2
Gnm=Gnm-30= " L 2n=3)(2n—1) (2n—5)(2n+1) '

(n+m—=6)(n+m->5)---(n+m—1)(n+m)(n—m+1)\?

(2n—=5)(2n+1)

io

2a(2n—3)(2n—1)

- + _
dn,m_ - dn,fm_ dn,mﬁ3ﬁl_

i3o0m(3n?+6n—2—7m?) 12

B B [(n+1)2—m?]
Cnm=Onm10= = T G0 1)(2n+5)

(2n+1)(2n+3)

L _ i30
~en-m=Onmi-17 5, o= 1)(2n+5)
(n+m)(n—m+3)(n—m+4)(n—m+5)[n?>—(m— 1)2][n2—(m—2)2])1’2
% (2n+1)(2n+3) !

€nm

B _ o(2n=7)(n*+3n—7m’) [(n+1)2—m2][(n+2)2—m2])1’2
fn.m=0nm2,0= ~ (2n—1)(2n+3)(2n+7) (2n+1)(2n+5) ’
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it g B a(2n—7)
nmeinemTEN M2 2(2n—1)(2n+3)(2n+7)
" (n+m)[n?—(m-1)2](n+m—2)(n—m+3)(n—m+4)(n—m+5)(n—m+6) |2
(2n+1)(2n+5) '
i B Ziom [(n+3)2—m?][(n+2)>°—m?][(n+1)%—m?]\| 1?2
Inm=Cnma0= = 5 (2n+3)(2n+5) (2n+1)(2n+7) ’
- gt =g B i (n+m)(n—m+1)(n—m+2)---(n—m+7)\ 2
Inm= " Gn-m=Gma-1= " 5,53 3)(2n+5) (2n+1)(2n+7) !
N4 7on [(n+1)2—m?][(n+2)2—m?][(n+3)2—m?][(n+4)?—m?]| 2
nm=EnmA0T (204 3)(2n+5)(2n+7) (2n+1)(2n+9) ’
b —nt g - on (n—m+1)(n—m+2)---(n—m+7)(n—m+8)|
nm— i, -mEnmA-1T 920+ 3)(2n+5)(2n+7) (2n+1)(2n+9) :
N 3 70(n+1) [(n—3)2=m?][(n—2)>~m?][(n—1)*~m?][n?~m?]} 2
Inm=0nm-40= 505 2n—3)(2n—1) (2n—7)(2n+1) ’
v g B a(n+1) (n+m—7)(n+m—6)---(n+m—1)(n+m)\ 2
Inm=Jn,-m=Cnm -4-175 50 75)(2n—3)(2n— 1) (2n—7)(2n+1) ’
where
_ vK
97 4kT
is the dimensionless anisotropy parameter.
APPENDIX B: EXPLICIT REPRESENTATION OF SUBMATRICES IN EQ. (41
The submatrice®),_1, Uan—2, Uan_3, Van, Van—2, Van_3 in EQ. (41) are diagonal,
Xan—i,—4(n—1+5,9) 0 0 0
0 Xan—i,—4(n—2+8,) Xan i a(nass 0
Xy 1= 0 0 Nl AN T3 g 0 (BD)
0 0 0

Xan—i4n—1+68,)

(i=0,1,2,3) and have dimensigr2(n+ 8p;) —1]X[2(n+ 8g;) —1]. The submatrixJ,, with the dimensiorf2n+1]X[2n
—1] has the form

0 0 o 0
Ugn,—4an+4 0 0
O u B . O
Ugy= : 4n, :4n+8 . (B2)
0 0 Usgnan—4
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The submatrixV,,_; has dimensiofi2n—1]x[2n+ 1] and is defined as
0 Van-1-4n+4 0 0 0
0 0 1 0 0
V4nil: | . V4r‘| :.l.,' 4n+8 X : (B\?))
0 0 0 Van—1-4 O
The elements of the submatricé®1)—(B3) are given by
~ n2—m? 1/2 - (n+ 1)2_ m2 |12 o
Unm=\ 2n+1)(2n—-1)) * """\ (2n+1)(2n+3) B4
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