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The nonlinear response to a step external force of a system with relaxational dynamics governed by a
one-dimensional Fokker-Planck equation is considered. An exact analytical expression for the step response
nonlinear relaxation time is derived in terms of an integ@vatich can be evaluated numerically\pplications
to nonlinear problems concerning the dynamic Kerr effect, dielectric relaxation of liquid dielectrics, and
magnetic relaxation of systems of single domain ferromagnetic particles are given. The results are compared
with solutions previously obtainefiS1063-651X97)08503-9
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. INTRODUCTION P
D@)(x)e~ VI +BOF(® ~ aV(x)-BF(®

A system initially in an equilibriumstationary state and P ax [ (2 }
suddenly disturbed by an external stimu({esg., by applying 0
a step external fie)dwill evolve into another equilibrium =Lr00) FLedX)F (D),
(stationary state. Presently a satisfactory theory is available
for linear response only where the energy of the system arisyjith
ing from the external stimulus is much lower than the ther-
mal energy[1,2]. Here we need onljinear (in the external
stimulu_s) deviati(_)ns of thg expectatipn value of the dynami- Loyx) = 9 D@)(x)e~ VX 9 eV
cal variable of interest in the stationary state in order to © X d
evaluate the generalized susceptibility and/or response func- (1.2
tions in terms of the appropriate equilibriuistationary cor- g
relation function. Linear response theory is widely used for J (2 / ,

) ) b . L =—|[D B B'(x)=—-—B
an interpretation of nonequilibrium phenomena such as di- exd(X) ax[ COB’(x)], ) dx '
electric and magnetic relaxation, conductivity problems, etc.

Here we wish to study relaxation following a steplike 0 . .
stimulus in systems described by one-dimensional FokkerN€reLre(X) is the Fokker-Planck operator in trabsence

Planck equations for the distribution functiohl(x.t) of a of the perturbationW, is the equilibrium(stationary distri-
variablex [2] ' bution function,V is called a generalize@ffective) potential

[2], D®(x) is the diffusion coefficient, an8(x) denotes a
dynamical quantity. The step-off and step-on relaxation
J functions(when, on the one hand, a small constant fdfge
— W=LgpW. (1.2 is suddenly switched off and, on the other hand, switched on
at at timet=0, respectively, statistical equilibrium having been
achieved prior to the imposition of the stimulus in both in-

) ) o stancesfor a dynamic variablé\(x) are then
We shall therefore first summarize the principal results of

linear response theor{{2], Chap. 7 for systems where the
dynamics obey a diffusion equation like E@.1). Thus let (A1) = (A)o=F1Cng(1),
us consider the Fokker-Planck operaltgy of a system sub-
ject to asmallperturbing force-(t). On account of thisl_gp
may be represented as

. L2 Wo(x)=0,

(A)°(1) = (A)o=F1[Cag(0)—Cpp(t)] (t>0),
(1.3

* Author to whom correspondence should be addressed. where the quantity
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Cap(t)=(AX(0))B(X(1)))o—(A)o(B)o are jr_]te.rested in_ the relaxation qf the systgm s_tarting fr_om an
equilibrium (stationary state | with a distribution function
W,(x) which evolves under the action of the stimulus to
another equilibriun{stationary state 1l with the distribution
function W,;(x). Our goal is to evaluate the relaxation time
75 Of a typical dynamical variabl&. This problem is intrin-

is the equilibrium (stationary correlation function, and the Sically nonlinear, because we assume that changes in the

symbols( ) and( ), designate the statistical averages overmnagnitude of the potential are now signifipant..Thus the con-

W and W,, respectively, withx defined in the range cept of relaxation functhns and_relaxatlon tlmes_ mu_st be

x,<X<X,. Furthermore, the spectrum d@A)(t) (ac re- used rathe_:r than correlat!on funct|0n§ and co_rrelatlon times.
We define the normalized relaxation functibg(t) of a

- LXZ[A(X) — (A)ole [ B(x) — (B)o]Wo(x)dx

(1.9

sponsgis dynamical variableA by
(Aho=Fu| Cas(0) -0 | “Cr(tie ", (19 AO-(A)
fa)=1 (A=A’ (2.1
where (A), and F, are the Fourier components GA)(t) 1, t=<0,

andF(t), respectively. We remark that Eq4..3) and (1.5 o )

are particular examples of Kubo’s linear response thgbfy ~ Where(A); and (A), are equilibrium(stationary averages
Moreover, an exact integral formula exists for the correlationdefined as

time 7, [defined as the area under the curve of the normal-

ized autocorrelation functio@, 5(t) as is apparent from Eq. (A),= fXZA(x)W,(x)dx, (A),= fXZA(x)W”(x)dx,
(1.4) for A=B]. This is[see Eq(S9.19 in Ref.[2]] X1 X1

(2.2
1 0
A= Can(0) fo Caa(t)dt and(A)(t) is the time-dependent average,
X
_ 1 fxz 1 <A>(t)=f *ACOW(X,t)dx. 2.3
Caa(0) Jx;, DP(x)Wy(x) 1
2 The relaxation timer, defined as the area under the curve of

X

X2
f[A(X’>—<A>o]Wo(X’)dX’ dx.  (1.6)  f,(t) att>0 is then given by
X1

In contrast, nonlinear response theory has been much less TA= jwa(t)dt= lim Jme_S‘fA(t)dt=?A(O), 2.4
well developed by reason of its inherent mathematical- 0 s-0J0

physical complexity(see, e.g.[3,4]). The calculation of the _

nonlinear response even for systems described by a singlehere f,(s) is the Laplace transform of,(t). On inter-
coordinate is a difficult task as there is no longery con-  changing the orders of integration owerlandt in Eq. (2.4),
nection between the step-on and step-off responses and the have

ac response because the response now depends on the precise

nature of the stimulus—as nmiqueresponse function valid 1 X2 ~

for all stimuli unlike linear response exists. Such results as TATTAY,— (A, J;l [AG) = (A)u]W(x,00dx, (2.5
have been obtained have mainly emerged either by perturba-

tion theory or by numerical simulations. However, a fewwhere

exact analytical solutions of particular nonlinear step re-

sponse problems exige.g.,[5-7]). We shall now demon- W(x,0) = limW(x,s) (2.6)
strate that it is possible to derive an exact general equation in s—0

terms of an integralsimilar to Eq.(1.6)] for the nonlinear

step responseelaxation time of a system governed by one-and
dimensional Fokker-Planck equatidfh.1) just as in linear
responsg2]. W(X,s)= fo W(x,t)e s'dt. 2.7
Il. ANALYTIC EQUATION FOR THE NONLINEAR

RESPONSE RELAXATION TIME The quantity\7V(x,0) can be calculated analytically by
. ) ) ) guadratures as follows. On using the final value theorem of
We consider the one-dimensional Brownian movement of gp|ace transformation, viz.

a particle subject to a potentisl(x), and we assume that the

relaxational dynamics of the particle obeys the Fokker- lim sW(x,s) = lim W(x,t)=W,(x),

Planck equatior(1.1). Let us suppose that at tinte=0 the s—0 oo

value of the generalized potentigl is suddenly changed

from V, to V,, (e.g., by applying a strong external field or by and on taking into account E¢1.2), from Eq.(1.1) att>0
a change in some parameter characterizing the sysist@  we obtain
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W), (X) =W, (x) where
D@ (x)=1/¢B

dx

d ~ ~ d
D(2>(x)<& W(x,0)+W(x,0) V”(x))
and the constantbl; and S, must be determined from the
(2.8 boundary and the normalization conditidr®j.

On the other hand, for potentials, where the probability
currentS=0 at the stationary stafe.g., for the bistable po-
tential V(x)=—Vy(bx®—x*], W,(x) and W,(x) are the

(2.9 Maxwell-Boltzmann distribution functions, viz.

The solution of Eq(2.8) is

__— X d(y)dy
W(X,O)_WII(X) JXl D(2)(y)W”(y)7 oo
W(x)=e AViNizZ,  (i=1II).

where
HereZ, andZ, are the partition functions, and=—« and
y X,=0o0. The relaxation time is therefore given by
d :sz—Wzdz. 2.1 2
(y) Xl[ 1(2) 1(2)] (2.10 5 ]
. = eI (x) W (x)dx, 3.2
Thus from Eqgs(2.5) and(2.9) we obtain AT (A= (A), f—w (¥ ®3
1 X2 where
= A(X) = (A) TW, (X
TA <A>|_<A>” fX:L[ ( ) < >II] II( ) ]
N ®(y) q)(z):f [Zﬂle*ﬁVu(y)_Zlfle*BVKy)]dy’ (3.3
= dy dx ’°°
fxl DP(y)Wi(y) Y
z
so that, on integration by parts, V(z)= f_x[A(X)—<A>||]G_BV"(x)dx. (3.4
TA= - fxz q;(x)llf(x) X, (2.1D Similar results are obtained for the longitudinal relaxation
(Au—(Ah Jx, DP Wy (x) arising from the noninertial rotational Brownian motion of a
dipolar particle in an external uniaxial potentil The rel-
where evant Fokker-Planck equation for the distribution functiin
« of the orientations of the particle |8,9]
‘I’(><)=fX [A(Y) = (A 1Wy (y)dy. (2.12 P 3 P
1 — - I JR—
. . . _ 270 5 W= Gin g 79 | SN W 5 V“(ﬂ)}
Equation(2.11) is an exact equation for the nonlinear step
response relaxation time, which is analogous to (Ec) for 1 ) d
the linear response. tong a0 |SNY oW (120), (3.5
Ill. EXAMPLES (9 is the polar angle which specifies the orientation of the

) . . . particle or introducing a variable=cosd
As a first example, we consider the one-dimensional non-

inertial translational Brownian motion of a particle in a po- 9 9

tential V(x), where the variablex specifies the position of 27p e W= x ((1—x2)
the particle. The relevant Fokker-Plan¢€moluchowskKi
equation for the distribution functiow of the positionx is

J J
5 W+IBW& V||(X)>)

given by[2] (t>0), (3.6
J J J 2 where 75 is a characteristi¢€Debye relaxation time. In this
{—W=— (W —Vy(X) |+ = =W (t>0), caseW,(x) andW, (x) are the Maxwell-Boltzmann distribu-
ot 2 2 B 9x 3.0 tion functions

W, = Bz W, = BViX)|z7 .
with the initial conditionsW(x,0)=W,(x), where { is the x)=e 12, Wy(x)=e 1Zy, (3.7)

friction coefficient andB=1/kT. For potentials, where the x;=—1, x,=1, and
probability currentS in the stationary state is not equal to

zero [e.g., for the tilted periodic potential ) 1—x2
V(x) =V,(cosx—ax)], the relaxation time is given by Eq. D=5 —.
(2.11), with the stationary distribution function#/,(x) and b
W, (x) defined a42] Thus Eq.(2.11) yields
x eBViy) 2 1 AP (2)¥(z)dz
W, (x)=N;e #Vi¥— -e—ﬁVi“)f dy (i=L1I), - o J
I( ) i SI Xo D(Z)(y) y ( ) A <A>“—<A>| 1 l—ZZ y (38)
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where 1
i 2 (

T 1/2 2

;) e " {erfi[(1+h) Vo]
= Lz —BVi(y) 7= 1a=BVi(y) I

®(2) f_l[z“e Yoz e Tdy, (39 +erfi[(1—h)\a]} 4.6

W(z)= fz [A(X)—(A),Je” Aidx, (3.10 is the partition function, and
-1

2 (% o
P — S t
IV. APPLICATION TO NONLINEAR DYNAMIC KERR erfic) = Jr fo e dt “.7
EFFECT, DIELECTRIC AND MAGNETIC
RELAXATION

is the error function of imaginary argument. From Egs.
Equation(3.8) can be used to calculate the relaxation time(2.11, (4.5, and(4.6), we have

of the nonlinear dielectric and dynamic Kerr effect step re-

sponses of systems consisting of permanently polar and po- 270 1 (b(z)\]ln(z)e_gllzz—{llzdz

larizable molecules. It may also be applied to the calculation Tn:<P Yu—(Pr) J’ 1—72 )

of the nonlinear relaxation time of nematic liquid crystals as n/il /i /-1

well as single domain ferromagnetic particles where the am-

plitude of a strong dc field, (electric or magnetic as appro- n=1 and 2, (4.9

priate is suddenly changed at=0. The longitudinal relax-

ation of all these systems(excluding interparticle \where

interaction$ is governed by the Fokker-Planck equation

(3.5), with a uniaxial potentiaV given by , 112 —oyh?
BV(cos¥)=—o cog d—§& cosd *@)= J-l[W"(Z,)_W'(Z,)]dZI - Tfﬁmﬂ
or x{erfi[(z+hy) Vo] +erfi[(1—hy) Vo I}
BV(z)=—o(Z2+2hz) (z=cosd), 4.1 Fl2a—oih?

iy {erfi[(z+h) o]
where g £

o=BK, ¢=BuF, and h=¢20 4.2 +erfi[(1—h) o]}, 4.9

are the appropriate dimensionless anisotropy and external z 2 ,
field parameters and their ratio, respectivédyis an anisot- ‘I’l(z)=f [P1(z)—(Py), e 2z gz
ropy constant, angk is the (electric or magneticdipole mo- -1

ment. The appropriate interpretation of the parametgr<, 1 X

and ¢ in each case is given, e.g., in Ref8-16]. The po- —— [en(@F2h2) _ goy(1=2hy)]

tential Eq.(4.1) is symmetrical wher#=0 and has a barrier 20y
at 9=m/2, where the potential has a maximum where the 72 sinh 20 h
. . .. . o (1_h2) r( I} II) .
height relative to the minima at=0, and 9= is equal to —ent=m terfi[(z+hy)Voy]

3/2
o. The potential becomes asymmetrical f#0 and the 2002

double well structure disappearstaths=1. +erfi[(1—hy)Voul}, (4.10
The quantities of greatest interest in the nonlinear re-

sponse of these systems are the relaxation timés=1 and ,

2) of the relaxation function$,(t) andf,(t) of the first and q,z(z):f [pz(z’)_<p2>”]eU||(Z'2+2h||z’)er

second Legendre polynomials, viz. -1

- — 3
f1()=(Py(cos®))(t) —(Ps(cos ®))y (4.3 - {em'(zazmlz)(z_h”Hem,u2h.,>(1+h“)
and
mq cosi 2o hy) —hy sinb(20hy)]
fa(t)=(Pa(cos 9))(t) —(Pa(cosd))y. (44 — eon(1=hi ! (:Wz ! ]
1l 1l
Equation (4.3) governs the dielectric and magnetic relax-
ation, and Eq.4.4) governs the dynamic Kerr effect. The X[erfi[(z+ h”)\/cr—”]+erfi[(1—h”)\/a—,,]] ,
distribution functions in the equilibrium states | and Il are
given by (4.1
(2h 2+ 22 .
Wi(z):em(2h|z+z )/ZI (I = |,||), (45) 5 _eoi Sinr(zo_ihi) A i1
where ( 1>i_T_ a @12
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3e’%[cosh20ih;) —h; sinh(20h;)]

(P2)i= 20,7,
3hy 3 1
t T4 2 (i=11). (4.13

First, we shall compare the foregoing results with those
previously given. We have obtained in R€f8,7] by solving
the infinite hierarchy of differential-recurrence relations for
the averaged spherical harmonics, the exact analytical solu-
tion for the relaxation timer, for the nonlinear rise transient
of the dynamic Kerr effect fomonpolar polarizablemol-
ecules, which igin the notation of Ref[7])

45775 ” ( 0') 2n-2

o
2 6aM(L,2,0)M(2,1,0) i1

(4n+1)T'(2n)M?(n+3,2n+2,0) ) . . o
X (4.19 FIG. 1. Nonlinear dielectric relaxation time in the forn{4y/ =)

(2n+1)I'?(2n+32) . calculated from Eq(4.8) as a function ofs and & for a suddenly
reversed dc field§,=—§=¢, andoy=0,=0.

HereI'(z) is the gamma functiohl7], andM(a,b,z) is the

confluent hypergeometrigummey function defined agl7] o 3 2¢7\or . 1 w1
Mabz)=1+ 224 23D 2 Y40 | JmetitNe) 7] 2
b1! b(b+1) 2! ) o
The result of calculations of the correlation timefrom Eq.
a(a+1)(a+2) 22 (4.14 is in complete agreementith that predicted by Egs.
+ b(b+1)(b+2) §+”' ' (4.9 and (4.16—(4.18 (e.g., for o=5 we obtained
7,l715=0.281 269... in both representatipntn Ref.[7] we
(a;—ay)F? also evaluated the nonlinear dielectric and birefringence rise
AT transients for a more general modelpafiar and polarizable

moleculegthe solution was obtained in terms of matrix con-

and o, and a, are the components of the electric polarizabil- tinued fractiong The model corresponds to
ity parallel and perpendicular to the axis of symmetry of the ho— _ h —h _
molecule. We remark that all the confluent hypergeometric =0, =0, hy=h, oy=o. (4.19

functions appearing in Eq4.14) may be expressed in (erms o0 \ve have also complete agreement between the relax-
of the more familiar error function of imaginary argument ation times yielded by both solutions.

erfi(x). In particular([18], pp. 580 and 581 Equation (4.8) can also be applied to other nonlinear

1| |22 problems of the dynamic birefringence and dielectric relax-
M(3,2,2)= > (—) erfi(yz), ation considered by Morita and Watand#e5]. In particular,
z Eq. (4.8 for
15 3+2z (7|12 —_ — S
M(%,5,2)=@ 367 . ;) erfi(y2)|. hy=—hy (or §=—&), oy=o=o

yields the nonlinear dielectric relaxation time for a transient
Equations for the othe functions occurring in Eq(4.14) process where a homogeneous electric figjdapplied to a
may be obtained from Table 7.11.2 of RéL8], and the system of polar and polarizable particles for a time sufficient
recurrence relations for the confluent hypergeometric functo allow the system to reach the equilibrium statetfa0, is
tion. In our notation the model considered in R¢&7] cor-  suddenly reversed dt=0 (Fig. 1). Furthermore, Eq(4.9)
responds to Eq4.8) for n=2 with (for hy#h,, oy,#a;) gives the exact solution for the nonlin-

ear birefringence and dielectric relaxation times when a

h=0, =0 h=0, oy=o0, (4.15 strong homogeneous electric fiehg is suddenly applied to
here according to Eq$4.9—(4.13 and (4.15), the system where a Maxwell-Boltzmann distribution of the
W "9 0$4.9-(4.13 (419 orientations of particles has been established by another ho-
. mogeneous electric field; .
d(z)= M_ E’ (4.16) Let us now suppose that the amplitude of the strong dc
2erfi(Jo) 2 field Fy is suddenly altered at time=0 and that, unlike in
Eq. (4.19, the value of the anisotropy parameteremains
3 ) erfi(\oz) unaffectedi.e., we assume
V,(2)= yp ze"* -7 ——|, (4.17)
g 2erfi(\o) h#hy, oy=o=0. (4.20
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In(tll‘rD)

FIG. 2. In(my/7p) calculated from Eqgs(4.8) and (4.19 as a FIG. 3. In(n/7p) calculated from Eqsi4.8), (4.19, and(4.20
function of o for h,=0.1—h, =0.15 (curve 3, h,=0.1—h, =0.25 as a function ofr for linear responsé, =h,—&=0.1 (¢—0) (curve

(curve 2, h,=0.1—h, =0.5, (curve 3, andh,=0.1—~h, =1 (curve 1), nonlinear decay transieh=0.25—h,=0.1 (curve 2, nonlin-
4). ear rise transient,=0.1—h,=0.25 (curve 3, and linear response

h|| :h|78:025 (8—>O) (CUrVe 4

This form of the model is appropriate to the nonlinear dielec-

tric response of nematic liquid crystals and to the nonlineabias parameten is shown in Fig. 2, and the linear and non-
magnetic response of an assembly of single domain ferrdinear relaxation times for the rise and reverse decay tran-
magnetic particles, where is mainly determined by the sients are shown in Figs. 3 and 4. It is apparent from Figs.
crystalline (or shape and magneti@nisotropyrather than 2—4 that the relaxation process obeys an activatfarhen-

the external field in contrast to nonlinear dielectric and Kerr ius) law behavior(i.e., an exponential increase ef with
effect relaxation of an assembly of permanently polar andncreasing barrier height) in a restricted range of the pa-
polarizable molecules. The linear response of this model ha@meters¢ and o only. This may be explained as follows.
been evaluated elsewhdrE3, 16 (this corresponds to an in- The relaxation dynamics in the potential given by E41)
finitesimal change in amplitude &%). The step-on, step-off, (which has in general two potential wells determined by
and ac linear responses are now entirely determined biwo relaxation processes. One relaxatiaotivatior) process
the equilibrium dipole autocorrelation functiorC,(t)  governs the crossing of the potential barrier between two
=({cosH(0)cosN(t) )o—(cos(0))3 [13], where positions of equilibrium by a current of particles. Another
process describes relaxation inside the wells. Potetia)
becomes more and more asymmetrical with increagijraond

m
o cod J+&cost o
fo (*)e sin 4d & the activation process is suppressed due to the depletion of

{((*))o= - . the upper well[16]. This depletion is achieved at values of
J' g0 €oS D+EcosV gin 9d 9 the constant electric fieldly which are considerably smaller
0 than the value of a critical field at which the double well

In particular, the relaxation timel" of the linear response
step-off relaxation functiori i"(t)ocC,(t) is [16,21], cf. Eq.

lin_ 27 fl e o7&
17 cog 9)o—(cos 92 |, 1-72
2

X dz,

z ! ’
f (2 —(cos §)o)e”? 7' dz’
1

(4.20)

where (cos®(0)),=(Py)y and (cos ¥0))=(2Po+1)/3 | e
may be readily extracted from Eqg.12) and(4.13, respec- 0 5 10 15 20
tively. Equation(4.20 may be obtained from Ed4.8) by c

writing §—e=¢,, and proceeding to the limit—0. Alterna-

tive methods of derivation of Eq4.20 are given, for ex- FIG. 4. In(/m) calculated from Eqs(4.8), (4.19, and (4.20

ample, in Refs[19-21]. . . as a function ofo for a further selection of values df: linear
The results of our calculations of the nonlinear step reyesponser, =h,—&=0.1(e—0) (curve 1, nonlinear decay transient

sponse relaxation time, and comparison with those of the h,=0.5-h,=0.1 (curve 2, nonlinear rise transient
linear response are given in Figs. 2—4: the relaxation time ofi,=0.1—h,,=0.5 (curve 3, and linear responsé,=h,—&=0.5
the rise transient as a function offor various values of the (¢—0) (curve 4.
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structure of the potential disappeafthis critical field is (h,—h,) and for the reverse step-dffi,—h,) responses are
given by &20=1). In the case of the strong bias fidlgl-=),  always less than the linear response relaxation time for an
when the potential4.1) transforms to the single well poten- infinitesimal change i, , and are always higher than those
tial £cosd, we observe intrawell relaxation modes only. for an infinitesimal change ih, (for h;<h,)). This is due to
Similar results have been obtained for the linear response ithe greater contribution of intrawell relaxation modes to the

magnetic relaxation of single domain ferromagnetic particlesyonlinear relaxation time than to the linear one.
with high anisotropy barriers in the presence of a strong con-

stant magnetic field following an infinitesimal change in that

field [13,16,2]. It is also apparent from Figs. 3 and 4 that

nonlinear relaxation times for the step-@m—h,) and the

reverse step-ofth,—h,) responses may differ considerably
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