
,

PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Relaxation time for nonlinear response of a Brownian particle subject to a step external force:
Analytical solutions for one-dimensional models
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The nonlinear response to a step external force of a system with relaxational dynamics governed by a
one-dimensional Fokker-Planck equation is considered. An exact analytical expression for the step response
nonlinear relaxation time is derived in terms of an integral~which can be evaluated numerically!. Applications
to nonlinear problems concerning the dynamic Kerr effect, dielectric relaxation of liquid dielectrics, and
magnetic relaxation of systems of single domain ferromagnetic particles are given. The results are compared
with solutions previously obtained.@S1063-651X~97!08503-6#
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I. INTRODUCTION

A system initially in an equilibrium~stationary! state and
suddenly disturbed by an external stimulus~e.g., by applying
a step external field! will evolve into another equilibrium
~stationary! state. Presently a satisfactory theory is availa
for linear response only where the energy of the system a
ing from the external stimulus is much lower than the th
mal energy@1,2#. Here we need onlylinear ~in the external
stimulus! deviations of the expectation value of the dynam
cal variable of interest in the stationary state in order
evaluate the generalized susceptibility and/or response f
tions in terms of the appropriate equilibrium~stationary! cor-
relation function. Linear response theory is widely used
an interpretation of nonequilibrium phenomena such as
electric and magnetic relaxation, conductivity problems, e

Here we wish to study relaxation following a steplik
stimulus in systems described by one-dimensional Fok
Planck equations for the distribution functionW(x,t) of a
variablex @2#,

]

]t
W5LFPW. ~1.1!

We shall therefore first summarize the principal results
linear response theory~@2#, Chap. 7! for systems where the
dynamics obey a diffusion equation like Eq.~1.1!. Thus let
us consider the Fokker-Planck operatorLFP of a system sub-
ject to asmallperturbing forceF(t). On account of this,LFP
may be represented as

*Author to whom correspondence should be addressed.
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LFP5
]

]x FD ~2!~x!e2V~x!1B~x!F~ t !
]

]x
eV~x!2B~x!F~ t !G

5LFP
0 ~x!1Lext~x!F~ t !,

with

LFP
0 ~x!5

]

]x FD ~2!~x!e2V~x!
]

]x
eV~x!G , LFP

0 ~x!W0~x!50,

~1.2!

Lext~x!5
]

]x
@D ~2!~x!B8~x!#, B8~x!5

d

dx
B,

whereL FP
0 (x) is the Fokker-Planck operator in theabsence

of the perturbation,W0 is the equilibrium~stationary! distri-
bution function,V is called a generalized~effective! potential
@2#, D (2)(x) is the diffusion coefficient, andB(x) denotes a
dynamical quantity. The step-off and step-on relaxat
functions~when, on the one hand, a small constant forceF1
is suddenly switched off and, on the other hand, switched
at timet50, respectively, statistical equilibrium having bee
achieved prior to the imposition of the stimulus in both i
stances! for a dynamic variableA(x) are then

^A&off~ t !2^A&05F1CAB~ t !,

^A&on~ t !2^A&05F1@CAB~0!2CAB~ t !# ~ t.0!,
~1.3!

where the quantity
2509 © 1997 The American Physical Society
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CAB~ t !5^A„x~0!…B„x~ t !…&02^A&0^B&0

5E
x1

x2
@A~x!2^A&0#e

LFP
0 t@B~x!2^B&0#W0~x!dx

~1.4!

is the equilibrium ~stationary! correlation function, and the
symbols^ & and ^ &0 designate the statistical averages ov
W and W0, respectively, with x defined in the range
x1,x,x2 . Furthermore, the spectrum of^A&(t) ~ac re-
sponse! is

^A&v5FvFCAB~0!2 ivE
0

`

CAB~ t !e
2 ivtdtG , ~1.5!

where ^A&v and Fv are the Fourier components of^A&(t)
andF(t), respectively. We remark that Eqs.~1.3! and ~1.5!
are particular examples of Kubo’s linear response theory@1#.
Moreover, an exact integral formula exists for the correlat
time tA @defined as the area under the curve of the norm
ized autocorrelation functionCAA(t) as is apparent from Eq
~1.4! for A5B#. This is @see Eq.~S9.14! in Ref. @2##

tA5
1

CAA~0!
E
0

`

CAA~ t !dt

5
1

CAA~0!
E
x1

x2 1

D ~2!~x!W0~x!

3F E
x1

x2
@A~x8!2^A&0#W0~x8!dx8G2dx. ~1.6!

In contrast, nonlinear response theory has been much
well developed by reason of its inherent mathematic
physical complexity~see, e.g.,@3,4#!. The calculation of the
nonlinear response even for systems described by a s
coordinate is a difficult task as there is no longerany con-
nection between the step-on and step-off responses an
ac response because the response now depends on the p
nature of the stimulus—as nouniqueresponse function valid
for all stimuli unlike linear response exists. Such results
have been obtained have mainly emerged either by pertu
tion theory or by numerical simulations. However, a fe
exact analytical solutions of particular nonlinear step
sponse problems exist~e.g., @5–7#!. We shall now demon-
strate that it is possible to derive an exact general equatio
terms of an integral@similar to Eq.~1.6!# for the nonlinear
step responserelaxation time of a system governed by on
dimensional Fokker-Planck equation~1.1! just as in linear
response@2#.

II. ANALYTIC EQUATION FOR THE NONLINEAR
RESPONSE RELAXATION TIME

We consider the one-dimensional Brownian movemen
a particle subject to a potentialV(x), and we assume that th
relaxational dynamics of the particle obeys the Fokk
Planck equation~1.1!. Let us suppose that at timet50 the
value of the generalized potentialV is suddenly changed
from VI to VII ~e.g., by applying a strong external field or b
a change in some parameter characterizing the system!. We
r
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are interested in the relaxation of the system starting from
equilibrium ~stationary! state I with a distribution function
WI(x) which evolves under the action of the stimulus
another equilibrium~stationary! state II with the distribution
functionWII(x). Our goal is to evaluate the relaxation tim
tA of a typical dynamical variableA. This problem is intrin-
sically nonlinear, because we assume that changes in
magnitude of the potential are now significant. Thus the c
cept of relaxation functions and relaxation times must
used rather than correlation functions and correlation tim

We define the normalized relaxation functionf A(t) of a
dynamical variableA by

f A~ t !5H ^A&~ t !2^A& II
^A& I2^A& II

, t.0

1, t<0,
~2.1!

where ^A& I and ^A& II are equilibrium~stationary! averages
defined as

^A& I5E
x1

x2
A~x!WI~x!dx, ^A& II5E

x1

x2
A~x!WII~x!dx,

~2.2!

and ^A&(t) is the time-dependent average,

^A&~ t !5E
x1

x2
A~x!W~x,t !dx. ~2.3!

The relaxation timetA defined as the area under the curve
f A(t) at t.0 is then given by

tA5E
0

`

f A~ t !dt5 lim
s→0

E
0

`

e2stf A~ t !dt5 f̃ A~0!, ~2.4!

where f̃ A(s) is the Laplace transform off A(t). On inter-
changing the orders of integration overx and t in Eq. ~2.4!,
we have

tA5
1

^A& I2^A& II
E
x1

x2
@A~x!2^A& II#W̃~x,0!dx, ~2.5!

where

W̃~x,0!5 lim
s→0

W̃~x,s! ~2.6!

and

W̃~x,s!5E
0

`

W~x,t !e2stdt. ~2.7!

The quantityW̃(x,0) can be calculated analytically b
quadratures as follows. On using the final value theorem
Laplace transformation, viz.

lim
s→0

sW̃~x,s!5 lim
t→`

W~x,t !5WII~x!,

and on taking into account Eq.~1.2!, from Eq. ~1.1! at t.0
we obtain
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WII~x!2WI~x!

5
d

dx FD ~2!~x!S ddx W̃~x,0!1W̃~x,0!
d

dx
VII~x! D G .

~2.8!

The solution of Eq.~2.8! is

W̃~x,0!5WII~x!E
x1

x F~y!dy

D ~2!~y!WII~y!
, ~2.9!

where

F~y!5E
x1

y

@WII~z!2WI~z!#dz. ~2.10!

Thus from Eqs.~2.5! and ~2.9! we obtain

tA5
1

^A& I2^A& II
E
x1

x2
@A~x!2^A& II#WII~x!

3E
x1

x F~y!

D ~2!~y!WII~y!
dy dx,

so that, on integration by parts,

tA5
1

^A& II2^A& I
E
x1

x2 F~x!C~x!

D ~2!~x!WII~x!
dx, ~2.11!

where

C~x!5E
x1

x

@A~y!2^A& II#WII~y!dy. ~2.12!

Equation~2.11! is an exact equation for the nonlinear st
response relaxation time, which is analogous to Eq.~1.6! for
the linear response.

III. EXAMPLES

As a first example, we consider the one-dimensional n
inertial translational Brownian motion of a particle in a p
tential V(x), where the variablex specifies the position o
the particle. The relevant Fokker-Planck~Smoluchowski!
equation for the distribution functionW of the positionx is
given by @2#

z
]

]t
W5

]

]x SW ]

]x
VII~x! D1

1

b

]2

]x2
W ~ t.0!,

~3.1!

with the initial conditionsW(x,0)5WI(x), where z is the
friction coefficient andb51/kT. For potentials, where the
probability currentS in the stationary state is not equal
zero @e.g., for the tilted periodic potentia
V(x)5V0~cosx2ax!#, the relaxation time is given by Eq
~2.11!, with the stationary distribution functionsWI(x) and
WII(x) defined as@2#

Wi~x!5Nie
2bVi ~x!2Sie

2bVi ~x!E
x0

x ebVi ~y!

D ~2!~y!
dy ~ i5I,II !,
-

where

D ~2!~x!51/zb

and the constantsNi and Si must be determined from th
boundary and the normalization conditions@2#.

On the other hand, for potentials, where the probabi
currentS50 at the stationary state@e.g., for the bistable po-
tential V(x)52V0(bx

22x4)#, WI(x) and WII(x) are the
Maxwell-Boltzmann distribution functions, viz.

Wi~x!5e2bVi ~x!/Zi ~ i5I,II !.

HereZI andZII are the partition functions, andx152` and
x25`. The relaxation time is therefore given by

tA5
bz

^A& II2^A& I
E

2`

`

ebVII~x!F~x!C~x!dx, ~3.2!

where

F~z!5E
2`

z

@ZII
21e2bVII~y!2ZI

21e2bVI~y!#dy, ~3.3!

C~z!5E
2`

z

@A~x!2^A& II#e
2bVII~x!dx. ~3.4!

Similar results are obtained for the longitudinal relaxati
arising from the noninertial rotational Brownian motion of
dipolar particle in an external uniaxial potentialV. The rel-
evant Fokker-Planck equation for the distribution functionW
of the orientations of the particle is@8,9#

2tD
]

]t
W5

b

sin q

]

]q Fsin qW
]

]q
VII~q!G

1
1

sin q

]

]q Fsin q
]

]q
WG ~ t.0!, ~3.5!

~q is the polar angle which specifies the orientation of t
particle! or introducing a variablex5cosq

2tD
]

]t
W5

]

]x S ~12x2!S ]

]x
W1bW

]

]x
VII~x! D D

~ t.0!, ~3.6!

wheretD is a characteristic~Debye! relaxation time. In this
caseWI(x) andWII(x) are the Maxwell-Boltzmann distribu
tion functions

WI~x!5e2bVI~x!/ZI , WII~x!5e2bVII~x!/ZII , ~3.7!

x1521, x251, and

D ~2!~x!5
12x2

2tD
.

Thus Eq.~2.11! yields

tA5
2tD

^A& II2^A& I
E

21

1 ebVII~z!F~z!C~z!dz

12z2
, ~3.8!
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where

F~z!5E
21

z

@ZII
21e2bVII~y!2ZI

21e2bVI~y!#dy, ~3.9!

C~z!5E
21

z

@A~x!2^A& II#e
2bVII~x!dx. ~3.10!

IV. APPLICATION TO NONLINEAR DYNAMIC KERR
EFFECT, DIELECTRIC AND MAGNETIC

RELAXATION

Equation~3.8! can be used to calculate the relaxation tim
of the nonlinear dielectric and dynamic Kerr effect step
sponses of systems consisting of permanently polar and
larizable molecules. It may also be applied to the calculat
of the nonlinear relaxation time of nematic liquid crystals
well as single domain ferromagnetic particles where the a
plitude of a strong dc fieldF0 ~electric or magnetic as appro
priate! is suddenly changed att50. The longitudinal relax-
ation of all these systems~excluding interparticle
interactions! is governed by the Fokker-Planck equati
~3.5!, with a uniaxial potentialV given by

bV~cosq!52s cos2 q2j cosq

or

bV~z!52s~z212hz! ~z5cosq!, ~4.1!

where

s5bK, j5bmF0 and h5j/2s ~4.2!

are the appropriate dimensionless anisotropy and exte
field parameters and their ratio, respectively,K is an anisot-
ropy constant, andm is the~electric or magnetic! dipole mo-
ment. The appropriate interpretation of the parameterstD , j,
ands in each case is given, e.g., in Refs.@8–16#. The po-
tential Eq.~4.1! is symmetrical whenj50 and has a barrie
at q5p/2, where the potential has a maximum where
height relative to the minima atq50, andq5p is equal to
s. The potential becomes asymmetrical forjÞ0 and the
double well structure disappears ath5hs51.

The quantities of greatest interest in the nonlinear
sponse of these systems are the relaxation timestn ~n51 and
2! of the relaxation functionsf 1(t) and f 2(t) of the first and
second Legendre polynomials, viz.

f 1~ t !5^P1~cosq!&~ t !2^P1~cosq!& II ~4.3!

and

f 2~ t !5^P2~cosq!&~ t !2^P2~cosq!& II . ~4.4!

Equation ~4.3! governs the dielectric and magnetic rela
ation, and Eq.~4.4! governs the dynamic Kerr effect. Th
distribution functions in the equilibrium states I and II a
given by

Wi~z!5es i ~2hiz1z2!/Zi ~ i5I,II !, ~4.5!

where
-
o-
n
s
-

al

e

-

Zi5
1

2 S p

s i
D 1/2e2s i hi

2
$erf i @~11hi !As i #

1erf i @~12hi !As i #% ~4.6!

is the partition function, and

erf i ~x!5
2

Ap
E
0

x

et
2
dt ~4.7!

is the error function of imaginary argument. From Eq
~2.11!, ~4.5!, and~4.6!, we have

tn5
2tD

^Pn& II2^Pn& I
E

21

1 F~z!Cn~z!e2s IIz
22z IIzdz

12z2
,

n51 and 2, ~4.8!

where

F~z!5E
21

z

@WII~z8!2WI~z8!#dz85
p1/2e2s IIhII

2

2s II
1/2ZII

3$erf i @~z1hII !As II#1erf i @~12hII !As II#%

2
p1/2e2s IhI

2

2s I
1/2ZI

$erf i @~z1hI!As I#

1erf i @~12hI!As I#%, ~4.9!

C1~z!5E
21

z

@P1~z8!2^P1& II#e
s II~z8

212hIIz8!dz8

5
1

2s II
@es II~z

212hIIz!2es II~122hII !#

2es II~12hII
2

!
p1/2 sinh~2s IIhII !

2s II
3/2ZII

$erf i @~z1hII !As II#

1erf i @~12hII !As II#%, ~4.10!

C2~z!5E
21

z

@P2~z8!2^P2& II#e
s II~z8

212hIIz8!dz8

5
3

4s II
H es II~z

212hIIz!~z2hII !1es II~122hII !~11hII !

2es II~12hII
2

!
p1/2@cosh~2s IIhII !2hII sinh~2s IIhII !#

s II
1/2ZII

3@erf i @~z1hII !As II#1erf i @~12hII !As II##J ,
~4.11!

^P1& i5
es i sinh~2s ihi !

s iZi
2hi , ~4.12!
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^P2& i5
3es i@cosh~2s ihi !2hi sinh~2s ihi !#

2s iZi

1
3hi

2

2
2

3

4s i
2
1

2
~ i5I,II !. ~4.13!

First, we shall compare the foregoing results with tho
previously given. We have obtained in Refs.@6,7# by solving
the infinite hierarchy of differential-recurrence relations f
the averaged spherical harmonics, the exact analytical s
tion for the relaxation timet2 for the nonlinear rise transien
of the dynamic Kerr effect fornonpolar polarizablemol-
ecules, which is~in the notation of Ref.@7#!

t25
45ptD

64M ~ 1
2 ,

3
2 ,s!M ~ 3

2 ,
7
2 ,s!

(
n51

` S 2
s

2 D 2n22

3
~4n11!G~2n!M2~n1 1

2 ,2n1 3
2 ,s!

~2n11!G2~2n1 3
2 !

. ~4.14!

HereG(z) is the gamma function@17#, andM (a,b,z) is the
confluent hypergeometric~Kummer! function defined as@17#

M ~a,b,z!511
a

b

z

1!
1
a~a11!

b~b11!

z2

2!

1
a~a11!~a12!

b~b11!~b12!

z3

3!
1••• ,

s5
~a12a2!F0

2

2kT
,

anda1 anda2 are the components of the electric polarizab
ity parallel and perpendicular to the axis of symmetry of t
molecule. We remark that all the confluent hypergeome
functions appearing in Eq.~4.14! may be expressed in term
of the more familiar error function of imaginary argume
erf i (x). In particular~@18#, pp. 580 and 581!,

M ~ 1
2 ,

3
2 ,z!5

1

2 S p

z D 1/2 erf i ~Az!,

M ~ 3
2 ,

7
2 ,z!5

15

8z2 F3ez2 312z

2 S p

z D 1/2 erf i ~Az!G .
Equations for the otherM functions occurring in Eq.~4.14!
may be obtained from Table 7.11.2 of Ref.@18#, and the
recurrence relations for the confluent hypergeometric fu
tion. In our notation the model considered in Refs.@6,7# cor-
responds to Eq.~4.8! for n52 with

hI50, s I50, hII50, s II5s, ~4.15!

where according to Eqs.~4.9!–~4.13! and ~4.15!,

F~z!5
erf i ~Asz!

2 erf i ~As!
2
z

2
, ~4.16!

C2~z!5
3

4s F zesz22es
erf i ~Asz!

2 erf i ~As!
G , ~4.17!
e

r
lu-

ic

-

^P2&05
3

4s F 2esAs

Ap erf i ~As!
21G2

1

2
. ~4.18!

The result of calculations of the correlation timet2 from Eq.
~4.14! is in complete agreementwith that predicted by Eqs
~4.8! and ~4.16!–~4.18! ~e.g., for s55 we obtained
t2/tD50.281 269... in both representations!. In Ref. @7# we
also evaluated the nonlinear dielectric and birefringence
transients for a more general model ofpolar and polarizable
molecules~the solution was obtained in terms of matrix co
tinued fractions!. The model corresponds to

hI50, s I50, hII5h, s II5s. ~4.19!

Here we have also complete agreement between the re
ation times yielded by both solutions.

Equation ~4.8! can also be applied to other nonline
problems of the dynamic birefringence and dielectric rela
ation considered by Morita and Watanabe@4,5#. In particular,
Eq. ~4.8! for

hI52hII ~or jI52jII!, sII5sI5s

yields the nonlinear dielectric relaxation time for a transie
process where a homogeneous electric fieldF0 applied to a
system of polar and polarizable particles for a time suffici
to allow the system to reach the equilibrium state fort,0, is
suddenly reversed att50 ~Fig. 1!. Furthermore, Eq.~4.8!
~for hIÞhII , sIIÞsI! gives the exact solution for the nonlin
ear birefringence and dielectric relaxation times when
strong homogeneous electric fieldF0 is suddenly applied to
the system where a Maxwell-Boltzmann distribution of t
orientations of particles has been established by another
mogeneous electric fieldF1.

Let us now suppose that the amplitude of the strong
field F0 is suddenly altered at timet50 and that, unlike in
Eq. ~4.19!, the value of the anisotropy parameters remains
unaffected, i.e., we assume

hIÞhII , sII5sI5s. ~4.20!

FIG. 1. Nonlinear dielectric relaxation time in the form ln~t1/tD!
calculated from Eq.~4.8! as a function ofs and j for a suddenly
reversed dc field:jII52jI5j, andsII5sI5s.
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This form of the model is appropriate to the nonlinear diele
tric response of nematic liquid crystals and to the nonline
magnetic response of an assembly of single domain fer
magnetic particles, wheres is mainly determined by the
crystalline ~or shape and magnetic! anisotropy rather than
theexternal field, in contrast to nonlinear dielectric and Ker
effect relaxation of an assembly of permanently polar a
polarizable molecules. The linear response of this model h
been evaluated elsewhere@13,16# ~this corresponds to an in-
finitesimal change in amplitude ofF0!. The step-on, step-off,
and ac linear responses are now entirely determined
the equilibrium dipole autocorrelation functionC1(t)
5^cosq~0!cosq(t)&02^cosq~0!&0

2 @13#, where

^~* !&05

E
0

p

~* !es cos2 q1j cosq sin qdq

E
0

p

es cos2 q1j cosq sin qdq

.

In particular, the relaxation timet1
lin of the linear response

step-off relaxation functionf 1
lin(t)}C1(t) is @16,21#, cf. Eq.

~1.6!,

t1
lin5

2tD
^cos2 q&02^cosq&0

2 E
21

1 e2sz22jz

12z2

3F E
21

z

~z82^cosq&0!e
sz821jz8dz8G2dz,

~4.21!

where ^cosq~0!&05^P1&0 and ^cos2 q~0!&05~2^P2&011!/3
may be readily extracted from Eqs.~4.12! and~4.13!, respec-
tively. Equation~4.20! may be obtained from Eq.~4.8! by
writing jI2«5jII , and proceeding to the limit«→0. Alterna-
tive methods of derivation of Eq.~4.20! are given, for ex-
ample, in Refs.@19–21#.

The results of our calculations of the nonlinear step r
sponse relaxation timet1 and comparison with those of the
linear response are given in Figs. 2–4: the relaxation time
the rise transient as a function ofs for various values of the

FIG. 2. ln~t1/tD! calculated from Eqs.~4.8! and ~4.19! as a
function of s for hI50.1→hII50.15 ~curve 1!, hI50.1→hII50.25
~curve 2!, hI50.1→hII50.5, ~curve 3!, andhI50.1→hII51 ~curve
4!.
-
r
o-

d
as

y

-

of

bias parameterh is shown in Fig. 2, and the linear and non
linear relaxation times for the rise and reverse decay tr
sients are shown in Figs. 3 and 4. It is apparent from Fi
2–4 that the relaxation process obeys an activation~Arrhen-
ius! law behavior~i.e., an exponential increase oft1 with
increasing barrier heights! in a restricted range of the pa
rametersj and s only. This may be explained as follows
The relaxation dynamics in the potential given by Eq.~4.1!
~which has in general two potential wells! is determined by
two relaxation processes. One relaxation~activation! process
governs the crossing of the potential barrier between t
positions of equilibrium by a current of particles. Anothe
process describes relaxation inside the wells. Potential~4.1!
becomes more and more asymmetrical with increasingj, and
the activation process is suppressed due to the depletio
the upper well@16#. This depletion is achieved at values o
the constant electric fieldF0 which are considerably smalle
than the value of a critical field at which the double we

FIG. 3. ln~t1/tD! calculated from Eqs.~4.8!, ~4.19!, and ~4.20!
as a function ofs for linear responsehII5hI2«50.1 ~«→0! ~curve
1!, nonlinear decay transienthI50.25→hII50.1 ~curve 2!, nonlin-
ear rise transienthI50.1→hII50.25 ~curve 3!, and linear response
hII5hI2«50.25 ~«→0! ~curve 4!.

FIG. 4. ln~t1/tD! calculated from Eqs.~4.8!, ~4.19!, and ~4.20!
as a function ofs for a further selection of values ofh: linear
responsehII5hI2«50.1 ~«→0! ~curve 1!, nonlinear decay transient
hI50.5→hII50.1 ~curve 2!, nonlinear rise transient
hI50.1→hII50.5 ~curve 3!, and linear responsehII5hI2«50.5
~«→0! ~curve 4!.
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structure of the potential disappears~this critical field is
given byj/2s51!. In the case of the strong bias field~j→`!,
when the potential~4.1! transforms to the single well poten
tial j cosq, we observe intrawell relaxation modes on
Similar results have been obtained for the linear respons
magnetic relaxation of single domain ferromagnetic partic
with high anisotropy barriers in the presence of a strong c
stant magnetic field following an infinitesimal change in th
field @13,16,21#. It is also apparent from Figs. 3 and 4 th
nonlinear relaxation times for the step-on~hI→hII! and the
reverse step-off~hII→hI! responses may differ considerab
in marked contrast to the linear response step-on and ste
solutions where according to Eq.~1.3! the relaxation behav
ior is characterized by thesamerelaxation time. In other
words, in linear response the rise and decay transients
mirror images of each other. One can also see in Figs. 3
4 that the nonlinear response relaxation times for the step
.

T.
in
s
-
t

off

re
nd
on

~hI→hII! and for the reverse step-off~hII→hI! responses are
always less than the linear response relaxation time for
infinitesimal change inhI , and are always higher than thos
for an infinitesimal change inhII ~for hI,hII!. This is due to
the greater contribution of intrawell relaxation modes to t
nonlinear relaxation time than to the linear one.

ACKNOWLEDGMENTS

One of us~Yu. P. K.! thanks the French Ministry of High
Education and Research for a financial assistance~high level
Grant PECO-CEI!. W.T.C. acknowledges the financial su
port of the Forbairt Research Collaboration Fund and
French Foreign Office. The partial support of this work
the Russian Foundation for Basic Research~Grant 96-02-
16762-a! is also gratefully acknowledged.
T.

l

s-
@1# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!.
@2# H. Risken,The Fokker-Planck Equation, 2nd ed.~Springer,

Berlin, 1989!.
@3# A. Morita, Phys. Rev. A34, 1499~1986!.
@4# A. Morita and H. Watanabe, Phys. Rev. A35, 2690~1987!.
@5# H. Watanabe and A. Morita,Advances in Chemical Physics,

edited by I. Prigogine and S. A. Rice~Wiley, New York,
1984!, Vol. 56, pp. 255–409.
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