
Completely Unanticipated Dynamic 
Adaptation of Software  

 

A thesis submitted to the  

University of Dublin, Trinity College,  

in fulfilment of the requirements for the degree of  

Doctor of Philosophy (Computer Science) 

 

John Keeney 

 

Distributed Systems Group, 

Department of Computer Science, 

Trinity College, University of Dublin. 

 

October 2004 

 



  

 ii

Declaration  
I, the undersigned, declare that this work has not previously been submitted to this or any 

other University, and that unless otherwise stated, it is entirely my own work.  

John Keeney  

___________________________________ 

May 2005 



  

 iii

Permission to Lend and/or Copy  
I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon 

request.  

John Keeney  

___________________________________ 

May 2005 

 



  

 iv

Acknowledgments  
 

Firstly, I must thank my supervisor Prof. Vinny Cahill, who prised this thesis out of me with 

his subtle but effective prodding. Thanks for the support and guidance over the years while 

still letting me get on with my procrastination. 

 

Thanks to Microsoft Research Ltd., for the happy days that comes from financial support, as 

Donal and myself ploughed the long furrow.  

 

Thanks to the Coyote team, Tilman, Peter, Jim, and Barry who introduced me to the big bad 

world of reflection, and brought metatypes to us all. In particular Barry for Iguana/J, without 

which this thesis would not have been possible. In addition thanks to Mads for his help and 

guidance with ALICE, and for his useful and insightful comments to improve the thesis. 

 

Thanks to the buckos in DSG for keeping me idle all these years, while I was keeping them 

idle too. I bet you guys won't read the rest of this thesis! 

 

Thanks to the Girlies (that includes Owen and Paul) for the sanity. 

 

Special thanks to my family for me, for the support, and the instilled desire to achieve. 

 

Most of all, thanks to Niamh for the "minds". I promise I'll come home and shave now. 



  

 v

Summary  
Dynamic adaptation of software behaviour refers to the act of changing the behaviour of 

some part of a software system as it executes, without stopping or restarting it. It is difficult 

to dynamically adapt software if the need for adaptation arises while the software is 

executing, and especially so if the program is compiled and the source code is unavailable. 

Ideally, it would be possible for adaptations to be applied to a running application without 

any anticipation of the adaptation itself, preparation of the location for that adaptation, or 

even anticipation of the need for some adaptation. Even with the best planning and foresight 

it is virtually impossible to anticipate at design and production stages all of the dynamic 

behaviour adaptations that may be required for a piece software, especially if the need for 

adaptation is triggered by unpredictable and erratic changes in the operating context, the 

application's resources and demands, and the users’ requirements. 

The need for dynamic adaptation arises in various circumstances, from the very simple 

desire to dynamically customise a piece of software to suit current needs, through to a 

necessity to continually evolve a long-running program as its requirements and operating 

context change. These adaptations may simply involve pre- or post-processing of 

operations, for example, to support consistency checking, through to dynamically adapting 

the core behaviours of an application as its operating context or requirements change, for 

example to support dynamic upgrading or repair of the system. While it may be necessary to 

adapt the core functional behaviours of an application, it may also be necessary to change or 

insert new non-functional behaviours that do not change what the software does, but rather 

how it does it. Examples here include dynamically inserting debugging or tracing 

statements, through to making some object in an application persistent or remotely 

accessible. To perform these changes it should not be necessary to restart the application, or 

indeed have access to the source code of the application since the core problem domain 

being modelled by the application has not changed.  



  

 vi

If dynamic adaptation is to be completely unanticipated, the management and control of the 

adaptation process must also be dynamically adaptable. It is unrealistic to expect an 

adaptation framework using a hard-coded, static, or inflexible approach to adaptation 

management, to perform adequately in a generalised manner. Only by decoupling the 

adaptation mechanism from the adaptation control, and dynamically specifying and adapting 

the adaptation control strategies, can completely unforeseen dynamic adaptation of running 

software become a realistic goal. This thesis provides an in depth discussion of 

unanticipated dynamic adaptation, introduces the term “completely unanticipated dynamic 

adaptation” to refer to adaptations where all properties of the adaptation can remain 

unanticipated until during runtime, and identifies the set of requirements that must be met to 

achieve this. 

This thesis presents the Chisel adaptation framework, and demonstrates that a general-

purpose, context-aware dynamic adaptation framework is achievable. This system can be 

used to perform almost any unforeseen behavioural adaptation without stopping the 

application, and without changing the application itself. In this system a human-readable, 

dynamically updatable policy script was chosen as the favoured approach to drive the 

adaptation mechanism in a responsive manner by monitoring changes in the user, 

application, and environmental context. The Chisel framework also demonstrates that 

behavioural reflection, using the managed but unforeseen dynamic selection of Iguana/J 

metatypes, is a valid and powerful technique for completely unanticipated dynamic software 

adaptation. In addition, the Chisel framework provides a structured mechanism to allow a 

user to inspect and probe the internal operation of compiled software without access to the 

software's source code to allow that software to be adapted or extended as appropriate. 

To evaluate Chisel and validate our claims, a number of examples and case studies are used, 

including the use of the Chisel framework to dynamically adapt an off the shelf network 

application, as it ran, to use ALICE, a middleware for mobile computing environments, and 

how, using an Iguana/J metatype to implement a snap-on non-functional behaviour to 

implement a naming mechanism for individual objects, those named objects can be 

individually adapted or queried as context sources.  



  

 vii

Contents 

TUCHAPTER 1 INTRODUCTION UT ............................................................................... 20 

TU1.1 Aims and objectivesUT.......................................................................................................21 

TU1.2 Completely unanticipated dynamic software adaptationUT ..........................................22 
TU1.2.1 Software adaptation and evolutionUT...........................................................................22 
TU1.2.2 Anticipation of the adaptation's attributes UT................................................................24 

TUAdaptation anticipated at design and production stageUT ................................................25 
TUAdaptation anticipated at compile-timeUT........................................................................25 
TUAdaptation anticipated at the start of runtimeUT...............................................................26 
TUAdaptation anticipated at load-timeUT..............................................................................26 
TUAdaptation anticipation during executionUT.....................................................................27 
TUSummary of anticipation of an adaptation's characteristicsUT..........................................27 

TU1.2.3 Completely unanticipated dynamic adaptation UT ........................................................28 
TUBut completely unanticipated dynamic adaptation must itself be anticipatedUT ..............28 

TU1.3 Motivation UT ......................................................................................................................29 

TU1.4 Dynamic adaptation using metatypes UT ..........................................................................31 
TU1.4.1 What is a metatype UT ...................................................................................................31 

TU1.5 Policy-based management of adaptationsUT ...................................................................32 

TU1.6 The Chisel adaptation frameworkUT ...............................................................................33 

TU1.7 General-purpose dynamic adaptation support UT...........................................................34 

TU1.8 ContributionsUT .................................................................................................................35 



  

 viii

TU1.9 Orthogonal research topicUT ............................................................................................36 

TU1.10 Thesis roadmap UT ...........................................................................................................37 

TUCHAPTER 2 RELATED WORK ON ADAPTABLE SYSTEMSUT ............................. 38 

TU2.1 Adaptation using reflective techniquesUT........................................................................39 
TU2.1.1 IguanaUT.......................................................................................................................40 

TUMetatypes and IguanaUT ...................................................................................................40 
TUIguana/JUT.........................................................................................................................41 
TUHow metatypes and Iguana influence this research UT......................................................42 

TU2.1.2 Java HotSwap UT...........................................................................................................44 
TU2.1.3 Javassist UT....................................................................................................................45 
TU2.1.4 DART UT.......................................................................................................................46 
TU2.1.5 KavaUT .........................................................................................................................48 
TU2.1.6 GuaranáUT ....................................................................................................................48 
TU2.1.7 MetaXa UT.....................................................................................................................49 
TU2.1.8 K-ComponentsUT .........................................................................................................50 

TU2.2 Adaptation using AOP techniquesUT ...............................................................................51 
TU2.2.1 AspectJUT .....................................................................................................................52 
TU2.2.2 JMangler UT...................................................................................................................53 
TU2.2.3 AspectWerkzUT ............................................................................................................54 
TU2.2.4 PROSE UT .....................................................................................................................55 
TU2.2.5 WoolUT.........................................................................................................................56 
TU2.2.6 TRAP/JUT.....................................................................................................................57 

TU2.3 Adaptable middlewareUT ..................................................................................................59 
TU2.3.1 DynamicTAO / 2KUT...................................................................................................59 
TU2.3.2 Next Generation Middleware at LancasterUT ..............................................................61 
TU2.3.3 ACT UT..........................................................................................................................64 

TU2.4 Policy or interpreted script driven adaptationUT .............................................................65 
TU2.4.1 Ponder UT ......................................................................................................................66 
TU2.4.2 GEM UT.........................................................................................................................67 
TU2.4.3 REI UT ...........................................................................................................................67 
TU2.4.4 CorrelateUT...................................................................................................................67 
TU2.4.5 CARISMAUT ...............................................................................................................69 



  

 ix

TU2.4.6 RAM UT ........................................................................................................................70 
TU2.4.7 M3UT ............................................................................................................................71 

TU2.5 OverviewUT ........................................................................................................................73 

TU2.6 ConclusionsUT ....................................................................................................................74 

TUCHAPTER 3 THE CHISEL FRAMEWORK, CONCEPT AND DESIGN UT ................. 77 

TU3.1 Objectives and requirementsUT........................................................................................78 
TU3.1.1 Requirements for completely unanticipated dynamic adaptationUT ............................78 

TULocation of an adaptation unanticipated until runtimeUT .................................................78 
TUManagement and control of an adaptation unanticipated until runtimeUT .......................79 
TUTiming of the application an adaptation unanticipated until runtimeUT ...........................79 
TUContents of an adaptation unanticipated until runtimeUT .................................................80 
TUSummary of requirements for completely unanticipated dynamic adaptationsUT............80 

TU3.1.2 The ability to inspect and identify internal parts of the softwareUT .............................81 
TU3.1.3 Demonstrating metatypesUT.........................................................................................82 

TU3.2 The Chisel adaptation mechanism: dynamic metatype associationUT..........................83 
TU3.2.1 What are metatypesUT ..................................................................................................83 
TU3.2.2 The use of metatypes for behavioural change UT ..........................................................84 
TU3.2.3 Adaptations using metatypes implemented using Iguana UT ..........................................86 
TU3.2.4 Introspection, probing, and profiling using metatypesUT.............................................89 
TU3.2.5 Metatype composition and metatype inheritanceUT.....................................................91 
TU3.2.6 Alternatives to Iguana and reflection for metatypesUT ................................................92 
TU3.2.7 Why use metatypes in the Chisel framework UT...........................................................93 
TU3.2.8 Consequences of the use of metatypes in the Chisel framework UT .............................94 

TUConsequences of the use of the Java programming language UT ......................................95 
TU3.2.9 Summary of the metatype model for dynamic adaptation UT .........................................95 

TU3.3 The design of the Chisel dynamic adaptation framework UT .........................................96 
TU3.3.1 The Chisel dynamic adaptation managerUT .................................................................96 
TU3.3.2 Why event-based adaptation management?UT .............................................................99 
TU3.3.3 Why have a policy based management approach?UT.................................................100 
TU3.3.4 How to find the object or class to adapt? UT ...............................................................102 
TU3.3.5 How is the new behaviour applied? UT .......................................................................104 



  

 x

TU3.3.6 Summary of the design and operation of the Chisel dynamic adaptation frameworkUT

.........................................................................................................................................104 

TU3.4 The Chisel event modelUT ...............................................................................................107 

TU3.5 The Chisel context model UT............................................................................................109 

TU3.6 Policy-based management in Chisel UT...........................................................................112 
TU3.6.1 Why use the Chisel policy languageUT ......................................................................112 
TU3.6.2 Alternatives to policy-based management of unanticipated adaptationUT .................113 
TU3.6.3 The Chisel policy languageUT ....................................................................................114 

TUSpecification of new eventsUT ........................................................................................116 
TUSpecifying rule conditionsUT ..........................................................................................118 
TUSpecification of new reactive rulesUT.............................................................................119 
TUSpecification of proactive rulesUT ..................................................................................120 
TUPassing parameters to metatypesUT ................................................................................120 

TU3.6.4 Summary of policy-based management in the Chisel architectureUT ........................121 

TU3.7 How context-aware general-purpose completely unanticipated dynamic adaptation is 
achieved UT ...............................................................................................................................122 

TU3.7.1 Unanticipated adaptation contents achieved UT ..........................................................122 
TU3.7.2 Unanticipated adaptation locations achieved UT .........................................................123 
TU3.7.3 Unanticipated adaptation control logic achievedUT ...................................................124 
TU3.7.4 Unanticipated adaptation timings achievedUT ...........................................................124 
TU3.7.5 General-purpose dynamic software inspection and adaptation achievedUT...............125 
TU3.7.6 Context-aware dynamic adaptation achievedUT.........................................................126 

TU3.8 ConclusionUT....................................................................................................................128 

TUCHAPTER 4 CHISEL FRAMEWORK IMPLEMENTATIONUT ................................. 129 

TU4.1 OverviewUT ......................................................................................................................129 

TU4.2 Event managerUT .............................................................................................................130 

TU4.3 Rule managerUT ...............................................................................................................132 

TU4.4 Behaviour managerUT .....................................................................................................136 

TU4.5 Service managerUT ..........................................................................................................137 



  

 xi

TU4.6 Named object storeUT ......................................................................................................138 

TU4.7 Context managerUT .........................................................................................................140 

TU4.8 Policy parser / policy managerUT ...................................................................................141 

TU4.9 Summary of the operation of the Chisel framework UT ...........................................................144 

TU4.10 The programmatic interface and the policy-based interfaceUT.................................146 

TU4.11 Attaching the adaptation managerUT ..........................................................................147 
TU4.11.1 In the application source codeUT..............................................................................148 
TU4.11.2 As a custom application launcherUT ........................................................................148 
TU4.11.3 As a statically assigned metatypeUT.........................................................................148 

TU4.12 Summary UT ....................................................................................................................150 

TUCHAPTER 5 USING THE CHISEL FRAMEWORK: CASE STUDIES AND 
EVALUATIONUT....................................................................................................... 151 

TU5.1 Evaluation criteriaUT.......................................................................................................151 

TU5.2 Case Study: The Chisel named object storeUT..............................................................153 
TU5.2.1 Motivation UT ..............................................................................................................154 
TU5.2.2 Design UT ....................................................................................................................154 
TU5.2.3 Implementation UT ......................................................................................................158 
TU5.2.4 Alternatives UT ............................................................................................................160 
TU5.2.5 Evaluation and discussionUT ......................................................................................161 
TU5.2.6 Wider applicability UT.................................................................................................163 
TU5.2.7 Summary UT ................................................................................................................164 

TU5.3 Case Study: Adaptation for mobile computing UT............................................................164 
TU5.3.1 Motivation UT ..............................................................................................................164 

TUWhat is mobile computing?UT ........................................................................................164 
TUMiddleware for mobile computing UT .............................................................................165 
TUDifficulties with applications and middleware for mobile computing UT .......................165 

TU5.3.2 ALICE UT ....................................................................................................................166 
TU5.3.3 Design UT ....................................................................................................................168 
TU5.3.4 Implementation UT ......................................................................................................168 



  

 xii

TU5.3.5 Alternatives UT ............................................................................................................172 
TU5.3.6 Further adaptationsUT.................................................................................................172 
TU5.3.7 Evaluation and discussion of the metatype modelUT .................................................174 
TU5.3.8 Evaluation and wider applicability UT.........................................................................175 

TU5.4 PerformanceUT.................................................................................................................175 

TU5.5 General discussionUT .......................................................................................................179 

TU5.6 Chapter summary UT........................................................................................................181 

TUCHAPTER 6 CONCLUSIONSUT .............................................................................. 182 

TU6.1 Overview of this thesisUT ................................................................................................182 

TU6.2 Contributions of the Chisel Project UT ...........................................................................183 

TU6.3 Further work UT ...............................................................................................................184 
TU6.3.1 The stability and security of adapted softwareUT.......................................................185 
TU6.3.2 Tool supportUT ...........................................................................................................185 
TU6.3.3 Metatype conflictsUT..................................................................................................185 
TU6.3.4 IguanaUT.....................................................................................................................186 
TU6.3.5 Policy conflicts UT.......................................................................................................186 
TU6.3.6 Other adaptation mechanismsUT ................................................................................186 
TU6.3.7 Use in a distributed environment UT ...........................................................................187 

TU6.4 ConclusionsUT ..................................................................................................................187 

TUREFERENCES UT ..................................................................................................... 189 
 



  

 xiii

List of Figures 
TUFigure 2.1.1.1 Iguana/J: Example MOP declaration, the ProtocolVerbose MOP UT .................41 

TUFigure 2.1.1.2 Iguana/J: Example meta object class, the ExecuteVerbose class UT...................41 

TUFigure 2.1.1.3 Iguana/J: Static MOP selection / metatype associationUT..................................42 

TUFigure 2.1.1.4 Iguana/J: Dynamic MOP selection / metatype associationUT ............................42 

TUFigure 2.1.4.1 Adaptive methods and reflective methods in DARTUT .....................................47 

TUFigure 3.2.1 Default operation of an intercepted method invocationUT ....................................87 

TUFigure 3.2.2 Before and after behaviours for an intercepted method invocationUT ..................87 

TUFigure 3.2.3 Redirecting and adapting an intercepted method invocationUT ............................87 

TUFigure 3.2.4 Iguana/J: metatype declarationUT..........................................................................88 

TUFigure 3.2.5 Iguana/J: Dynamic metatype association UT ..........................................................88 

UTFigure 3.2.6 A example of profiling intercepted object creation and method invocationsT ... 90U 

TUFigure 3.3.1 Overview of the Chisel Adaptation ManagerUT....................................................98 

TUFigure 3.3.2 Overview of the Chisel adaptation processUT .....................................................106 

TUFigure 3.4.1 The ChiselEventObject classUT ..........................................................................108 

TUFigure 3.4.2 Simple example of a dynamic event definitionUT...............................................108 

TUFigure 3.4.3 Simple of an event manipulation ruleUT .............................................................108 

TUFigure 3.5.1 Data representations of context variables and context alert conditionsUT ..........111 

TUFigure 3.6.1 Format of a reactive behaviour adaptation policy ruleUT....................................114 

TUFigure 3.6.2 Format of a reactive event manipulation policy ruleUT ......................................115 



  

 xiv

TUFigure 3.6.3 Format of a proactive behaviour adaptation policy ruleUT .................................116 

TUFigure 3.6.4 Format of a proactive event manipulation policy ruleUT ....................................116 

TUFigure 3.6.5 Format of a dynamic event specification ruleUT .................................................116 

TUFigure 3.6.6 Example dynamic event definitionUT .................................................................117 

TUFigure 3.6.7 Example reactive adaptation policy ruleUT .........................................................119 

TUFigure 3.6.8 Example reactive event manipulation policy ruleUT ...........................................120 

TUFigure 3.6.9 Example proactive adaptation policy ruleUT.......................................................120 

TUFigure 4.2.1 Key functions of the Chisel Event ManagerUT ...................................................131 

TUFigure 4.2.2 The Chisel "Eventmaker" dialogUT.....................................................................132 

TUFigure 4.3.1 Key functions of the Chisel Rule ManagerUT .....................................................133 

TUFigure 4.4.1 Key functions of the Chisel Behaviour ManagerUT ............................................136 

TUFigure 4.5.1 Key functions of the Chisel Service Manager UT.................................................137 

TUFigure 4.6.1 Key functions of the Chisel Named Object StoreUT ...........................................139 

TUFigure 4.7.1 Data representations of context variables and context alert conditionsUT ..........140 

TUFigure 4.7.2 The principal functions of the Chisel Context ManagerUT .................................141 

TUFigure 4.8.1 The principal operations of the Chisel policy parserUT ......................................142 

TUFigure 4.8.2 Data representations of policy rulesUT................................................................142 

TUFigure 4.8.3 The Chisel policy file viewer demonstrationUT ..................................................143 

TUFigure 4.9.1 The detailed operation of the Chisel dynamic adaptation managerUT ................145 

UTFigure 4.11.1 Example of code needed to start the Chisel dynamic adaptation framework T 147U 

TUFigure 4.11.2 The implementation of the ChiselLauncher classUT .........................................148 

TUFigure 4.11.3 Meta object class that initialises the Chisel adaptation managerUT ..................149 

TUFigure 4.11.4 The EnableChisel metatypes that initialise the Chisel adaptation managerUT..149 

TUFigure 4.11.5 Static association of the EnableChisel metatype with an application classUT ..150 

TUFigure 5.2.1 Association of the ChiselBaseLogging metatype with an application class to 

profile operation of all of its instancesUT .......................................................................155 



  

 xv

TUFigure 5.2.2 Filtered view of the Chisel webservice database containing profiling data about 

arbitrary application objectsUT .......................................................................................156 

TUFigure 5.2.3 Key functions of the Chisel Named Object StoreUT ...........................................157 

TUFigure 5.2.4 The MetaObjectCreateBaseLogging meta object classUT...................................158 

TUFigure 5.2.5 The MetaObjectExecuteBaseLogging meta object classUT ................................159 

TUFigure 5.2.6 Definition of the ChiselBaseLogging metatypeUT ..............................................159 

TUFigure 5.2.7 Association of the ChiselBaseLogging metatype with application class 

SomeServiceUT ...............................................................................................................159 

TUFigure 5.2.8 The MetaObjectCreateBaseLoggingEx meta object classUT ..............................162 

TUFigure 5.2.9 Definition of the ChiselBaseLoggingEx metatypeUT .........................................162 

TUTable 5.2.10: Time taken to access the Chisel named object storeUT .....................................163 

TUFigure 5.3.2 Definition of the DoAliceConnection metatype (MOP) classUT ........................169 

TUFigure 5.3.3 The MetaObjectCreateALICEConn meta object classUT ...................................169 

TUFigure 5.3.4 Enabling and disabling the DoAliceConnection metatype in a context-aware 

manner UT ........................................................................................................................170 

TUFigure 5.3.5 Detecting a network error by intercepting network operationsUT.......................171 

TUFigure 5.3.6 Explicitly firing the UsingGoodNet eventUT ......................................................171 

TUFigure 5.3.7 Disabling caching while disconnectedUT ............................................................173 

TUFigure 5.3.8 Automatic definition of events for context-aware adaptationUT .........................174 

TUTable 5.4.1: Time taken to initialise the Chisel adaptation managerUT ..................................176 

TUFigure 5.4.2: Policy directive to create and register a new event type UT ................................176 

TUFigure 5.4.3: An unconditional reactive adaptation policy ruleUT ..........................................177 

TUFigure 5.4.4: A reactive adaptation policy rule with a single field comparison as a condition T

.................................................................................................................................... 177U 

TUFigure 5.4.5: A reactive adaptation policy rule with a single method invocation in its 

conditionUT .....................................................................................................................177 

TUFigure 5.4.6: A reactive adaptation policy rule with a combination of comparisons as a 

conditionUT .....................................................................................................................177 



  

 xvi

TUTable 5.4.7: Time taken to parse Chisel policy directivesUT...................................................178 

TUTable 5.4.7: Time taken to evaluate triggered reactive adaptation policy rulesUT ..................178 



  

 xvii

List of Tables 
TUTable 1.1: Categorisation of anticipation of an individual adaptationUT ..................................24 

TUTable 1.2: Anticipation of the locations where particular adaptations will be appliedUT .........27 

TUTable 1.3: Anticipation of when particular adaptations will be appliedUT................................27 

TUTable 1.4: Anticipation of the control logic managing how a particular adaptation is appliedT

...................................................................................................................................... 28U 

TUTable 1.5: Anticipation of what a particular adaptation will doUT ............................................28 

TUTable 2.1.1 Summary of the adaptation characteristics of Iguana/C++ and Iguana/JUT ...........44 

TUTable 2.1.2 Summary of the adaptation characteristics of the Java Hotswap mechanismUT ....45 

TUTable 2.1.3 Summary of the adaptation characteristics of JavassistUT .....................................46 

TUTable 2.1.4.2 Summary of the adaptation characteristics of DARTUT......................................48 

TUTable 2.1.5 Summary of the adaptation characteristics of KavaUT ...........................................48 

TUTable 2.1.6 Summary of the adaptation characteristics of GuaranáUT ......................................49 

TUTable 2.1.7 Summary of the adaptation characteristics of MetaXaUT.......................................50 

TUTable 2.1.8 Summary of the adaptation characteristics of K-ComponentsUT ...........................51 

TUTable 2.2.1 Summary of the adaptation characteristics of AspectJUT.......................................53 

TUTable 2.2.3 Summary of the adaptation characteristics of JManglerUT ....................................54 

TUTable 2.2.4 Summary of the adaptation characteristics of AspectWerkzUT..............................55 

TUTable 2.2.5 Summary of the adaptation characteristics of PROSEUT .......................................56 

TUTable 2.2.6 Summary of the adaptation characteristics of WoolUT...........................................57 

TUTable 2.2.7 Summary of the adaptation characteristics of Trap/JUT .........................................58 



  

 xviii

TUTable 2.3.1 Summary of the adaptation characteristics of DynamicTAO and 2KUT ................61 

TUTable 2.3.2 Summary of the adaptation characteristics of OpenORBUT...................................64 

TUTable 2.3.3 Summary of the adaptation characteristics of ACTUT ...........................................65 

TUTable 2.4.4 Summary of the adaptation characteristics of CorrelateUT.....................................69 

TUTable 2.4.6 Summary of the adaptation characteristics of RAMUT ..........................................71 

TUTable 2.4.7 Summary of the adaptation characteristics of M3UT ..............................................72 

UTTable 2.5.1 Overview of adaptation anticipation in reviewed dynamic adaptation systemsT. 75U 

TUTable 2.5.2 Overview of the adaptation binding categories used in reviewed adaptation 

systemsUT .........................................................................................................................76 

TUTable 3.1.1 Summary of requirements to support completely unanticipated dynamic 

adaptation UT .....................................................................................................................80 

TUTable 3.1.2 Summary the requirements to enable introspection of arbitrary softwareUT..........82 

TUTable 3.1.3 Summary the requirement to demonstrate the use of metatypesUT ........................82 

TUTable 3.2.7 The four rules of metatype useUT ...........................................................................92 

TUTable 3.7.1 Meeting requirements in the Chisel dynamic adaptation frameworkUT...............127 

TUTable 5.1.1 Evaluation criteria for the Chisel dynamic adaptation frameworkUT...................152 

 



  

 

 
"In the struggle for survival, the fittest win out at the expense of their rivals 

because they succeed in adapting themselves best to their environment."  

 

Charles Darwin (1809 - 1882), The Origin of Species, 1859  

 



  

20 

Chapter 1 
INTRODUCTION 

This thesis is concerned with the study of unanticipated dynamic adaptation of software. In 

particular, it is concerned with completely unanticipated dynamic adaptation, whereby no 

part of the applied modification has been anticipated until after the software to be adapted 

has started executing. This thesis focuses on how this adaptation process can be controlled 

and managed at runtime. 

Chisel is a software adaptation framework that allows completely unanticipated dynamic 

adaptation. It supports the application of unanticipated adaptations, which perform 

unanticipated actions, in unanticipated locations, at arbitrary times during execution, and all 

in a controlled and managed manner. The managed application of these adaptations is 

accomplished via an interpreted adaptation policy script, written in a human readable 

declarative language. This policy script can be changed dynamically to support requirements 

unanticipated even during runtime. The adaptations are implemented as metatypes [125, 

139], an abstraction to describe "snap-on" software behaviours, which are effected using 

runtime behavioural reflection. 

This Chapter begins by introducing the problem of unanticipated dynamic software 

adaptation. It continues by laying out the requirements that must be satisfied before a system 

can be specified as supporting completely unanticipated dynamic adaptation. The Chapter 

then introduces some concepts that are applied in this thesis, including behavioural 

reflection, the use of metatypes as a dynamic adaptation technique, and policy-based 

adaptation management. The Chisel framework is then introduced as a proposed solution to 

the problem of unanticipated dynamic adaptation, and one that fulfils the identified 

requirements. Finally, a roadmap for the remainder of this thesis is introduced. 



  

21 

1.1 Aims and objectives 

This thesis aims to tackle the problematic requirement to anticipate software adaptations, 

even before the need for those adaptations becomes apparent. The objective of this thesis is 

to provide a structured way to perform managed adaptations of software, as the software 

runs, in a manner such that no aspects of any particular adaptation needs to have been 

anticipated prior to the requirement to perform those adaptations. The need to adapt 

software, especially at run time, usually only arises in response to a limited set of 

motivations. These may arise from the need to update or evolve a long-running system, the 

needs or resources of the user or higher-level software having changed, the needs or 

resources of the operating environment or supporting software having changed, or the desire 

to probe or debug the software in an experimental environment. 

The ability to adapt a software module dynamically makes that module flexible and 

extensible. Software made up of these adaptable modules is then more malleable for use in 

unanticipated environments, and can support unanticipated use cases. The need to perform 

these adaptations dynamically is generally not present in stable software that executes in a 

stable and closed environment, where changes can be anticipated, and unanticipated 

requirements for changes are few. In this case, if changes are required, these changes can be 

applied off-line in an easy to control manner. However, in an environment where these 

factors do not apply it may be necessary to change the software as it runs, because the 

requirements, state, or resources of the application, operating environment, or user may have 

changed in a manner that requires immediate adaptation. 

A mobile computing environment provides a prime scenario to show that this static model is 

not sufficient. In a mobile computing environment, the requirements and resources of the 

operating environment can change drastically, in an erratic and completely unanticipated 

fashion. In a mobile-computing environment, resources are usually limited, but it may be 

possible to dynamically add to or remove these resources on the fly. For example, a mobile 

computer may struggle with a very limited data connection, when without warning its user 

may hot-plug a network adapter, capable of massive bandwidth and very low latency. The 

user may just as suddenly remove this resource while it is being used. Standard adaptation 

models, e.g., the state and strategy patterns [55], whereby adaptations must be anticipated 

and embedded in the software's source code, cannot cope with such an environment. It is 

absolutely impossible to anticipate all possible adaptations to apply in a mobile computing 

environment. For this reason this thesis applies its results to the mobile computing 



  

22 

environment as a case study, but the reasoning remains the same for all adaptation scenarios 

where adaptations cannot be anticipated. 

As a secondary objective, this thesis also aims to prove the capabilities and explore the 

limitations of metatypes for dynamic adaptation of running software. It is intended to show 

that this framework can use runtime behavioural reflection to adapt arbitrarily compiled 

software, even in ways that had not been foreseen at design time, compile time, or even after 

the application started executing. The Chisel policy-based management mechanism 

demonstrates how the unanticipated application of these adaptations can be dynamically 

managed in either a reactive or proactive manner. This is achieved using a high-level, user-

readable, declarative policy script that can be dynamically updated, thereby allowing 

completely unforeseen personalisation, extension, or just examination of any arbitrary code.  

1.2 Completely unanticipated dynamic software 
adaptation 

This section provides some background into the area of software adaptation, and the varying 

degrees to which particular adaptations must be anticipated. This section concludes by 

introducing the concept of completely unanticipated dynamic adaptation.  

1.2.1 Software adaptation and evolution 

Before addressing the degrees to which software adaptation must be anticipated, software 

adaptation methods and software adaptations themselves must be discussed. "Adaptable 

systems" are defined as dynamically configurable systems, whereby the systems' 

configurations can be changed over time at runtime, whereas "adaptive systems" (called 

"self-adaptive systems" in [113]) are dynamically configurable systems that are responsible 

for changing their own configuration or behaviour during runtime [31]. Adaptive systems 

must decide how and when to execute reconfiguration operations on themselves. If the 

decision about when to perform adaptations are made by the systems themselves, it is not 

possible to adapt at runtime in an unforeseen manner because of the lack of a-priori 

knowledge about unanticipated changes. If the decision to adapt and the adaptation itself 

come from outside the system (adaptable system) it must be possible to modify at runtime 

the adaptation management logic, thereby handling unforeseen adaptation requirements 

[45]. A system can be both a self-adaptive system and an adaptable system if it performs 

self-adaptation but this adaptation process can be altered, or new individual adaptations can 



  

23 

be added at runtime, by some external source, for example, the system user [45]. 

Dynamically configurable systems can be either behaviourally closed dynamic systems, 

whereby all behaviour changes are built into the system, or behaviourally open dynamic 

systems, whereby new behavioural changes can be added [112]. If a system is to provide a 

mechanism to support the dynamic application of unanticipated adaptations, in response to 

unanticipated requirements at runtime, it must be a behaviourally open adaptable system, 

with an interface to support external changes to the adaptation logic.  

A proposed taxonomy is introduced in [18], describing software adaptation tools and 

techniques based on four categorising features, when, where, what, and how. “When” 

describes the temporal properties of the changes supported, including when the adaptations 

are applied. “Where” describes the location where adaptations can be applied, which parts of 

the target system are changed, and what mechanisms are needed to apply the adaptations at 

those locations. “What” describes the types of adaptations that are supported and what 

attributes of the target system are adapted as the adaptation is applied. “How” includes a 

description of the control and management support for the adaptations. 

This thesis will use the when, where, what, and how categorisation above, not just to 

describe adaptation tools and methods, but to describe individual adaptations or 

modifications themselves. If a particular adaptation is to be applied to a software system, 

that adaptation can be described in terms of when it is designed and when it is applied, 

where it is applied and the mechanism used, what is the nature of the adaptation and what 

aspect of the system is changed, and the management support and control mechanisms that 

handle and guide the application of that individual adaptation.  

For example, a static adaptation of adding a new behaviour to an application by changing 

the source code of an application and recompiling it, can be classified according to the 

when, where, what, and how categorisation. When the adaptation is applied is given as 

design time, or pre-compile time. Where the adaptation is applied is defined by where in the 

source code the change was made and what was affected. What the adaptation does is 

defined by the change that was made by the new source code. How the change is managed is 

described by the control logic embedded in the application that controls the use of that 

newly added behaviour, and by stating that it was the programmer who made the logical 

decision to change the code to add the new behaviour in response to some requirement.  



  

24 

1.2.2 Anticipation of the adaptation's attributes 

If a particular software adaptation can be described in terms of the four properties above, 

then the degree to which that adaptation is anticipated refers to the anticipation of the nature 

of the adaptation (what), the anticipation of the location of the adaptation (where), the 

anticipation of when the adaptation is written and applied (when), and the anticipation of 

what control and supports manage the application of the adaptation (how), as described in 

table 1.1. To date it has proved difficult to define what exactly "unanticipated" refers to in 

terms of software adaptation, reconfiguration, or evolution, since all adaptations must be 

anticipated at some time, and conversely, all adaptations must remain unanticipated until 

some point [87]. A popular understanding of "unanticipated" is that which has not been 

foreseen at design time [18, 99]. "Unanticipated" software adaptation can also be 

understood to mean software adaptations that are not anticipated until the execution of that 

software is started [125]. Anticipation of adaptation can also be linked to preparation for 

adaptation by stating that a change is unanticipated if that change is "possible without [the] 

encoding of proper hooks in prior versions of the changed software" [87]. Anticipated 

software change is caused by expected changes in requirements, so the adaptation can be 

considered and prepared before it is needed, whereas, unanticipated software change is 

caused by unexpected requirements change, so it is impossible to predict or prepare the 

adaptation or its location before the requirement for the change occurs [99]. Instead of 

settling for one definition of anticipation, this thesis will discuss the degrees to which the 

four characteristics of individual adaptations described above can each remain unanticipated 

until different stages in the lifetime of a software entity. The different stages discussed are: 

the design and production stages, compile time, start of runtime, load time, and during 

runtime. 

• When must the contents of the particular adaptation be anticipated or prepared? 
(anticipation of what the adaptation does) 

• When must the timing of the application of the particular adaptation be anticipated or 
stated? (anticipation of when the adaptation is applied) 

• When must the location at which the particular adaptation is applied be anticipated or 
prepared? (anticipation of where the adaptation is applied) 

• When must the management of the application of the particular adaptation be 
anticipated or prepared? (anticipation of how the application of the adaptation is 
managed) 

Table 1.1: Categorisation of anticipation of an individual adaptation 



  

25 

While the categorisation given in table 1.1 above was chosen because of the relative 

independence from each other, there may appear to be some overlap between the different 

categories of anticipation. For example, when an adaptation is applied is generally 

dependent on the contents of adaptation control directives, but the separation between 

“how” and “when” becomes clear when considering when the control directives must be 

anticipated or prepared and the need to anticipate exactly when an adaptation is applied. In 

addition, if the control directives are specified in a manner to be dependent on some 

combination of unanticipated context, then the time at which that adaptation is applied is 

itself unanticipated. In a similar manner, the location at which an adaptation is applied can 

be tightly bound to what the adaptation does. This is particularly the case where the 

adaptation is prepared to address a particular functional requirement and so must be 

positioned where that requirement can be addressed. However, in the case of a general-

purpose or non-functional adaptation, what the adaptation does and where it is applied may 

be independent, and so the need to anticipate what adaptation does should be independent of 

any anticipation of where that adaptation will eventually be applied. 

Adaptation anticipated at design and production stage 

Adaptation anticipation at design and production stages occurs if the adaptation, the location 

of the adaptation, or its timing or control mechanism is prepared as the code of the software 

is designed and written. Here the adaptation or some preparation for that adaptation is 

embedded directly in the application design. For example, if the location for a possible 

adaptation must be prepared, even if the adaptation that will be applied at that location can 

remain unanticipated, or, a system anticipates a number of adaptations or strategies, but the 

selection of which adaptation will be applied is left until some later stage, then these 

systems do not support unanticipated adaptation. Examples include the State or Strategy 

design patterns [55], where the ability to dynamically adapt the software, and the adaptation 

strategies themselves, are designed into the application software. 

Adaptation anticipated at compile-time 

The requirement for some aspect of an adaptation to be anticipated at compile-time arises 

where access to the source code of the software is required. This arises where the already 

written source code must be viewed or recompiled either to include the adaptation, or to 

support the adaptation. Examples here include systems that pre-process source code or 

require language extensions to be used. Several adaptation systems, as described later in 

Chapter 2, incorporate some form of adaptation anticipation at this stage. Example systems 

include IguanaC++ [139], AspectJ [162], and Correlate [73, 74, 128, 129, 154]. 



  

26 

Adaptation anticipated at the start of runtime 

If some aspect of an adaptation remains unanticipated until just before runtime, that property 

of the adaptation can be specified at the start of program execution. For example, this is the 

case where the behaviour of an application can be adapted to individual circumstances each 

time it is executed, for example as seen with applications that use command-line options. 

Examples of systems that require anticipation of aspects of adaptations at this stage include 

DynamicTAO [90, 91, 132], static metatype association in Iguana/J [125-127], and Kava 

[159, 161].  

In this situation, unless the adaptation aspects are specified for later use by a runtime 

adaptation manager, most of the properties of the adaptation will necessarily have been 

anticipated and prepared at an earlier stage and have already been bound into the application 

source code or binary structure. 

Adaptation anticipated at load-time 

Anticipation of adaptation at load-time refers to where the adaptation, its location, or its 

timing or control mechanisms are prepared as some part of the program is loaded into a 

runtime system. In these cases, it may be the location of the adaptation is prepared by 

adding hooks for later binding, or the adaptation itself is statically bound into the program 

code. In some cases the application to be adapted may already be executing for some time, 

as with delayed class-loading in Java or explicit loading of dynamically linked libraries 

(DLLs), but load-time may also occur just as the application starts, as happens with some 

system classes in Java or with implicitly loaded DLLs. The adaptation binding mechanism 

may also operate at this time as seen with customised classloaders as used in Kava [159, 

161] and Javassist [24, 26], dynamic linking of DLLs as used in K-Components [44, 45], or 

by making use of the JIT compiler interface as seen in Iguana/J [125-127]. 

Typically, adaptations, or aspects of the adaptations, that are applied at this stage are of a 

static nature, as seen in Kava [159, 161] and Javassist [24, 26]. This arises because once 

loading of a software module has occurred; it is difficult to unload or reload that module 

without consistency and state maintenance issues becoming a major concern. To do so 

would require that all links or handles to the loaded module be monitored so that the module 

can only be reloaded when no handles exist, or handles or links to the old module are 

changed to those of the newly loaded module in a managed and consistent manner. 



  

27 

Adaptation anticipation during execution 

In this case, some aspect of the adaptation to be performed remains unanticipated until the 

target software is running. Many systems that support dynamic adaptation, and all systems 

supporting unanticipated dynamic adaptation, leave some property of the adaptation 

unanticipated until during the execution of the application to be adapted. As can be seen 

from the adaptation systems described in Chapter 2, all systems that support unanticipated 

dynamic adaptation in this manner must have some runtime controlling mechanism or 

metalevel manager linked into the application or its execution environment. This is 

necessary to support the unanticipated characteristics of the adaptation. Typically the 

unanticipated characteristics of the adaptation must be specified from outside the 

application, since if it was specified from within the application, it would necessarily have 

been anticipated and have support for that aspect of the adaptation already built into the 

application. 

Summary of anticipation of an adaptation's characteristics 

This thesis will use the categorisations described above to classify the degrees to which 

individual adaptations are anticipated. Table 1.2 below provides a summary of the degrees 

to which the location that individual adaptations are applied must be anticipated.  

Design / 
production time 

Hooks for the particular adaptation must be designed into the application at particular 
locations.  

Compile / link 
time 

Hooks to support adaptations at particular locations are added by processing the application 
source code at or before compile time. 

At or before start 
of execution 

Before the application is executed, hooks are inserted into the application at particular 
locations at a binary level to support adaptations. 

Loadtime As a module is loading into the executable system, hooks are inserted at set locations to 
support adaptations. 

During runtime Hooks are added dynamically at runtime so the locations of possible hooks need not be 
specified beforehand, or hooks have already been added at a very large number of locations. 

Table 1.2: Anticipation of the locations where particular adaptations will be applied 

Table 1.3 below outlines how the timing of the adaptation's application can be anticipated. 

Design / production 
time 

Code defining the timing of when an adaptation is applied must be programmed into the 
application at the production stage. 

Compile / link time Source code is required or reworked to define when an adaptation will be applied.  
At or before start of 
execution 

When the adaptation is applied must be specified before or at runtime, perhaps by 
changing the application executable itself, or as a command line option. 

Loadtime When the adaptation is applied must be specified as the target module is loaded into the 
executable system. 

During runtime An adaptation can be applied at any time as the target application is executing. 

Table 1.3: Anticipation of when particular adaptations will be applied 



  

28 

Table 1.4 follows with a summary of how the control logic that is used to manage the 

application of an adaptation can be anticipated. 

Design / production 
time 

The logic controlling the application of particular adaptations is designed into the target 
application itself. 

Compile / link time The target application's source code is required to manage the application of an 
adaptation, or the source code is preprocessed to contain the adaptation's control logic at 
compile time. 

At or before start of 
execution 

The control logic of how the adaptation is applied must be specified before or at runtime, 
perhaps using a static initialisation script or command line option. 

Loadtime The control logic of how the adaptation is applied must be specified before or as the 
target module is loaded into the executable system, perhaps by weaving adaptation logic 
into the target module itself. 

During runtime Adaptation management directives can be specified at any time as the target application 
is executing. 

Table 1.4: Anticipation of the control logic managing how a particular adaptation is applied 

A synopsis of when the contents of an adaptation must be anticipated or prepared is given in 

table 1.5 below. 

Design / production 
time 

The adaptation must be hard-coded into the target application. 

Compile / link time The adaptation is statically linked into the target application, or the source code of the 
adaptation target is required to write the adaptation module. 

At or before start of 
execution 

The adaptation must be specified before the target application begins executing, perhaps 
because the execution system cannot support adding new modules at runtime. 

Loadtime The adaptation must be specified before or as the target module is loaded into the 
execution system, perhaps because the adaptation is statically bound to the target module 
and new adaptations cannot be added. 

During runtime New adaptations can be added and bound at anytime as the target application is 
executing. 

Table 1.5: Anticipation of what a particular adaptation will do 

1.2.3 Completely unanticipated dynamic adaptation 

The thesis argues that an individual adaptation is completely unanticipated only if the nature 

of what the adaptation does (what), the location where the adaptation is applied (where), the 

specification of when the adaptation is applied (when), and what control logic manages the 

application of the adaptation (how) can all remain unanticipated and unprepared until after 

the system being adapted has started executing. We introduce the term "completely 

unanticipated dynamic adaptation" to refer to dynamic software adaptation where all of 

these aspects of each adaptation to be applied can remain unanticipated until during the 

execution of the software to be adapted. 

But completely unanticipated dynamic adaptation must itself be anticipated 

Since all aspects of completely unanticipated dynamic adaptations remain unanticipated 

until during execution, the execution system will need some form of runtime support to 



  

29 

coordinate the application of these individual unanticipated adaptations. Only the 

methodology and tools to support individual completely unanticipated dynamic adaptations 

must be present, so only the need to support completely unanticipated dynamic adaptation at 

runtime must be anticipated at or before runtime. Therefore, this thesis argues that requiring 

a runtime adaptation controller, which may be combined or associated with the application 

at or before runtime, does not break the requirement of completely unanticipated dynamic 

adaptation, specifically that all aspects of the individual adaptations can remain 

unanticipated until during execution. 

1.3 Motivation 

Section 1.2 has discussed completely unanticipated dynamic adaptations in detail in terms of 

how a dynamic adaptation can be termed “completely unanticipated” if the location of the 

adaptation, what the adaptation does, where the adaptation is to be applied, and when the 

adaptation is applied, can all remain unanticipated until after the target software has started 

execution. However, the reasons why a user would want to apply such an adaptation have 

not been discussed. The primary motivation for completely unanticipated dynamic 

adaptations is where the need for an adaptation does not become apparent until after the 

target software has started execution, but stopping the software for repair or extension, and 

then restarting it, is undesirable or inappropriate. In these circumstances, all of the 

information about what a particular adaptation is required for, where it is required, how or 

when it should be applied, simply cannot be known or anticipated before runtime, or before 

the adaptation is needed. 

Completely unanticipated dynamic adaptations are particularly useful where adaptations are 

required as hotfixes for long running applications, or in circumstances where high 

availability requirements dictate that the software must be adapted but restarting the 

application or applying adaptation other than during runtime is not appropriate. This may be 

the case where a running application has accumulated dynamic state that would be difficult 

to restore if the application was stopped for adaptation and then restarted. This is also the 

case for applications with difficult startup or shutdown procedures or would require 

restarting other software depending on the target software. Unanticipated dynamic 

adaptation can also be used for dynamic error recovery where shutdown, fix, and restart 

would be unavoidable. 



  

30 

In an environment with frequent context changes it may also be inappropriate to stop and 

restart the application, since this could be a frequent or erratic occurrence, so the adaptations 

must be applied dynamically. In such an environment it is likely that the required 

adaptations may be unanticipated as the need for the adaptation may be unanticipated. This 

is particularly true for mobile computing where the user’s, application’s and environment’s 

state, context, and requirements can all change in unanticipated ways, to values which could 

not have been foreseen prior to execution. 

This leads on to the motivation that that an unprepared piece of software could be made 

context-aware. While this would be beneficial for software that is already dynamically 

adaptable, this would be particularly beneficial for software where both dynamic adaptation 

and the context-aware triggering of those adaptations were unanticipated prior to runtime, 

thereby adding flexibility and value to that software. Such unanticipated dynamic 

adaptations could also be valuable to user by allowing the software to be dynamically 

customised in an unanticipated manner, thereby empowering the user.  

While the need to inspect and probe a piece of running software is itself a key requirement 

for unanticipated dynamic adaptation, such probing and profiling behaviours can themselves 

be considered adaptations. Ideally such probing and profiling of the software should not 

actually disrupt the software being probed since that would affect the fidelity of the 

observations, but the application of such probing or profiling mechanisms to an unprepared 

piece of software is indeed a change to the designed behaviour of that software as a whole. 

If the profiling behaviours are treated as unanticipated adaptations, to be dynamically 

applied and removed in an unanticipated manner, then different parts of the software can be 

probed as the need arises. This would be useful for debugging, monitoring or auditing, or 

testing. It could be used during the development process of the software where testing, 

profiling, debugging, and fixing is performed in an iterative manner. It could also be used at 

runtime to locate bottlenecks or hotspots that require streamlining, particularly where 

accumulated state is of importance.  

While completely unanticipated dynamic adaptation could be used to circumvent security 

measures built into the software, as mentioned in section 1.9 later in this chapter, completely 

unanticipated dynamic adaptations could also be used by an administrator to audit or control 

access to the software. For example, this could be achieved by dynamically allowing or 

disallowing certain method calls to certain users, or, checking the value of parameters or 

other contextual state before allowing an operation to proceed. 



  

31 

1.4 Dynamic adaptation using metatypes 

A reflective computational system is one that reasons about its own computation [144]. This 

is achieved by the system maintaining a representation (metadata) of itself that is causally 

connected to its own operation, so that if the system changes its representation of itself, the 

system adapts [95]. With behavioural reflection in an object-oriented system [52], the 

reflective system reasons about and adapts its own behaviour by associating meta objects 

with the objects in the application. In a reflective system, the communications between the 

meta objects and base objects take place through a set of well-defined interfaces, referred to 

as that system's meta object protocol (MOP) [83]. The key advantage of runtime 

behavioural reflection is that this introspection and adaptation of the base-level behaviour 

can be performed dynamically at runtime. 

1.4.1 What is a metatype 

An object’s type will describe the functional behaviours that are directly related to the part 

of the core application domain being modelled by that object. Object metatypes describe 

behaviours that are not directly related to the part of the core application domain being 

modelled by that object. Schäfer [139] introduced the concept of a metatype as a 

characterisation of an object’s object model, and as such its non-functional behaviour. 

Redmond [125] defines a metatype by stating that "the metatype of a class or object 

represents some coherent internal behaviour change from its original source code 

behaviour", i.e., a behavioural change applied to the class or object. An object’s metatype 

may be orthogonal to its type since the behaviours described in metatypes are not those 

inherent behaviours of the entity being modelled by the object. Objects of a single type may 

have multiple metatypes associated with them. Several objects of different types may have 

the same metatype associated with them.  

Examples of metatypes include: verbosity or tracing, remote accessibility, persistence, fault 

tolerance, debugging, or optimisation. Adding persistence behaviour to an object, without 

regard to the object's data, interface or behaviour, does not change its type, but rather its 

metatype.  

A metatype may change the functional behaviour of the base object with which it is 

associated, or may provide an additional non-functional behaviour that is associated with an 

object. To achieve this, the metatype may need to access application and type information 

about the object, or its operating environment, from the running system. For example, to 



  

32 

profile the operation of an object, its associated metatype will need to be informed when that 

object is accessed. It is preferable that this access happens transparently to the objects in the 

system, so the objects' class can be written in a manner completely unaware of any metatype 

that may be applied to it. Making use of a runtime reflective model, using a meta object 

protocol (MOP) is a prime candidate for that interface [139]. However, a runtime reflective 

model is not the only mechanism that could be used to implement metatypes. Chapter 2 

describes a number of adaptive techniques that could be leveraged to implement the 

metatype model. 

This thesis aims to discuss and evaluate how the association of new metatypes to application 

objects and classes can be exploited to adapt the behaviours of those classes and objects. In 

particular, this thesis will focus on the dynamic association of metatype with classes and 

objects in order to perform dynamic adaptation. This thesis will also demonstrate how these 

dynamic adaptations can be applied in a completely unanticipated manner, as requirements 

for these unanticipated adaptations become apparent during the execution of an application. 

1.5 Policy-based management of adaptations 

Many traditional adaptable systems are composed of a single adaptation manager that is 

responsible for the entire adaptation process; i.e. monitoring, adaptation selection 

intelligence and performing the actual adaptation. Since the intelligence to select appropriate 

adaptations and the mechanism to perform these adaptations are embedded directly within 

the adaptation manager, this type of system becomes inflexible and inappropriate for general 

use. By decoupling the adaptation mechanism from the adaptation manager, and removing 

the intelligence mechanism to select or trigger adaptation, the adaptation manager becomes 

more scalable and flexible. Policy specifications maintain a very clean separation of 

concerns between the adaptations available, the adaptation mechanism itself, and the 

decision process that determines when these adaptations are performed.  

Policy specification documents are usually persistent text-based declarative representations 

of policy rules that ideally can be read, understood and generated by users, programmers 

and applications. A policy rule is defined as a rule governing the choices in behaviour of a 

managed system [35]. Informally, a policy rule can be regarded as an instruction or 

authority for a manager to execute actions on a managed target to achieve an objective or 

execute a change.  



  

33 

An adaptation policy rule, in the form of a positive obligation policy rule, is usually made 

up of an event specification that triggers the rule, which is often fired as a result of a 

monitoring operation, an action to perform in response to the trigger, and a target object that 

is part of the managed system upon which that action is performed [35]. Many policies will 

also contain some restrictions or guards confining the rule action to appropriate occasions. 

This event-condition-action (ECA) format is standard for rule-based adaptation systems [33-

35, 44, 45, 47, 67, 68, 78, 79, 97, 98, 104, 120, 143]. A policy-based adaptation 

management system is usually responsible for monitoring these events, evaluating the 

conditions and initiating the management action on the targeted managed object. In a policy-

based dynamic adaptation system it should be possible to edit the rule set and have them re-

interpreted to support the dynamic addition of new rules or changes in policy.  

A policy-based adaptation management model, with dynamically updateable policy 

specifications, was seen as an ideal mechanism to drive a general-purpose dynamic 

adaptation framework. The use of policy-based management in the Chisel project is 

introduced below, and further detailed in Chapters 3 and 4. 

1.6 The Chisel adaptation framework 

Chisel is an adaptation framework that supports completely unanticipated dynamic 

adaptation of compiled Java applications. At runtime, an adaptation manager performs 

dynamic adaptations, implemented as dynamic metatype associations. This adaptation 

process is controlled by an interpreted, dynamically updateable, declarative policy script, 

which contains arbitrary rules about how the system should adapt. Controlled by these 

adaptation rules, adaptations can be applied proactively, or triggered in response to context 

changes. Here context refers to the state, resources, and requirements of the operating 

environment, the application, and the user. These changes, observable as events, are 

intercepted by the adaptation manager and used to drive the adaptation process. The policy 

script, which contains both proactive adaptation directives and arbitrarily complex reactive 

rules, supports the completely unanticipated specification of control directives to manage 

the application of dynamic adaptations to named objects, interfaces and classes, all without 

access to the application source code. The design and implementation to the Chisel dynamic 

adaptation framework is described in detail in the following chapters of this thesis.  



  

34 

1.7 General-purpose dynamic adaptation 
support 

This thesis is focussed towards the study of unanticipated dynamic software adaptation in a 

“general-purpose” manner. The term “general-purpose” may be interpreted in numerous 

ways, but for this thesis it refers to adaptations are not limited in terms of applicability or 

function. Support for general-purpose adaptations can be discussed in terms of a number of 

dimensions: general-purpose application domains; general-purpose problem domains; 

independence from specific languages or runtime environments; and an absence of 

dependencies to either create, manage, or execute the adaptation. With respect to these 

discussion categories, adaptation for general-purpose application domains refers to 

adaptations that can be applied to a broad category of applications performing different 

tasks. Adaptation for general-purpose problem domains refers to adaptations that are not 

limited to solving a certain type of problem. General-purpose adaptations may be 

independent of the language or runtime environment for which the target software was 

produced, i.e., the adaptations can be written in different languages or operate in different 

runtime environments. To maintain generality, general-purpose adaptations should also have 

a small set of dependencies required by the adaptation mechanism or the adaptations 

themselves, whether at compile time, load time, or at the execution stage. These 

dependencies may refer to other software or systems required to create, support, manage, or 

execute the adaptation that is to be applied. 

This thesis is particularly focused towards generality in terms of arbitrary problem domains 

and application domains. The previous section has introduced a large set of problems for 

different applications that could be at least partially solved by support for completely 

unanticipated dynamic adaptation in a context-aware manner. The Chisel framework, 

although implemented in Java, and dependent on the Iguana/J framework as a dynamic 

adaptation mechanism, was designed to be language independent where possible, and 

independent of the adaptation mechanism used.  

Completely unanticipated dynamic adaptation can only be accomplished if the mechanisms 

supporting the specification of what the adaptations do, where they are applied, how and 

when they are applied, are kept separate for the mechanisms that applies the adaptations. 

This means that the framework must be independent of both the particular adaptations and 

the particular target applications. Therefore, by providing a framework that supports 

completely unanticipated dynamic adaptations, it can be said that such a framework is a 



  

35 

general-purpose adaptation framework in terms of generality of application and problem 

domains. Assuming a flexible adaptation mechanism is used, the generality of the 

framework will only be limited by: the types of adaptations possible; the set of locations that 

can be identified or created and at which an unanticipated adaptation can be applied; the 

ability to specify how and when the adaptations should be applied; and the set of restrictions 

inherent in the adaptation mechanism itself.  

Chapters 3 and 4 of this thesis discusses the requirements that an adaptation framework 

must support in order to achieve support for completely unanticipated dynamic adaptations, 

and how meeting these requirements will affect the generality of the framework. Section 3.2 

in particular discusses the use of Iguana/J and the metatype model in the Chisel framework, 

and discusses the consequential loss of generality in terms of the dependence on Iguana/J, 

the types of adaptations supported, and language and environment dependencies.  

1.8 Contributions 

This thesis provides an in depth study into the area of unanticipated dynamic adaptation of 

compiled software. This study introduces the term “completely unanticipated dynamic 

adaptation” and clearly defines the set of requirements that must be met before an adaptation 

framework can support completely unanticipated dynamic adaptation. A detailed discussion 

is also provided to discuss current techniques for and research into unanticipated dynamic 

adaptation, specifically with respect to their support for completely unanticipated dynamic 

adaptation. 

As can be seen from the state of the art review in Chapter 2, there remains a lack of 

generalised support for completely unanticipated dynamic adaptation of arbitrary compiled 

software. A general-purpose solution, the Chisel framework, is provided, supporting 

completely unanticipated dynamic adaptation of general-purpose Java applications. An 

event-based mechanism to support context-aware adaptation is also provided. A declarative, 

human readable policy language is presented, which can used to create rules to dynamically 

drive the adaptation process. Using this policy language, specification of arbitrarily complex 

adaptation rules and event manipulation directives is supported, allowing unprecedented 

dynamic control and manipulation of software. Along with the policy script model, a 

programmatic interface is also provided. By use of the Chisel policy language and the 

Chisel programming interface dynamic and unanticipated contextual information can be 

exploited to both drive and constrain this adaptation process. 



  

36 

With Chisel comes the ability to inspect, profile, and debug the operation of any Java 

component as it runs, in a completely unanticipated manner even after the application has 

started executing. When combined with the ability to adapt the behaviour of almost any Java 

component using dynamic metatype association in an intelligent and reconfigurable manner, 

it is now possible, effective, and practical to dynamically apply unanticipated adaptations to 

any compiled Java software, without interrupting the application and without access to its 

source code. By using the Chisel framework the internal structure of third-party software 

can be examined, profiled, debugged, and adapted. The Chisel framework further challenges 

the "black-box" approach to software development by supporting the "open" manipulation 

of arbitrary software modules in a general-purpose manner. Such inspection and 

manipulation allows the combination, reuse, and tailoring of diverse software modules in 

ways unforeseen by their original designers.  

This thesis continues current research on metatypes, and demonstrates that the dynamic 

association of metatypes with base-level objects, classes and interfaces is an effective 

method for performing dynamic adaptation, both to change the application's functional 

behaviours, and to add new non-functional behaviours. This thesis demonstrates that 

runtime behavioural reflection is an impressive and powerful technique for software 

adaptation using dynamic metatype association. A number of powerful uses of this 

technique are presented throughout the thesis, but especially the re-implementation of the 

ALICE middleware framework [7, 62, 63, 156] as a metatype. The ALICE middleware 

framework was used to add support for intermittent network disruption to an off-the-shelf 

application, allowing it to be used without modification in a mobile computing environment. 

As a further case study, an object naming mechanism is also implemented using metatypes, 

allowing the individual objects to be used as part of policy rules, both as targeted managed 

objects, and within the conditions block of any policy statement.  

1.9 Orthogonal research topic 

One of the major issues with unanticipated dynamic adaptation, composition or swapping of 

software components is the lack of evaluation of the consequences of such actions. In this 

thesis, no attempt is made to discuss the stability of the adapted software after the adaptation 

has been applied. The Chisel framework is a powerful enabling technology, but like almost 

all enabling technologies, it can be used to disable its target, either by imprudent use or in a 

malicious manner. This remains an active and challenging research topic, but was 

considered to be outside the scope of this research.  



  

37 

1.10 Thesis roadmap 

The remainder of this thesis is organised as follows. Chapter 2 presents an in-depth state of 

the art review of dynamic software adaptation, classifying primarily the degrees of 

anticipation required by a representative sample of related research on software adaptation. 

The design of the Chisel dynamic adaptation is laid out in detail in Chapter 3, describing the 

key components of the framework. Chapter 4 describes a prototype implementation of the 

Chisel framework. Chapter 5 evaluates the Chisel framework by describing an in-depth 

case-study of the use of the Chisel framework to incorporate the ALICE middleware 

framework into a third party off-the-shelf application, adding support for intermittent 

network disconnection, thereby allowing it to be used successfully in a mobile-computing 

environment. Chapter 5 also describes how the Chisel framework was used to implement an 

extensive logging and profiling behaviour, and how this behaviour is used to support the 

dynamic naming of individual application objects in order that they can be dynamically 

adapted or probed. Finally, Chapter 6 provides some conclusions, summarises the 

contributions drawn from this research, and provides a list of interesting open issues that 

require further research. 



  

38 

Chapter 2 
RELATED WORK ON 

ADAPTABLE SYSTEMS 
This chapter provides some background on the research areas with which this thesis is 

concerned. The following sections analyse the most influential research in the area of 

dynamic software adaptation and adaptation management. Key areas of interest include 

dynamically adaptable software, unanticipated adaptation, reflective systems, and policy-

based management of adaptable software. The key influential systems are summarised with 

their relevance to this thesis discussed. Since the area of adaptable software is very wide 

ranging, the set of systems described is the set of most influential systems but is not an 

exhaustive list.  

The research discussed in this chapter is analysed specifically with respect to its relevance to 

the aims and objectives of this thesis. In this chapter, adaptable systems are primarily 

classified in terms of their support for completely unanticipated dynamic adaptation, and if 

the adaptation mechanism is implemented in an application-specific or general-purpose 

manner. Since this thesis is focused on the unanticipated dynamic adaptation of arbitrary 

software, this chapter also discusses support for adapting third-party compiled software 

without requiring access to the source code of that software. This chapter also discusses how 

the various adaptation mechanisms are managed and controlled, if the control logic can be 

dynamically specified, and the degree of separation between adaptation mechanisms and 

adaptation management. Since this thesis is not just concerned with unanticipated 

adaptation, but with unanticipated dynamic adaptation in particular, the dynamicity of the 

adaptation support provided is discussed in terms of when adaptations are bound into the 

target software and whether these adaptations can be removed or replaced. 



  

39 

A secondary objective of this thesis is to demonstrate the usefulness of metatypes as an 

adaptation technique. As previously discussed, a metatype is a behavioural change applied 

to a class or object. Metatype association allows an application to be modified by 

intercepting the operation of the application modules and redirecting those operations to an 

associated metatype, where those operations can be carried out under the control of the 

associated metatype. The associated metatype combines the desired behaviour of the 

application with the new behaviour embedded in the metatype, thereby adapting the 

application, without changing, replacing, or damaging any part of the application source 

code. Although introduced in the Iguana project as described later in this chapter, the 

metatype model can be implemented in many adaptation frameworks that support behaviour 

adaptation by association rather than replacement. The degree of support for the metatype 

model and adaptation by dynamic metatype association is discussed with respect to several 

of the adaptation mechanisms described in this chapter.  

The systems covered in this chapter fall into a number of discussion categories: systems that 

must be discussed in terms of their seminal contributions to a particular area, systems that 

could be used as a basis for parts of the Chisel framework, and systems that offer 

functionality comparable to a part of or the entire Chisel framework. Each system will be 

discussed in terms of their relevance to one or more of these categories. The discussion 

categories used in this chapter are intended to form the basis of an informal descriptive 

framework rather than act as a formalised taxonomic framework. As a result, the topics 

discussed in this chapter are discussed to differing degrees, mainly in terms of their 

differences to related or similar work, or to the Chisel framework. 

This chapter concludes with an overview of the systems described and a brief discussion on 

the open research questions that are tackled in this thesis. 

2.1 Adaptation using reflective techniques  

As discussed in Chapter 1, a reflective system is one that can inspect and adapt its own 

structure or operation. This section reviews the use of reflective techniques to adapt 

software. Of particular interest are systems that support some form of reification and 

adaptation of attributes of their operation or structure that affect the behaviour of the system, 

i.e., support behavioural reflection. This section includes a summary of relevant research on 

reflective systems and how it is related to or inspires the research described in this thesis. 

The Iguana architecture is discussed in terms of how it is used to form part of the Chisel 



  

40 

framework and how it influenced the design of Chisel. The Java HotSwap mechanism, 

Kava, and Javassist are discussed in terms of general purpose reflective adaptation tools and 

as background to other mechanisms which make use of them. DART, Guaraná, MetaXa, 

and K-Components are discussed as reflective tools that support dynamic adaptations where 

some parts of the adaptations can remain unanticipated. A number of other technologies 

could have been discussed in this section, e.g., the Byte Code Engineering Library (BCEL) 

[32], Open C++ [25], and OpenJava [152], but these systems would not have significantly 

contributed to the discussion of reflective techniques in terms of their differences to the 

systems that are discussed. 

2.1.1 Iguana 

The Iguana reflective programming architecture was developed at Trinity College Dublin. It 

is a reflective programming extension for object-oriented languages. It was introduced [59] 

as a method of incorporating meta object protocols into C++. It was later revised and 

simplified into Iguana/C++ [139]. Iguana/C++ was the first reflective framework to support 

dynamic metatype association in a compiled language (C++). Support for the unanticipated 

metatype association with Java was added in Iguana/J [126]. The Iguana model provides a 

mechanism to allow metatypes to be defined, implemented, and associated with objects 

without changing those objects’ types. Most reflective OO programming languages and 

reflective systems have only one MOP and implementations of this MOP are used to change 

the object model of the resulting reflective systems. Iguana supports the definition of 

multiple MOPs. Iguana supplies the framework to allow the user to choose which parts of an 

object’s object model to reify (see “reification categories” in [19, 59, 64, 125, 126, 139]). 

Each part of an object’s object model that is reified is represented by a meta object, which is 

an instance of a meta object class. 

Metatypes and Iguana 

In Iguana, a MOP is the selection of which parts of the object model to reify, and the 

association of a meta object class with each of these reified parts. As discussed in Chapter 1, 

a metatype is a behaviour change that is applied to a class or object. In Iguana/C++ [139] 

and Iguana/J [126] metatypes are implemented using custom Iguana MOPs, i.e., by deciding 

which parts of the object model to reify, writing a set of meta object classes for these 

reifications to implement the new metatype behaviour, then associating that metatype 

implementation with an object or class. In the Iguana literature, the terms "metatype 

association" and "MOP selection" are similar and refer to this association of MOP 



  

41 

implementations to objects and classes. Iguana implementations supply the frameworks to 

instantiate these meta objects to reify the object model, and correctly order metatypes if 

more than one is selected. Another feature of Iguana/C++ and Iguana/J is the ability to have 

objects and classes select new metatypes at runtime, thereby changing the behaviour of the 

system, without changing the type of the objects or classes.  

Iguana/J  

Iguana/J [125-127] implements the Iguana reflective architecture for the Java programming 

language. It supports runtime reflection, whereby meta objects exist at runtime rather than 

compile-time, so reified operations are redirected to the appropriate meta objects at runtime.  

The MOP is declared in a declaration file, which specifies which parts of the object model 

will be reified. 

protocol Verbose { 
 reify Creation: CreateVerbose(); 
 reify Execution: ExecuteVerbose(); 
} 

Figure 2.1.1.1 Iguana/J: Example MOP declaration, the ProtocolVerbose MOP 

Figure 2.1.1.1 above shows the declaration of a new metatype, TVerbose T. This metatype is 

implemented by reifying object creation and method execution with instances of meta object 

classes, TCreateVerbose T and TExecuteVerbose T (See figure 2.1.1.2 below). This 

metatype is used to implement a verbose behaviour, that when associated with any object or 

class, will cause the creation and operation of that object or all objects of that class to be 

carried out in a verbose nature. This behavioural change (metatype) can be associated with 

any object or class, regardless of type, or any other metatype associated with the object or 

class, in a manner completely transparent to the object or class, and in a manner 

unanticipated by the class designer. Each meta object class is written in standard Java, with 

each class extending the default meta object class for the appropriate reification category. 

import ie.tcd.iguana.MExecute; 
class ExecuteVerbose extends MExecute { 
    Object execute(Object o, Object [ ] args, Method m){ 
      System.out.print("Executing:“+m.getName()); 
      return proceed(o, args, m); 
    } 
}  

Figure 2.1.1.2 Iguana/J: Example meta object class, the ExecuteVerbose class 

The metatype declaration and the meta object classes are then passed to the Iguana/J 

compiler, which generates the metatype class that encapsulates the behaviour change. This 

metatype can then be associated with any object, class, or interface. 



  

42 

The association of a metatype and its associated meta object classes with any class or 

interface can be statically specified in a separate metatype association file, parsed at the start 

of execution of the application, as shown in figure 2.1.1.3, or dynamically from within base-

level or meta-level source code, as shown in figure 2.1.1.4. 

java.net.Socket ==> Verbose(); 

Figure 2.1.1.3 Iguana/J: Static MOP selection / metatype association 

import ie.tcd.iguana.Meta; 
java.net.Socket  mySocketObject = new java.net.Socket (); 
Meta.associate ( mySocketObject, "Verbose", args); 

Figure 2.1.1.4 Iguana/J: Dynamic MOP selection / metatype association 

With the mechanism to statically initiate metatype association, Iguana/J maintains a high 

degree of separation between the adaptation mechanism and its target since there is no 

tangling of meta-level code and application-level code. However, this is not the case with 

dynamic metatype association since the code that performs the selection is hard-coded into 

the application. The ability to dynamically associate metatypes with an application’s objects 

and classes allows the object model of that application to be completely changed in a 

manner that is transparent to that application since the type of any object that selects a 

metatype is unchanged.  

The Iguana/J runtime component is implemented by making use of the JIT interface of the 

Java JVM (JVM version 1.3.1) [148]. This allows the Iguana/J runtime component to 

intercept class loading to insert hooks as the class is loaded. During execution, the Iguana/J 

runtime component makes use of these hooks in the class code to support metatype 

associations and the interception of reified operations for classes and objects. Iguana/J does 

not require any access to the source code of the adaptation target since support for metatype 

association occurs at load-time and runtime, and so metatypes can be associated with 

arbitrary third-party compiled classes and instances of those objects. The application does 

not need to be restarted or altered in any way since interception is checked every time the 

hooked operation is performed.  

How metatypes and Iguana influence this research 

This ability to use Iguana to dynamically associate metatypes with an application’s objects 

and classes, thereby adapting that application without restarting or altering it in any way, 

provides a suitable mechanism to implement dynamic adaptation.  



  

43 

For any particular adaptation that is applied using Iguana/J, many aspects of the adaptation 

can remain unanticipated until after the target application has started executing. The design 

and coding of the metatype can be accomplished separately from the application since the 

meta object classes implementing the metatype, and the metatype itself, can remain 

unspecified until just before they are to be used at runtime. The statically initiated selection 

of metatypes, using the metatype association file, can remain completely unspecified and so 

unanticipated until the application is about to be run. Dynamic metatype association can be 

used to adapt the application at any time as it run, but the directive that performs the 

dynamic metatype associations, and so the control logic that governs the dynamic 

association of metatypes with arbitrary target objects or classes must be embedded in 

application code.  

Iguana/C++ also supports dynamic metatype association, but the new MOP must be 

specified at compile time, and like Iguana/J the control logic for the adaptation must be 

specified in the application source code. 

In these regards, Iguana systems do support some, but not all of the requirements for 

completely unanticipated dynamic adaptation. No Iguana mechanism currently exists that 

implements adaptation by metatype association where the location of the association, the 

nature of the associated metatype, and its association control and timing logic, can all 

remain unanticipated until after the application has started executing. In [125] a proposed 

solution to this problem is laid out for Iguana/J, whereby a Tconsole T meta object class is 

designed which would continuously request the name of a class and the name of a meta 

object protocol, and perform the association dynamically in an unanticipated manner. 

However, this proposed Iguana/J solution is substantially less expressive and less flexible 

than the solution provided in this thesis. In addition, this proposed Iguana/J solution does 

not support the dynamic adaptation of individual objects, only classes. 

While Iguana/C++, but especially Iguana/J have obvious advantages for unanticipated 

dynamic adaptation, both ignore the fact that the application and the user are most 

knowledgeable about changing high-level contextual requirements, and how they can be 

incorporated into intelligent control rules to drive the dynamic adaptation.  

A summary of the adaptation characteristics of Iguana/C++ and Iguana/J is presented in 

table 2.1.1 below. 



  

44 

 Iguana/C++ Iguana/J 
Anticipation of the adaptation contents Compile time During runtime 
Anticipation of the adaptation location Compile time During runtime 
Anticipation of the timing of the 
adaptation's application 

Design time and compile time Start of runtime or at compile time 

Anticipation of the control logic for the 
adaptation's application 

Design time and compile time Start of runtime or at compile time 

Adaptation binding time Compile time and during 
runtime 

Load time or during runtime 

Adaptation binding mode Dynamic Dynamic 

Table 2.1.1 Summary of the adaptation characteristics of Iguana/C++ and Iguana/J 

As discussed in Chapter 1, this thesis aims to demonstrate the use of dynamic metatype 

association as a dynamic software adaptation technique. Iguana/J's support for dynamic 

metatype association, without requiring access to the source code of the object or class 

being adapted, and without the need to recompile the target application, has encouraged the 

design decision that Iguana/J should be used as the dynamic adaptation mechanism for the 

Chisel dynamic adaptation framework. 

2.1.2 Java HotSwap 

In version 1.4 of Java, support to HotSwap application classes at runtime [43, 146] was 

added, allowing a Java class within an application to be recompiled and replaced while the 

application is executing in debug mode. Current JVM implementations (version 1.4) support 

the use of the Java HotSwap mechanism to replace a Java class with another binary 

compatible version of that class [76], where the class structure and class interface can be 

reordered and augmented, but no part removed. In this version, only behavioural change by 

replacing or adding class methods is supported, but further support is planned. This 

HotSwap support was added to allow debugger tools to support a fix-and-continue strategy 

to code debugging. A tool, the HotSwap Client Tool [151] was developed to support the 

runtime management and replacement of Java class code.  

Although this mechanism is not a reflective adaptation mechanism since no monitoring 

occurs and no causally connected metadata describes the behaviour or structure of the 

adapted system, this mechanism is included in this section because it allows behavioural and 

structural adaptation by manipulating the composition of classes and objects. As with other 

mechanisms that support the replacement of compiled software modules, if the original class 

source code is unavailable, the original class must be completely rewritten to include the 

adaptation being applied. This model also leads to an unfortunate loss of separation of 

concerns and tangling of adaptation and application code. 



  

45 

According to the classifications set out in this thesis, this tool can be used to implement 

completely unanticipated dynamic adaptation, since the adaptation, the target of the 

adaptation, the timing of the application of the adaptation, and the management logic 

supporting the adaptation's application can all remain unanticipated until during execution. 

The HotSwap Client Tool as presented does not provide a mechanism to control the 

adaptation in an automatic or context-aware manner since each adaptation must be 

individually applied by the user, at the exact moment when the adaptation is required. In 

addition, this tool only supports the adaptation of classes, not individual objects. While this 

does address the aim of this thesis to allow the user to influence the adaptation process, it 

does not provide support for automatic or default adaptation policies for users who do not 

wish to be directly burdened with this control.  

 Java HotSwap 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.1.2 Summary of the adaptation characteristics of the Java Hotswap mechanism 

2.1.3 Javassist 

Javassist [24, 26] is a post compile-time or load-time structural reflection framework for 

Java. It is used to edit bytecode in Java classes, allowing users to modify Java class files 

before runtime, or change the class at load-time as it is loaded by using a specialised 

classloader. Javassist allows users to create new classes, add fields or methods, or change 

the bodies of methods. Once the class is loaded, and all adaptations made to it, no further 

adaptation of the class is possible, i.e., Javassist can only perform static adaptation. 

However Javassist can be used to insert hooks to support dynamic adaptation for use by 

other adaptation frameworks, for example Wool and RAM, as discussed later in this chapter. 

Knowledge of Java bytecode is not required as Javassist provides a high-level structural 

reflection library allowing source-level abstractions of the bytecode additions. Since it 

operates on Java bytecode, access to the source code of the adaptation target is not required. 

Again Javassist has only a programming interface so all adaptations must be specified in the 

application code. This means that all characteristics of all adaptations must be specified 

before the entire application is compiled, so unanticipated adaptation is not supported. 



  

46 

 Javassist 
Anticipation of the adaptation contents Compile time 
Anticipation of the adaptation location Compile time 
Anticipation of the timing of the adaptation's application Compile time 
Anticipation of the control logic for the adaptation's application Compile time 
Adaptation binding time Load time 
Adaptation binding mode Static 

Table 2.1.3 Summary of the adaptation characteristics of Javassist 

2.1.4 DART 

DART (Distributed Adaptive Runtime) [121-123] is a runtime reflective framework for 

distributed adaptation, developed by Sony. DART builds upon some of the techniques used 

in the Aperios/Apertos reflective operating system [70, 164, 165]. A framework for 

reflective objects is provided to support functional behaviour adaptation of the application, 

which operates by allowing alternative method implementations (adaptive methods) to be 

selected via “selectors”, in a manner similar to the Strategy design pattern [55]. Also 

included is a method interception system (reflective methods) for non-functional behaviour 

adaptation in response to environmental changes. Using this approach, intercepted method 

calls are redirected to a set of meta objects before and after invocation using a “reflector”, 

which manages these meta-objects. Adaptive methods and reflective methods are shown in 

figure 2.1.4.1 (taken from [121]).  

A runtime manager is instantiated for each application as it starts up. Adaptation policy 

functions, written in C, register for adaptation events and can introspect on both the base-

level and meta-level code. When these adaptation events occur, the runtime manager then 

adapts the system using the policy functions that are registered for those adaptation events. 

These policy functions perform the adaptations at runtime by accessing individual base 

objects using the runtime manager and manipulating their selectors and reflectors. Policy 

functions can also be loaded into and unloaded from the runtime manager at runtime. Base-

level objects can also access and change these selectors and reflectors via the runtime 

manager, thereby allowing an application to adapt itself, but these operations must be 

embedded in the application source code.  



  

47 

 

Figure 2.1.4.1 Adaptive methods and reflective methods in DART 

Any individual class can be marked as adaptive in the application source code by having a 

default policy associated with it. In the source code, individual methods can also be 

annotated to be reflective methods or adaptive methods. OpenC++ [25] is used to create and 

bind the meta-level objects to the base-level objects at compile time. Since the code for 

reflection and adaptation is completely tangled with the application code, there is very little 

separation of concerns in this framework.  

A collection of adaptable service libraries containing default adaptation policies and a set of 

generic events are also included with the framework, allowing applications developers to 

build complete adaptive distributed applications. These policies and events can also be 

extended by developers, but again these are compiled into the application. All default policy 

associations are also placed in a description file that is used at load-time to configure the 

system. This file can be changed at any time to affect how the system will load in future 

invocations, e.g., by adding new adaptive method implementations, or changing default 

meta objects used by reflective methods. However, there does not appear to be any 

mechanism to add new unanticipated policies or behaviours, or dynamically change 

methods to be adaptive or reflective, either at or before runtime.  

DART does not support the dynamic specification of new adaptations, and many aspects of 

the adaptation must be anticipated at or before runtime. DART is of interest to the Chisel 

project for  its support for named object specifications, event driven dynamic adaptation of 

functional and non-functional behaviours, adaptation using behavioural reflection, and a 

configuration mechanism that can be adapted for individualised adaptation policies. But, its 

ability to implement a metatype adaptation model, and in particular dynamic metatype 

association is extremely limited due to its inability to support dynamic adaptation additions. 

A summary of the DART project is presented in table 2.1.4.2 below. 



  

48 

 DART 
Anticipation of the adaptation contents Compile time and before runtime 
Anticipation of the adaptation location Design time 
Anticipation of the timing of the adaptation's application Design time 
Anticipation of the control logic for the adaptation's application Design time 
Adaptation binding time Compile time and before runtime 
Adaptation binding mode Dynamic 

Table 2.1.4.2 Summary of the adaptation characteristics of DART 

2.1.5 Kava 

Kava [159, 161], formerly called Dalang [158], is a reflective architecture for Java that 

statically binds meta object classes to base-level classes at load-time, where each 

instantiated object has an associated meta object. It operates by using a custom Java 

classloader, which inserts Java bytecode binding hooks at load-time, before the class is JIT 

compiled. There is no support to unbind or replace these meta objects at runtime. Kava also 

supports only one meta object per base object, but does state that more can be added by 

meta object chaining. The primary use of Kava in the literature is the implementation of 

security policies for Java programs [160], helped by the strong separation of the meta-level 

and base-level, and the inability of the base-level programs to bypass the operations of the 

metalevel. Although Kava only supports static adaptation, it does so in a manner that is 

unanticipated until the start of runtime since the meta object class binding is specified in a 

separate XML file, so no tangling code is required to support this adaptation. 

Kava would be a candidate to support metatype association with base-level classes, but not 

objects. In addition, dynamic metatype association would not be possible. 

 Kava 
Anticipation of the adaptation contents Start of runtime 
Anticipation of the adaptation location Start of runtime 
Anticipation of the timing of the adaptation's application Start of runtime 
Anticipation of the control logic for the adaptation's application Start of runtime 
Adaptation binding time Load time 
Adaptation binding mode Static 

Table 2.1.5 Summary of the adaptation characteristics of Kava 

2.1.6 Guaraná 

Guaraná [109-111] is a reflective architecture for Java that supports the configuration and 

runtime association of meta objects with base classes and objects in a secure manner. For 

the purposes of this project, Guaraná is similar to Iguana/J and MetaXa (described in section 

2.1.7) in many respects since these meta objects can be used to dynamically change the 

behaviour of base-level classes and objects in a manner similar to dynamic MOP selection 



  

49 

in Iguana/J. Similar to Iguana/J, Guaraná supports a strong separation of concerns between 

the base-level and the meta-level, and so can support the association of unanticipated 

adaptations.  

Meta object association with base objects and classes can only be accomplished in a 

programmatic manner and so some tangling of adaptation code with application code must 

occur. Despite being able to perform unanticipated adaptation on pre-written application 

elements, again without access to source code, the adaptation must still be anticipated before 

the entire application is compiled. In this respect, it is similar to Iguana/J and MetaXa since 

even dynamic adaptation is anticipated in source code.  

As part of later work on a development kit for Guaraná [141], a launcher for Guaraná was 

introduced that supports the association of meta objects with classes at the start of runtime, 

similar to the configuration file used to statically initiate metatype association in Iguana/J. 

Guaraná is a prime candidate to support the metatype model, and dynamic metatype 

association. As discussed in [125], one of the main drawbacks of using Guaraná to 

implement the metatype model is the inability to automatically associate a metatype with a 

base-level class, and so change the behaviour of all instances of that class and its subclasses, 

since only the particular class is adapted, but not its current instances or subclasses.  

 Guaraná 
Anticipation of the adaptation contents Compile time / start of runtime 
Anticipation of the adaptation location Compile time / start of runtime 
Anticipation of the timing of the adaptation's application Compile time / start of runtime 
Anticipation of the control logic for the adaptation's application Compile time / start of runtime 
Adaptation binding time During runtime  
Adaptation binding mode Dynamic 

Table 2.1.6 Summary of the adaptation characteristics of Guaraná 

2.1.7 MetaXa 

MetaXa [56, 57] is another reflective architecture for Java, similar to Iguana/J and Guaraná, 

that supports the runtime association of meta objects with base-level classes and objects, and 

so can be used to dynamically change the behaviour of base-level classes and objects. In 

terms of this thesis MetaXa is very similar to Iguana/J and Guaraná and so merits little extra 

discussion, but one of the main features of the MetaXa system is its support for a very low-

level and fine-grained meta-level programming model. This however means that MetaXa is 

more difficult to use than Iguana/J or Guaraná to implement higher-level dynamic 

adaptation.  



  

50 

Again, similar to the original Guaraná work, MetaXa only supports programmatic 

association of meta objects with base-level objects and classes. This again means that 

despite the ability to dynamically adapt previously written software components in an 

unanticipated manner, adaptation code is tangled into application code. This weak 

separation of concerns means that in its current form completely unanticipated dynamic 

adaptation is not possible with MetaXa since the adaptation must be anticipated before 

application compile time.  

Similar to Guaraná, MetaXa could also be used to implement the metatype adaptation 

model. Again discussed in [125], MetaXa's support for unanticipated dynamic associations 

of metatypes is limited where more than one metatype is associated.  

 MetaXa 
Anticipation of the adaptation contents Compile time / start of runtime 
Anticipation of the adaptation location Compile time / start of runtime 
Anticipation of the timing of the adaptation's application Compile time / start of runtime 
Anticipation of the control logic for the adaptation's application Compile time / start of runtime 
Adaptation binding time During runtime  
Adaptation binding mode Dynamic 

Table 2.1.7 Summary of the adaptation characteristics of MetaXa 

2.1.8 K-Components  

K-Components [44, 45] uses asynchronous architectural reflection to build context-aware 

adaptive software. The adaptation logic that specifies the adaptive behaviour (adaptation 

policy) is written as adaptation contracts in a declarative programming language (ACDL). 

Adaptation occurs in response to adaptation events raised by either the application 

components or from the evaluation of adaptation rules themselves, e.g., anticipated failure to 

achieve a set goal. The meta-level configuration manager runs asynchronously and so 

periodically reflects on the need for adaptation, using polled adaptation events and the 

adaptation contracts, thereby greatly reducing reflective computation overhead. The reified 

software architecture is arranged as a typed directed component configuration graph, where 

changes to the configuration graph during dynamic adaptation are performed as 

transactional operations, so that the result is again a correct directed configuration graph. If 

adaptation is required, a component can be removed from the system configuration graph 

and another component, exposing the same interface, can be swapped in. A component’s 

external interface cannot be changed by architectural reconfiguration since only 

reconfiguration operations on the configuration graph is allowed. This maintains correctness 

of the component configuration graph but severely restricts how the system can adapt.  



  

51 

New components can be loaded at runtime from a DLL or as a remote CORBA component, 

but their interface must be previously specified since the configuration graph is a static 

representation of the architecture of the system, and cannot be extended to support new 

component types at runtime. The system also requires that the adaptation event types are 

known to the configuration manager at compile-time, so very little support is included to 

initiate adaptations in response to unanticipated or un-typed events, as will likely occur in a 

mobile or pervasive computing environment. Also, all components must be written to 

support the K-Components framework, whereas the application model for Chisel, as 

described in this thesis, supports adaptation of application objects that were written in a 

manner oblivious to any adaptations that might later be applied.  

 K-Components 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location Design time 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime  
Adaptation binding mode Dynamic 

Table 2.1.8 Summary of the adaptation characteristics of K-Components 

2.2 Adaptation using AOP techniques  

Aspect oriented programming (AOP) [30, 50, 53, 84] is a programming methodology that 

allows crosscutting concerns to be declared as "aspects". A cross-cutting concern is a 

property or function of a system that cannot be cleanly declared in terms of individual 

components, because the application of the crosscutting concern must be scattered or 

distributed across otherwise unrelated components. AOP supports the separate or 

"oblivious" [53] production of these aspects, which are later incorporated or "woven" into 

the application components at a specified or quantified set of "join points".  

In [53], "obliviousness" is declared to be one of the key components of AOP. Obliviousness 

refers to the degree of separation between the aspects of the system and how they can be 

developed independently without preparation or cooperation. This preparation is related to 

anticipation, as described in Chapter 1, whereby the degree of unanticipation is equivalent to 

the degree of obliviousness supported. Many AOP systems support weaving before runtime, 

but newer dynamic AOP systems (e.g., AspectWerkz, JMangler, Wool, and PROSE) 

described in this section allow aspects to be woven at load-time or runtime, thereby 

allowing the incorporation of aspects into base programs to remain unanticipated until load-

time or runtime. Aspect/J is discussed particularly for its contributions as one of the original 



  

52 

and most influential AOP systems, as an introduction to the general concepts of AOP, and in 

terms of how it used by other AOP tools. AspectWerkz, JMangler, Wool, and PROSE are 

discussed as tools that could form part of the Chisel framework, could implement the 

metatype model, or demonstrate some similar functionality to the Chisel framework. Trap/J 

is discussed as a prototype dynamic adaptation framework where many of the aspects of its 

supported adaptations can remain unanticipated until runtime, with its similarities to the 

Chisel framework and its limitations discussed. A number of other systems such as Hyper/J 

[114] or Binary Components Adaptation (BCA) [81] could also have been discussed here, 

however these systems do not support runtime adaptation and so do not additionally 

contribute to the discussion of research directly related to Chisel. 

2.2.1 AspectJ 

AspectJ is a very influential aspect-oriented extension to the Java programming language 

that supports aspect-oriented programming in a general-purpose manner [162]. In AspectJ, 

an aspect is a language construct, used to specify a modular unit to encapsulate a 

crosscutting concern. It is defined in terms of pointcuts (a collection of join points and 

contextual values at those join points), advice (code executed before, after, or around a join 

point when it is reached), and introductions (normal Java code to be introduced into base 

classes).  

AspectJ also contains a comprehensive and expressive pointcut specification language that 

supports the specification of complex pointcuts. The join points supported by AspectJ 

include: method calls and execution, constructor calls and execution, read and write access 

to a field, exception handler execution, and object and class initialisation execution. Join 

points in AspectJ are dynamic in nature since they capture not just location, but also timing 

and context information. Pointcuts can be specified using boolean combinations of the 

following: matched or partially matched join points based on signature strings, type names, 

or the type of the join point caller, target, or arguments; other pointcuts; and join points that 

occur within the flow of control of other pointcuts. When using aspect weaving as a 

mechanism to support adaptation, this expressive pointcut specification language allows 

very fine-grained control of where and when adaptations are applied. 

AspectJ supports aspect weaving at compile time, post-compile time, and load-time. 

Compile time weaving is used when the application code and the aspect code are specified 

together. Post-compile time weaving supports weaving compiled aspects into compiled java 

code using bytecode transformation [65]. Load time aspect weaving is accomplished using 



  

53 

the same bytecode transformations combined with a custom classloader specified at 

application startup. In this respect, it does not support unanticipated runtime adaptation as 

there currently does not appear to be an explicit mechanism to support dynamic re-weaving 

of aspects after they have been loaded. The dynamic join point locations at which the aspect 

advice and introductions are woven, and the control logic supporting the selection of these 

dynamic join points are specified in the pointcut specifications in the aspect definition code, 

before it is compiled, so adaptation location must be anticipated. A summary of AspectJ's 

support for unanticipated dynamic adaptation is given in table 2.2.1 below. Despite its lack 

of support for completely unanticipated dynamic adaptation, AspectJ is used by a number of 

other dynamic adaptation systems to insert hooks to be used at runtime to support dynamic 

adaptation, e.g., RAM (described in section 2.4.6) and TRAP/J (described in section 2.2.6). 

 AspectJ 
Anticipation of the adaptation contents Before load time, specified in the adaptation code 
Anticipation of the adaptation location Before load time, specified in the adaptation code 
Anticipation of the timing of the adaptation's 
application 

Before load time, specified in the adaptation code 

Anticipation of the control logic for the adaptation's 
application 

Before load time, specified in the adaptation code 

Adaptation binding time Compile time, post compile time, and load time  
Adaptation binding mode Static 

Table 2.2.1 Summary of the adaptation characteristics of AspectJ 

2.2.2 JMangler  

JMangler [85, 86] is a framework that supports bytecode level transformation of Java 

classes at load-time. These transformations can change almost any feature of the class being 

loaded, including its interface, members, and method code. In the latest version of JMangler, 

this is achieved using the Java HotSwap mechanism to replace the Java classloader that is 

used to load all application classes, but not the bootstrap classloader that loads system 

classes. JMangler essentially provides a framework to support the implementation of 

different aspect weavers. One weaver supplied with the framework, the BCEL weaver, uses 

the Byte Code Engineering Library (BCEL) [32] to perform bytecode manipulation. This 

weaver supports the weaving of transformers (aspects) into the code of the loaded class. 

Transformers are written in Java, and so can contain arbitrary conditions to control their 

own weaving characteristics, particularly their location (similar to pointcut specifications in 

AspectJ). Transformers can also make extensive use of the BCEL library, to perform both 

interface changes and code changes to classes as they are loaded. A list of transformers, 

along with information such as JMangler runtime options and known incompatibilities 

between transformers, can be specified in an XML file used at load time by the JMangler 



  

54 

framework. This maintains a strong separation of concerns between the adaptation 

mechanism and the application code. With this declarative specification method, none of the 

characteristics of the adaptations need be anticipated until loadtime of the target application 

class. However, JMangler cannot support dynamic weaving of transformers, since the 

adapted class cannot be reloaded to be adapted again, so dynamic adaptation is not possible. 

Since JMangler manipulates class bytecode, no access to the source code of the target 

application is required. JMangler is used, or planned for use, in a number of other adaptation 

frameworks, including Javassist and AspectWerkz (described in the next section). 

 JMangler 
Anticipation of the adaptation contents At load time 
Anticipation of the adaptation location At load time 
Anticipation of the timing of the adaptation's application At load time 
Anticipation of the control logic for the adaptation's application At load time 
Adaptation binding time At load time 
Adaptation binding mode Static 

Table 2.2.3 Summary of the adaptation characteristics of JMangler 

2.2.3 AspectWerkz 

AspectWerkz [3, 15, 155] is an AOP framework that supports both static and dynamic 

aspect weaving. In early versions it used the JMangler system [85, 86] as a backend to 

support runtime weaving, but a custom reimplementation of the Java bootstrap classloader 

using the BCEL library [32] has replaced this. AspectWerkz employs an aspect model 

similar to AspectJ by using join points, pointcuts, advice, and introductions.  

In AspectWerkz, aspects can be defined either as source-code annotations, or in an XML 

format. Using source code annotations, aspects are defined as Java classes containing advice 

and introductions, and pointcuts. The kind of advice (e.g., around, before, after etc.), the 

location for introductions, and the matching of join points, are all defined in custom 

annotations in the aspect's source code or in the application source code. Using the XML 

aspect specification method, an aspect is defined by selecting a set of predefined named 

pointcuts, advice, and introductions. Named pointcuts are defined in XML format in terms 

of string-based join point lookups, with named advice and introductions, which are defined 

using Java implementation classes.  

By using post-compilation or load-time static weaving, dynamic AOP can be enabled by use 

of hooks and aspect containers that can be used at runtime. Using this model, join points 

used in the pointcut must be specified at weave-time, but the advice and adaptation to be 

performed can remain unanticipated until runtime. These changes however can only be 



  

55 

performed via a programmatic interface, so recompilation is required for unanticipated 

adaptations.  

Since join points are integrated into the code of the application at load time, it is very 

difficult to add support for unanticipated join points. However a complicated method of 

adding new join points is introduced in [155] using the Java HotSwap mechanism combined 

with load time preparation. In this case, all Java classes are slightly modified to support later 

(if necessary) hotswapping of Java classes that have the new join point enabled. Currently 

this method requires that the new join points only be accessed at runtime via a 

programmatic interface in code defining an aspect, and not from the XML deployment 

document. Therefore, similar to Iguana/J, no high-level or declarative method exists to 

exploit access to unanticipated adaptation locations without changing aspect source code 

and recompiling. This restriction is subject to change in the immediate future. 

Currently AspectWerkz does not support specifying a join point in class constructors so it is 

not possible to adapt an object by intercepting its construction. Similar to PROSE (described 

in section 2.2.4) and Wool (described in section 2.2.5), AspectWerkz does not support the 

adaptation of individual objects, just classes. These factors would seriously affect the ability 

of AspectWerkz to support the metatype adaptation model. 

 AspectWerkz 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location Start of runtime 
Anticipation of the timing of the adaptation's application Start of runtime 
Anticipation of the control logic for the adaptation's application Start of runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.2.4 Summary of the adaptation characteristics of AspectWerkz 

2.2.4 PROSE 

PROSE [117, 118] is a dynamic AOP framework for Java that supports runtime aspect 

weaving. PROSE was originally intended as a framework for debugging or rapid 

prototyping of AOP systems, which could later be completed using compile-time or load-

time aspect weaving [118]. This was mainly due to its use of the Java Virtual Machine 

Debug Interface (JVMDI) [147], which resulted in a large performance penalty. A later 

version of PROSE [117] was implemented by modifying the open source IBM Jikes 

Research Java Virtual Machine [66], greatly improving its performance. In both versions, 

new aspects can be dynamically woven, with support for these aspects to define new join 

points, for which new interception hooks are created at weave time. Therefore, PROSE can 



  

56 

be used to support dynamic adaptation by weaving additional non-functional behaviours 

into the code at runtime. However, PROSE only supports weaving at a class level, therefore 

individual objects cannot be adapted individually, similar to AspectWerkz and Wool. A 

number of graphical user interfaces are included to manage the unanticipated weaving of 

new aspects at runtime. In this respect, PROSE supports completely unanticipated dynamic 

adaptation since the new adaptation (aspect), its join point, the timing of the aspect weaving, 

and the management of the weaving is all unanticipated until after the start of runtime. In 

the current implementation of PROSE (version 1.2.1) method return values cannot be 

changed, thereby severely restricting PROSE's ability to act as a dynamic adaptation 

framework, but this is due to be resolved in future releases. 

PROSE is another possible candidate to support the metatype adaptation model, as 

discussed in [125], despite its focus on AOP rather than reflective adaptation. Again, as with 

AspectWerkz and Wool, individual objects cannot be adapted so dynamic metatype 

association with individual objects cannot be supported.  

 PROSE 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.2.5 Summary of the adaptation characteristics of PROSE 

2.2.5 Wool 

Wool [138] is a dynamic AOP framework that uses a hybrid aspect weaving approach by 

using both the Java Platform Debugger Architecture (JPDA), like PROSE, and the Java 

HotSwap mechanism, as seen in AspectWerkz. Since JPDA supports remote activation of 

breakpoints at runtime, join point hooks in the form of debugging breakpoints can be set 

from outside of the application. A pointcut may be made up of a number of these hooks. 

Each aspect specifies a pointcut, and a set of advices to be executed when one of the 

pointcut's join points (represented as breakpoints) is reached. New aspects can be serialised 

and sent to the target JVM for weaving at any pointcut. In one approach, when a join point 

is encountered, the inserted breakpoint redirects the operation to the wool runtime 

component in a manner similar to a debugger, where advices are then executed. An 

alternative approach allows the advice to be hotswapped into the application class thereby 

improving performance if the join point is encountered repeatedly. This is achieved by using 

Javassist to rewrite the class, without access to its source code, and have the adapted class 



  

57 

replace the original application class using the Java HotSwap mechanism. This also removes 

the breakpoint, so calls to the debugger are removed. However, this mechanism means that 

all objects of the woven class will have the adaptation incorporated, in a manner similar to 

AspectWerkz and PROSE.  

Currently the aspect programmer must specify in the aspect's source code whether the 

advice should be hotswapped in or run by the debug interface, so in order to achieve good 

performance, the aspect writer should anticipate the access patterns of the aspect's pointcut. 

Wool does not support adding introductions as seen in AspectJ, but a proposed solution to 

use Javassist is provided. 

Since aspects, their weave location, and the timing and control logic of their weaving are all 

specified separately from the application at runtime, this system is classified as supporting 

completely unanticipated dynamic adaptation. However, unlike the Chisel adaptation 

framework, no support is provided to allow users or operating context to influence how 

these adaptations are applied at runtime in a reactive manner.  

Again, as with AspectWerkz and PROSE, Wool is a possible candidate to support the 

metatype adaptation model, but the inability to adapt individual objects means that Wool 

cannot be used as a mechanism to support dynamic metatype association with individual 

objects. 

 Wool 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.2.6 Summary of the adaptation characteristics of Wool 

2.2.6 TRAP/J 

TRAP/J [135, 136] is a prototype unanticipated dynamic adaptation framework for Java. It 

combines compile-time aspect weaving using AspectJ [162] and unanticipated dynamic 

adaptation with wrapper classes and delegate classes. At compile time the programmer 

selects a subset of application classes that will be adaptable. The TRAP/J system then 

automatically creates AspectJ code to replace all instantiations of the selected classes with 

wrapper class instantiations. Java code for each wrapper class and a meta object class for 

that wrapper class is also automatically created. At runtime, each instantiated wrapper object 

has an instance of the original wrapped object and a meta object bound to it. These wrapper 



  

58 

objects redirect all method calls to their meta object, which in turn act as placeholders for a 

set of delegate objects that may handle the invocation of the method, or adjust its parameters 

prior to execution by the original wrapped object. New, dynamically created delegates can 

be added or removed at runtime via an RMI interface using a management console. These 

delegates can be added on a per object basis since the meta objects can supply a name for 

each instance and register it in an RMI registry.  

This framework was used to demonstrate the dynamic adaptation of a network-enabled 

application by replacing instances of the Tjava.net.MulticastSocket T class with 

instances of an adaptable socket class TMetaSocket T[80]. The TRAP/J framework 

however does not support completely unanticipated dynamic adaptation. The adaptation, its 

intelligent and controlled dynamic application, and the timing of its application all remain 

unanticipated until runtime, but the possible locations for the adaptations are specified in the 

application source code, since the version of AspectJ used requires access to the application 

source code. Despite improving the performance of the TRAP/J framework, this restriction 

greatly limits the nature of the unanticipated dynamic adaptations that can be applied. No 

information is provided about whether the generated meta object class code can be modified 

prior to compilation and weaving.  

In addition, TRAP/J seems to delegate the invocation of the method to only one delegate; 

the first one it finds implementing the method, but this ordering of delegates can be 

configured. This means that only one adaptation can be applied at a time since adaptation 

behaviours are not automatically composed. Also TRAP /J does not seem to allow the user 

to apply an easily recognisable name to the base object being adapted, and so may make it 

difficult for the user to identify the object to which adaptations should be dynamically 

applied. From the documentation TRAP/J does not seem to support applying dynamic 

adaptations via new delegates on a structured class-wide or interface-wide basis since RMI 

registry look-ups are at a per meta object basis.  

 Trap/J 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location Compile time 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.2.7 Summary of the adaptation characteristics of Trap/J 



  

59 

2.3 Adaptable middleware 

This section discusses adaptable middleware with respect to how they are related to or have 

influenced the design of the Chisel dynamic adaptation framework. Although further 

discussed in Chapter 5, adaptable middleware is an important influence in the design of the 

Chisel adaptation framework. What constitutes middleware is hard to define and outside the 

scope of this research, but here middleware is considered as a set of enabling technologies 

that resides above a network-enabled operating system but support applications from below. 

Middleware systems should shelter the application developer from the intricacies of the 

underlying environment, communication subsystems and distribution mechanisms, thereby 

providing a single view of the underlying environment, to facilitate development, 

deployment, and management of applications.  

A number of the other systems discussed in other sections, e.g. DART, K-Components, 

TRAP/J, CARISMA, RAM, and M3 could also be included in this section, however, their 

primary relevance to or influence on the Chisel framework was with respect to the topics 

covered in those sections. 2K, the OpenORB research, and ACT are adaptation frameworks 

which are specialised for performing dynamic adaptations on middleware. They are 

discussed in terms of how each one supports the application of adaptations where some or 

all properties of those adaptations can remain unanticipated until runtime. They are also 

discussed in terms of how their mechanisms could be extended beyond a middleware 

domain.  

2.3.1 DynamicTAO / 2K 

DynamicTAO [90, 91, 132] is an extension of the TAO ORB. The TAO ORB [140] allows 

different aspects of its operation to be selected at load time using the Strategy design pattern 

[55] as specified in a configuration file. DynamicTAO allows these strategies to be 

inspected and changed at runtime in a reflective manner, while still maintaining consistency. 

This can be achieved via the TDynamicConfigurator T component that supports dynamic 

querying of the current ORB strategies and supports the dynamic uploading of new 

strategies. However, only a fixed number of locations within the ORB can be adapted. 

Strategy implementations can also be uploaded to or downloaded from a remote location, 

then selected for use. A runtime graphical interface, Doctor (Dynamic ORB Configuration 

Tool), is presented to support this possibly remote runtime dynamic adaptation. A mobile 



  

60 

code model is also presented that allows adaptations to be copied and applied across a 

network of interconnected ORBs [92], again controlled by a graphical interface.  

2K [90, 91, 93] is an adaptable operating system that is built on top of DynamicTAO. 

Component-based applications use 2K as an adaptable execution environment, where 

components can be downloaded at runtime and combined into the application. In the 

middleware, all entities in the system, including users, applications, components, and 

devices can be modelled as remotely accessible CORBA components and so can be queried. 

2K also includes an automatic configuration system, whereby components provide a 

complete list of which resources they need and a list of other components they require, 

which allows these Quality of Service (QoS) requirements and inter component 

dependencies to be reified. This allows application programmers and users to view the 

system state and adapt the system as they wish while the 2K system automatically maintains 

the QoS requirements and component dependencies.  

Reflection in 2K is based on architectural awareness, since the architecture of the system 

and dynamic runtime component interdependencies are reified in "component 

configurators", with one meta object for each component. Each component configurator can 

be extended to include application-specific adaptation code to adapt the component and its 

dependencies based on events fired by other component configurators. This use of these 

component configurators maintains a strong separation of concerns between the adaptation 

target and the adaptation mechanism. 

In 2K, new components, and their configuration information, can be acquired from a remote 

component repository at runtime using a pull-based approach to updating the system. To 

improve performance, 2K also supports a push-based system using mobile agents, which 

include inspection code, configuration changes, and code for new components, as seen in 

DynamicTAO.  

Mostly it is just the structure of the middleware that is adapted using architectural reflection 

techniques, but since DynamicTAO supports dynamic loading of components, application 

components can also be unloaded and reloaded to support behavioural change at the 

application level. This can be achieved in a completely unanticipated manner as the location 

of the adaptation, the control logic and timing of its application, and what the adaptation 

does, can all remain unanticipated until runtime. Although the component resource 

requirements can be specified in a declarative script format that is used when the component 

is first loaded, the adaptation logic must be specified in the component configurator source 

code.  



  

61 

The 2K framework is essentially an adaptive execution environment that supports dynamic 

loading and unloading of application components in a user-, application- and resource-aware 

manner, using both local and global context to support this adaptation. The main focus of 

the 2K project is on automatically maintaining both the local and network-wide consistency 

of a distributed adaptable execution environment, which adapts itself in a reactive but 

anticipated manner, rather than adapting applications that use the 2K framework. Recent 

work [142] further demonstrates how the 2K framework can be used to build dynamically 

adaptable applications, but the degree to which the adaptations in this implementation are 

unanticipated is unclear, since control logic is again coded directly into the component 

configurators.  

Although a powerful dynamic adaptation mechanism, tentatively classified as supporting 

completely unanticipated dynamic adaptation, adaptations are only possible by the dynamic 

selection of predefined strategies in DynamicTAO, and the dynamic loading and unloading 

of components and component configurators in 2K. Chisel is a general-purpose dynamic 

adaptation framework, which can dynamically adapt any compiled Java application, in a 

completely unanticipated manner, without the need to statically compile adaptation logic 

into the adaptation itself. 

 DynamicTAO 2K 
Anticipation of the adaptation contents During runtime During runtime 
Anticipation of the adaptation location Design time During runtime 
Anticipation of the timing of the adaptation's application During runtime During runtime 
Anticipation of the control logic for the adaptation's application During runtime During runtime 
Adaptation binding time During runtime During runtime 
Adaptation binding mode Dynamic Dynamic 

Table 2.3.1 Summary of the adaptation characteristics of DynamicTAO and 2K 

2.3.2 Next Generation Middleware at Lancaster 

A large body of research has accompanied OpenORB [14], a component model and 

reflective middleware project at Lancaster University. At load time, appropriate middleware 

service components are selected and composed as a middleware instance. At runtime, 

components can be dynamically replaced with a new component exporting the same 

interfaces. Every object or component is associated with a “meta-space”. In order to help 

separating the concerns at the meta-level, the meta-space is broken into a number of meta-

models, each of which can be accessed using a different MOP. Using each meta-model, 

different aspects of the middleware instance can be inspected and adapted. 



  

62 

The OpenORB model supports structural reflection using the encapsulation and 

compositional meta-models. The encapsulation meta-model (also called the interface meta-

model) represents a component interface in terms of its methods, its principal attributes and 

other characteristics like inheritance relationships. Each component's interface is defined in 

terms of required support and provided support for standard method invocations, streaming 

data interfaces, and an events interface. Interfaces of different components are connected 

over bindings, which may be local or distributed, and represent a link between a provided 

interface and a required interface. These bindings are reified as usable components, which 

may themselves contain several other components bound together. The composition meta-

model (also called the architecture meta-model) reifies the implementation and composition 

of the component, by providing a causally-connected component graph, and is used to 

examine, validate, and adapt the make-up of the component and its bindings to other 

components. This meta-model is used to add, remove, and replace components, and change 

the architectural constraints used to validate component assemblies, and control and 

constrain adaptation. 

Behavioural reflection is supported with a number of meta-models, depending on the 

OpenORB version. If present, the environmental meta-model, for each interface, represents 

the execution environment and reifies the management of messages, processes etc, which 

are also reified as graphs. The interception meta-model, when present, allows the 

association of "interceptors” with interface bindings to provide pre- and post-processing 

behaviours, parameter inspection, and insertion of methods.  

The resources meta-model, introduced in [9, 11], is based on the abstraction and reification 

of resources and tasks. Low-level resources are managed by resource managers that can also 

act as resource factories to create higher-level or more complex resources. For each address 

space, a single resources meta-model can view and adapt the components that represents the 

resources of the system. Dynamic adaptations for QoS are usually accomplished using this 

meta-model, when present, or by the environmental meta-model. 

Management components can also be added to OpenORB architectures. These components 

can be used to monitor or adapt the system at runtime, either by implementing new 

component strategies or selecting new strategies to be incorporated into the component 

graph. These management components can themselves be dynamically managed to support 

dynamic changes to adaptation policies. The dynamic specification of adaptation policies 

using scripting languages is also introduced in one of the older OpenORB prototypes [9, 

12]. This concept of managed and constrained adaptation is further discussed in [10], where 



  

63 

it was planned that the impact of alternative middleware component configurations would 

be analysed before they were applied, thereby allowing their application to be managed by 

adaptation managers, again possibly using adaptation policy scripts to control how the 

reconfiguration is accomplished. These adaptations could be triggered at runtime by user 

interaction, or by context changes. However, support for and use of these policy-based 

management techniques does not seem to have been included in later versions of the 

OpenORB prototypes. 

The dynamic adaptation models described here as part of the next generation middleware 

research currently ongoing at Lancaster University present an array of methodologies and 

tactics for adapting systems. Many prototypes exist using combinations of some of these 

methodologies. An early version of OpenORB was prototyped using the Python 

programming language [2] with a resource management framework added in [48]. The 

OpenCOM component framework [115], again based on the OpenORB model, is built on 

top of a subset of Microsoft’s COM [100]. OpenCOM provides low-level support for meta-

models, using a series of COM type interfaces to objects that are encapsulated within the 

service component being developed. OpenORBv2 [13], is implemented in C++ as a 

CORBA compliant ORB using the OpenCOM component framework, as described in [28]. 

A reflective middleware framework for mobile computing, called ReMMoC [60], has also 

been implemented on top of OpenCOM. ReMMoC focuses on dynamic discovery and use 

of distributed services, for use in a heterogeneous mobile computing environment.  

As a result of the several designs, and several prototype implementations of the OpenORB 

models, it is difficult to classify this research by how unanticipated dynamic adaptation is 

supported, and what can be supported for each programming language used. The use of 

dynamically changeable management components that use interpreted scripting languages to 

support unanticipated dynamic adaptation and its management would seem to be of most 

interest to this thesis. The ability to dynamically add and remove components, and as a 

result management components, means that adaptations, the adaptation locations, and when 

the adaptations are applied can remain unanticipated until during runtime. The use of 

metadata and metalevel architectural information to constrain and manage dynamic 

adaptation is also of importance with respect to dynamic and unanticipated use of contextual 

information. When combined with user interfaces to support unanticipated dynamic 

adaptation and requirement specification, adaptation management logic can also remain 

unanticipated. Overall, this thesis tentatively classifies the OpenORB research as supporting 



  

64 

completely unanticipated dynamic adaptation, but whether these techniques are all currently 

implemented in entirety in one or more prototypes is uncertain. 

The degree to which the metatype adaptation model can be incorporated into the OpenORB 

model is also difficult to define. In general, the OpenORB model of adaptation is to replace 

components or component implementation strategies, rather than associate adaptations with 

existing components. A slight exception would be the use of interceptors at interface 

bindings, where wrapping behaviours can be added, in a manner similar to associating a new 

behaviour to an interface. Although presented as an adaptable middleware framework, the 

research associated with OpenORB and its associated projects can largely be extended to a 

generalised component-based model for applications other than middleware. However, 

unlike Chisel which is a general-purpose adaptation framework, all components to be 

adapted must be written according to the OpenORB programming model. 

 OpenORB 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.3.2 Summary of the adaptation characteristics of OpenORB 

2.3.3 ACT 

ACT [133, 134] is a generic adaptation framework for CORBA compliant ORBs that 

supports completely unanticipated dynamic adaptation. When the ORB is started ACT is 

enabled by registering a specific portable request interceptor [106], intercepting every 

remote invocation request and handing them to a set of dynamically registered interceptors. 

These dynamically registered interceptors can be added in an unanticipated manner. Rule-

based dynamic interceptors allow the request to be redirected to a different source or handed 

to either a number of local proxy components exporting the same interface as that of the 

destination server component [133] or to a generic local proxy component [134]. This 

generic proxy component can also be dynamically created in an unanticipated manner. This 

proxy in turn can request a rule-based decision maker component, which can incorporate an 

event service, to either perform the invocation, change parameters and forward the request 

to its original destination or a different destination. 

A prototype implemented in Java is described whereby the Quality Objects (QuO) 

framework [4], an aspect-oriented QoS adaptation framework for CORBA ORBs that uses 



  

65 

compile-time weaving, was used with Orbacus [69], a CORBA-compliant ORB, to support 

completely unanticipated runtime aspect weaving in the ORB. A number of management 

interfaces were also provided to manage the runtime registration of new rule-based dynamic 

interceptors, and the addition of new rules to these interceptors. 

The ACT framework is classified in this thesis as supporting completely unanticipated 

dynamic adaptation since any adaptation, its intended target, when the adaptation is applied, 

and the control logic governing its application can all remain unanticipated until after the 

start of runtime. However, this framework differs from the Chisel framework presented in 

this thesis since ACT can only be used to adapt CORBA compliant middleware systems. 

Chisel is a general-purpose dynamic adaptation framework since it can be used to 

dynamically adapt any application at runtime, including middleware frameworks, as 

described in Chapter 5. 

 ACT 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application During runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.3.3 Summary of the adaptation characteristics of ACT 

2.4 Policy or interpreted script driven adaptation 

As discussed in Chapter 1, a policy-based adaptation management model is an ideal 

mechanism to drive a general-purpose dynamic adaptation framework, since the adaptation 

mechanism can be completely decoupled from the adaptation management. Adaptation 

frameworks that use a policy-based management model supporting dynamically updateable 

policy specifications allow the timing requirements and control logic for the application of 

adaptations to be dynamically specified, in an unanticipated manner.   

This section discusses policy-based management systems, and adaptation frameworks that 

support policy-based management of adaptations. Similarities in design, design influences, 

and relevance to the Chisel framework are also discussed. Ponder, GEM, and REI are 

discussed particularly in terms of their contribution to the area of policy-based management, 

and in terms of how they influenced the design of Chisel’s support for policy-based 

adaptation management, rather than as mechanisms that could be directly used by Chisel. 

Conversely, Correlate, CARISMA, RAM, and M3 are discussed in terms of how they 



  

66 

support policy-based management of adaptation, and in terms of how they compare to the 

Chisel framework. A number of other systems such as the work in Lancaster University [49] 

could have been discussed here but again they are not directly related to the Chisel 

framework. 

2.4.1 Ponder  

Developed at Imperial College London, the Ponder policy language [33-35, 47] is a 

declarative, object-oriented language for specifying security and management policies for 

distributed object systems. This project is built upon the experience in policy-based 

management in Imperial College over the last several years, e.g., [98, 104, 143]. In Ponder 

there are four basic types of rule. Positive or negative authorisation rules provide or restrict 

permission to perform an action. Obligation rules specify that an action must be performed 

in response to an event. Refrain rules specify that an action cannot be performed. Delegation 

rules allow a subject to delegate some of their authorisations to another subject. The policy 

subjects, to whom the rule applies, are a set of managers that manage a set of managed 

objects (target objects). Actions are specified as operations with parameters on a target 

object, while goals are a higher-level view of an objective that can be decomposed into a 

series of actions. Each rule is also governed by a series of constraints that must be satisfied 

before the goals or actions can proceed. 

Ponder also supports several types of composite policies, i.e., groups of policies that model 

enterprise specifications on organisational structures. “Roles” are used to describe a set of 

policies that all contain the same subject to show a high-level view of the position or 

enterprise role of a subject. Ponder also supports hierarchies of Roles. “Relationships” are 

used to model the interactions between roles. Related policies can also be joined together to 

form “groups” that are used as units for organizational and reuse purposes. “Management 

Structures” are used to model organizational units by containing a predefined set of roles 

and relationships. Meta-policies can also be used to provide a high level view of groups of 

policies as a policy itself and is mainly used to describe constraints between groups of 

policies.  

The policy language described in this thesis is loosely based on Ponder obligation policies. 

In the Chisel system, as events occur due to changes in context, the adaptation manager is 

obliged to adapt the behaviour of underlying system services if constraints allow. A fully 

functional policy language to specify security constraints and enterprise level policies are 

however outside the goals of this research.  



  

67 

2.4.2 GEM  

Also created in Imperial College London, GEM [97] is a Generalised Event Monitoring 

language used to program events and event monitors. It supports the generation, processing 

(merging, filtering, validation), dissemination (registration, distribution), and presentation 

(event abstractions or views) of events. The language provides for the dynamic definition of 

simple events, composite events, and rules to describe how monitors should respond to these 

events. Again, this language is interpreted so the script can be dynamically updated to allow 

the system to adapt in a policy-controlled manner.  

The language used in the Chisel framework described in this document closely resembles 

the language used in GEM to define and respond to events. Also included in GEM is 

support for systems where the values of status variables can be thresholded so that jitter 

does not occur if the status variable changes rapidly to values that are close to the threshold 

value.  

2.4.3 REI 

The REI policy framework [78, 79] is an application-independent policy-based management 

system. It has four basic policy types: rights, prohibitions, obligations and dispensations, 

which correspond to positive and negative authorisations, obligations, and refrains in 

Ponder. The REI framework is mostly focused towards security policies. A set of rules, 

written in a Prolog like language, can be associated with a managed domain entity. Any 

time an action is to be performed on this entity, the REI policy system is requested to verify 

that this action can be performed. REI also provides a mechanism to define actions that can 

be used in obligation rules. A general action is described by a unique identifier, the target 

objects on which the action can be performed, a set of preconditions that must be satisfied 

before the action can be executed, and lists the effects of the action. REI provides the ability 

to reason about rules and respond to queries but does not provide a mechanism to enforce 

policy rules or perform actions. Therefore, in order to support unanticipated dynamic 

adaptation, REI must be used in conjunction with a separate adaptation mechanism.  

2.4.4 Correlate 

Presented by the DistriNet research group in Katholieke Universiteit Leuven, Correlate [73, 

74, 128, 129, 154] is a concurrent object-oriented language based on C++ (and later Java) to 

support mobile agents. It has a flexible runtime engine to support migration and location 

independent inter-object communication. Each agent object has an associated meta object 



  

68 

that can intercept creation, deletion, and all invocation messages for the object. This system 

allows non-functional aspects of the application to be separated from the application object, 

in a manner very similar to the metatype adaptation model. The non-functional behaviours 

are designed to be largely application independent. However, independent policy objects 

can be defined to contain application-specific information to assist in the operation of these 

meta-level non-functional behaviours. The meta-level system was initially used to 

implement non-functional concerns such as real-time operation [5], load-balancing and 

security [131], and fault tolerance [128]. Later this system was used to customise ORBs, 

using application-specific requirements, as an adaptable graph of meta-level components 

that could be extended or adapted at runtime [153]. 

The application-independent non-functional behaviours are implemented as meta object 

classes, which can interact with the base program to adapt its operation using a message-

based MOP [130]. These meta object classes define a set of possible property values in a 

policy template. Each application class has an associated singleton policy class, which is an 

instantiation of one of these templates, containing application-specific information. These 

singleton policy class objects are consulted by the meta-level before performing the non-

functional behaviours of the application [131], allowing the operation to be customised in an 

application-specific manner. However, this policy system is limited since policy templates 

are imposed at the time the meta program is written. These templates, written in a 

declarative language, must fully define what possible customisations an application may 

require. The policies, also written in the same declarative manner, select values for template 

properties according to the application class they are associated with.  

These templates cannot be changed, so adaptation in response to unanticipated requirements 

cannot be fully handled. Policies are written before runtime by a system integrator, and 

these policies are then integrated with the application. Policies cannot be changed at 

runtime, since policies are translated to code that is compiled. Unanticipated forms of 

dynamic adaptation cannot be achieved in this architecture as the meta-level programmer 

and template designer needs complete a-priori knowledge of the possible changes in context 

values that may occur, and also the set of customisations from which the meta-level can 

choose is fixed at compile time. Again, all adaptable systems using Correlate must be 

designed and written according to the Correlate programming model. 



  

69 

 Correlate 
Anticipation of the adaptation contents At compile time and before runtime 
Anticipation of the adaptation location At compile time and before runtime 
Anticipation of the timing of the adaptation's application At compile time and before runtime 
Anticipation of the control logic for the adaptation's application At compile time and before runtime 
Adaptation binding time At compile time and during runtime 
Adaptation binding mode Dynamic 

Table 2.4.4 Summary of the adaptation characteristics of Correlate 

2.4.5 CARISMA  

Research carried out at University College London on the CARISMA project [20-23] 

presents a design for peer-to-peer middleware based on service provision. Each node can 

export services and possible different behaviours or implementations for those services. 

Services can be selected according to user and application context information, as specified 

in an “Application Profile”, an XML document. Embedded in this application profile is the 

application-specific information that the middleware uses when binding to these services, 

e.g., which service behaviour to use in response to changes in the execution context. The 

middleware is responsible for maintaining a view of the system environment by directly 

querying the underlying network-enabled operating system. Applications may request to 

view and change their profiles at runtime, thereby adapting the middleware as application-

specific and user-specific requirements change dynamically.  

This system also provides the ability for the application to be informed by the middleware 

of changes in specific execution conditions, supporting the development of resource-aware 

applications. This system is based on the provision of multiple implementations of the same 

service with different behaviours, in a manner similar to the strategy pattern [55], unlike the 

Chisel framework, which adapts the service itself. 

However, the primary contribution of this work focuses on the identification and resolution 

of profile conflicts [22], and not on the actual provision of an adaptable middleware 

implementation. No information is provided about how the services are implemented, if they 

can be dynamically loaded, how they implement their different strategies, or if these 

strategies can be expanded at runtime. It is suggested that the ReMMoC middleware 

framework [60] could be used here, but no implementation information is available. This 

means that the degree to which this system supports unanticipated adaptation cannot be 

evaluated. However, it should be noted that the application profile that controls how the 

system adapts, and the mechanism for profile conflicts, can both be adapted at runtime in an 

unanticipated manner. 



  

70 

2.4.6 RAM 

RAM (Reflection for Adaptable Mobility) [17, 36-38, 71] from École des Mines de Nantes, 

takes the approach of completely separating functional and non-functional aspects of an 

application in a manner related to aspect oriented programming (AOP). Using this 

separation of concerns approach, only the core application functionality is inserted into the 

application code, with all middleware services represented as non-functional concerns. 

TContainer T meta objects wrap each application, and support the composition of other 

meta object which implement these non-functional concerns. The wrapping of application 

objects with TContainer Ts occurs at either load time using Javassist in [17] or compile-time 

using AspectJ in [36-38, 40]. These meta objects provide the middleware services by 

selecting appropriate TRoleProvider T objects for each service, i.e., the meta objects that 

provide the actual implementations of the services. Adaptation can occur by adding, 

removing, or reordering these TRoleProviders T. 

RAM also provides a resource manager, whereby the system maintains a tree of 

TMonitoredResource T objects, which describe a contextual resource or group of 

resources. These TMonitoredResource T objects are updated by Tprobe T objects that 

actively monitor the environment. TMonitoredResource T objects can be queried 

explicitly or change notifications can be requested. The TContainer T meta objects, that 

wrap each application component, can also expose the TMonitoredResource T interface, 

supporting queries of application context as resources, thereby exploiting application-

specific knowledge in the adaptation process, as also seen in Chisel and K-Components 

systems. The resource manager can also signal the adaptation engine when an interesting 

resource change occurs in a manner similar to the context manager in the Chisel framework. 

The set of meta objects (aspects) to use in each TContainer T is adapted at runtime by 

means of an adaptation engine that uses a declarative application policy and a system policy, 

written in a Scheme-like language, and which are both passed to the adaptation engine when 

the application is started. Application policies define pointcuts (a dynamic set of join points, 

i.e., TContainer T objects) in the application, and the named non-functional aspects to be 

used at these pointcuts, in an application-aware but resource-independent manner. The set of 

rules that determine which join points make up a pointcut is specified in the application 

policy, but these rules are dynamically evaluated, so this set of join points can change 

dynamically. The non-functional aspects woven at these pointcuts are defined in the system 

policy in an adaptive Condition-Action model, where sets of application-independent but 



  

71 

resource-aware conditions are dynamically evaluated to decide which meta objects will 

implement the non-functional aspect. When the conditions are dynamically evaluated, the 

bindings of meta objects can be changed, in a manner similar to dynamic aspect weaving. 

Therefore, the set of join points that make up a pointcut, and the set of meta objects that 

implement an aspect are dynamic in nature according to the rules in the policies. The current 

system does not support dynamic changes to the policies, and so cannot support 

unanticipated adaptation logic, however this is planned for future versions. In most cases 

where AspectJ is used, access to the source code of the application is also required. 

A version of RAM suggests using a configuration file to specify the set of join points that 

can be used, and use AspectJ to create these join points at compile time rather than have 

TContainer Ts wrap every application object [40]. This means however that all possible 

locations for adaptation must be anticipated in the source code of the application.  

Preliminary designs for an adaptation framework extending RAM, which would possibly 

support completely unanticipated adaptation by allowing dynamic specification of policies 

and dynamic selection of adaptation locations, is presented in [39], but this system has yet to 

be implemented. 

 RAM 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location Compile time and load time 
Anticipation of the timing of the adaptation's application During runtime 
Anticipation of the control logic for the adaptation's application Start of runtime 
Adaptation binding time During runtime 
Adaptation binding mode Dynamic 

Table 2.4.6 Summary of the adaptation characteristics of RAM 

2.4.7 M3  

The M3 [67, 68, 120] architecture is an adaptive middleware framework that supports 

adaptation in a context-aware manner. This is achieved using a Mobile Enterprise 

Architecture Description Language (MEADL) script to dynamically reconfigure how 

application and system components interact with each other within the runtime environment 

(M3-RTE). In this system, all components interact and coordinate with each other using 

only events. As these events occur, they can be monitored and used to trigger adaptation of 

the architecture and the underlying collection of distributed services and network protocols. 

The M3 runtime environment also maintains context variables that can be used to perform 

these adaptations in a context-aware manner. An entire application architecture can be 

modelled as a series of enterprise roles with duties whose scope are defined in obligation, 



  

72 

prohibition, and permission policies similar to those in the Ponder system. The system then 

adapts itself as roles move in/out of contexts, or as the roles' policies are changed. The 

current prototype parses the MEADL script, translates it to XML, and then translates these 

rules into a series of event notification subscriptions using the Python programming 

language. Prototype adaptable tickertape and email client applications have been developed 

to run on the M3 runtime environment.  

While the Chisel framework has many similar design ideas to this project, the M3 system 

has some important drawbacks. The adaptation mechanisms prototyped (including filtering, 

object migration, interface restrictions and web content adaptation) all lack the generality 

and openness of a general-purpose reflective mechanism like dynamic metatype association, 

as used in the Chisel framework. Morphable objects, i.e., objects that can change their type 

at runtime, are mentioned in [67] but no more information is available about these reflective 

techniques. It is suggested that the MEADL script can be dynamically updated and reparsed 

in an unanticipated manner, but no confirmation of this is available in the documentation. 

However, a programmatic interface also exists to create and remove rules at runtime, which 

can also be used from within other rules. 

The MEADL rules for a role can include contextual information by detecting if the role is 

currently operating in or out of a named context. This approach is extremely limiting 

however since context cannot often be measured as a boolean state, a ranged metric value 

would provide more expressiveness and accuracy. 

 M3 
Anticipation of the adaptation contents During runtime 
Anticipation of the adaptation location During runtime 
Anticipation of the timing of the adaptation's 
application 

During runtime 

Anticipation of the control logic for the adaptation's 
application 

During runtime 

Adaptation binding time No adaptations are bound, only component 
interactions are changed dynamically 

Adaptation binding mode No adaptations are bound, only component 
interactions are changed dynamically 

Table 2.4.7 Summary of the adaptation characteristics of M3 



  

73 

2.5 Overview 

The previous sections of this chapter provide an in-depth discussion of software adaptation 

with respect to support for completely unanticipated dynamic adaptation, support for 

general-purpose adaptation of compiled software in a user-aware and context-aware manner, 

and the applicability of the metatype adaptation model in a subset of these systems. 

As stated, the ability to fulfil these requirements is the prime objective of the Chisel 

dynamic adaptation framework. As can be seen from the review there remains a lack of 

usable mechanisms to support this combination of requirements. 

Using the degree of support for completely unanticipated dynamic adaptation as the primary 

requirement for adaptation mechanisms provides only a small number of frameworks that 

fulfil this requirement. While 2K, the OpenORB model, ACT, and the M3 architecture all 

support completely unanticipated dynamic adaptation, they are not suitable for general-

purpose adaptation of third party software, since the target software for these systems must 

be designed specifically for these systems. The Java HotSwap mechanism is tentatively 

classified as supporting completely unanticipated dynamic adaptation, but this mechanism 

provides no high-level support for managed dynamic adaptation. PROSE and Wool also 

both support completely unanticipated dynamic adaptation, however these mechanisms 

again provide no high-level support for user or context awareness.  

Guaraná, MetaXa, and Iguana/J can also be extended to support completely unanticipated 

dynamic adaptation with the provision of a mechanism to support the runtime specification 

of unanticipated adaptation directives and support for those adaptations. 

This detailed classification of adaptable systems based on varying support for completely 

unanticipated dynamic adaptation is further illustrated in table 2.5.1 at the end of this 

chapter. 

Table 2.5.2, also at the end of this chapter, further classifies the adaptable systems discussed 

in the previous sections according to the degree of support for dynamic adaptation found in 

each system. Systems are classified according to their adaptation binding times, and their 

adaptation binding modes as described in [31]. Here "dynamic" binding refers to the ability 

to bind and then unbind an adaptation at runtime, whereas in [31] this is referred to as 

"changeable" binding. Binding time refers to the specific time in a software product's 

lifetime that a feature is bound or woven into that product. Examples of binding times 

include design time, compile time, before runtime, at runtime, load time, during runtime etc. 



  

74 

This classification is in addition to the primary classification of systems in terms of their 

support for completely unanticipated dynamic adaptation, and could have extended to 

classify any of a large number of adaptation classifications, e.g., composability of 

adaptations, granularity of adaptation, application or problem domain addressed by the 

system, programming languages supported, etc. However, as stated, this thesis is 

particularly focused towards unanticipated dynamic adaptation so the classifications used 

are limited to characterising support for unanticipated adaptation and support for dynamic 

adaptation. A more generalised taxonomic classification of adaptation mechanisms and 

models is given in [18]. 

2.6 Conclusions  

This chapter described a number of systems and research that influenced and are similar to 

the contributions of this thesis.  

The objectives of this research are: to support adaptation where no aspect of the adaptation 

is anticipated until the adaptation is needed and if possible to perform this adaptation 

without access to the source code of the application, and to investigate the usefulness of the 

metatype adaptation model to dynamically adapt software. 

In order to reach these objectives, a number of requirements must be met. An adaptation 

framework that supports completely unanticipated dynamic adaptation is needed. This 

adaptation must be able to perform adaptations on third party software modules. To test the 

metatype model, a framework is needed that supports the dynamic definition, loading, and 

association of metatypes at runtime.  

From the research described, it can be seen that there currently exists no mechanism that 

completely fulfils the objectives and requirements of this research. This thesis continues 

with a detailed design of a dynamic adaptation framework, Chisel, which does meet these 

requirements. 



  

75 

Project name Anticipation of the 
contents of the 
adaptation 

Anticipation of the 
adaptation location  

Anticipation of the 
timing of the 
adaptation's 
application  

Anticipation of the 
control logic for 
the adaptation's 
application  

Iguana/C++ Compile time Compile time Design time and 
Compile time 

Design time and 
Compile time  

Iguana/J During runtime During runtime Start of runtime / 
compile time P

1
P
 

Start of runtime / 
compile time P

1
P
 

Java HotSwap During runtime During runtime During runtime During runtime 
Javassist Compile time P

8
P Compile time P

8
P
 Compile time P

8
P
 Compile time P

8
P
 

DART Compile time and 
before runtime 

Design time Design time Design time 

Kava Start of runtime Start of runtime Start of runtime Start of runtime 
Guaraná Compile time / start 

of runtime P

2,7
P
 

Compile time / start of 
runtime P

2,7
P
 

Compile time / start 
of runtime P

2,7
P
 

Compile time / start 
of runtime P

2,7
P  

MetaXa Compile time / 
before runtime P

7
P
 

Compile time / before 
runtime P

7
P
 

Compile time / 
before runtime P

7
P
 

Compile time / 
before runtime P

7
P
 

K-Components During runtime Design time During runtime During runtime 
AspectJ Before load time P

8
P
 Before load time P

8
P
 Before load time P

8
P
 Before load time P

8
P
 

JMangler Load time Load time Load time Load time 
AspectWerkz During runtime P

7
P
 Start of runtime Start of runtime Start of runtime 

PROSE During runtime During runtime During runtime During runtime 
Wool During runtime During runtime During runtime During runtime 
TRAP/J During runtime Compile time During runtime During runtime 
DynamicTAO During runtime Design time During runtime During runtime 
2K During runtime During runtime During runtime During runtime 
Next generation 
middleware at 
Lancaster  

During runtime During runtime During runtime During runtime 

ACT During runtime During runtime During runtime During runtime 
Correlate Compile time and 

before runtime P

4
P
 

Compile time and before 
runtime P

4
P
 

Compile time and 
before runtime P

4
P
 

Compile time and 
before runtime P

4
P
 

CARISMA Unknown P

3
P
 Unknown P

3
P
 During runtime During runtime 

RAM During runtime Compile time / load time P

5
P
 During runtime Start of runtime 

M3 During runtime During runtime During runtime During runtime P

6a
P
 

Table 2.5.1 Overview of adaptation anticipation in reviewed dynamic adaptation systems 

Notes for Table 2.5.1: 
Note: The policy frameworks, Ponder, GEM and REI are not included in these tables as they are management 
frameworks, not adaptation frameworks. 
1: In Iguana/J adaptation application can be applied at start of runtime or in the source code. Design for an 
administrative console for adaptation during runtime is also presented. 
2: In Guaraná, support for adaptation unanticipated until the start of execution was added later as a launcher with 
the Guaraná Development Kit (GDK), otherwise dynamic adaptation code must be embedded in the application 
code.  
3: In CARISMA, no information about how services or their operation strategies (policies) are implemented are 
provided in the documentation. 
4: In Correlate, adaptation policies can be defined prior to runtime, but only according to templates and 
parameters set at meta program compile time, so Correlate adapts at runtime but only according to policies and 
strategies defined prior to runtime. 
5: In RAM, different versions exist, each with different anticipation of the location of the adaptation. 
6a: In M3, it is suggested that the MEADL configuration script can be dynamically updated in an unanticipated 
manner at runtime, but no confirmation is available in the documentation. 
7: Supports unanticipated dynamic adaptation of compiled code, but only has a programmatic interface; so all 
adaptation must be specified and compiled before runtime. 
8: All adaptation characteristics are specified in the adaptation code before the adaptation is compiled. 



  

76 

 
Project name Adaptation binding 
Iguana/C++ Dynamic, at compile time and during runtime 
Iguana/J Dynamic, load time or during runtime 
AspectJ Static, at compile time, post-compile time, or load time  
DART Dynamic, at compile time and before runtime 
K-Components Dynamic, during runtime 
DynamicTAO Dynamic, during runtime 
2K Dynamic, during runtime 
JMangler Static, at load time 
AspectWerkz Dynamic, during runtime 
Kava Static, at load time 
Java HotSwap Dynamic, during runtime 
ACT Dynamic, during runtime 
TRAP/J Dynamic, during runtime 
PROSE Dynamic, during runtime 
Guaraná Dynamic, during runtime 
MetaXa Dynamic, during runtime 
CARISMA Unknown P

3
P
 

Correlate Dynamic, at compile time and runtimeP

4
P
 

M3 Adaptations are not bound P

6b
P
 

RAM Dynamic, during runtime 
Javassist Static, at loadtime 
Wool Dynamic, during runtime 
Next generation middleware at Lancaster Dynamic, during runtime 

Table 2.5.2 Overview of the adaptation binding categories used in reviewed adaptation systems 

Notes for Table 2.5.2: 
Note: The policy frameworks, Ponder, GEM and REI are not included in these tables as they are management 
frameworks, not adaptation frameworks.  
3: In CARISMA, no information about how services or their operation strategies (policies) are implemented are 
provided in the documentation. 
4: In Correlate, adaptation policies can be defined prior to runtime, but only according to templates and 
parameters set at meta program compile time. Correlate adapts at runtime but only according to policies and 
strategies defined prior to runtime. 
6b: In M3, how the components of the system coordinate and communicate with each other is changed 
dynamically (policy controlled), but no adaptations are bound to the components. 



  

77 

Chapter 3 
THE CHISEL FRAMEWORK, 

CONCEPT AND DESIGN 
This chapter describes the design and operation of the Chisel dynamic adaptation 

framework. 

This chapter begins by discussing the aims and objectives of the Chisel project. From this 

discussion a series of requirements for the Chisel dynamic adaptation framework is 

established. This chapter then continues with an in depth discussion of the metatype model, 

explaining the metatype concept, discussing both the possibilities and limitations of the 

model, and presents the use of the dynamic association of metatypes as a dynamic software 

inspection and adaptation technique. 

The use of events in the Chisel adaptation framework is then discussed, and the Chisel event 

model is presented. This is followed with a discussion of the Chisel context model, and how 

the Chisel framework supports context-awareness. The use of this event model and context 

model as parts of the policy-based management model used in the Chisel framework is 

described, accompanied by an overview of how the Chisel adaptation framework operates. 

The Chisel policy language is then presented and discussed. 

The Chapter ends with a discussion of how the Chisel dynamic adaptation framework 

design presented in this chapter fulfils all the objectives and requirements in order to support 

completely unanticipated dynamic adaptation of general-purpose software, in a context-

aware manner. 



  

78 

3.1 Objectives and requirements 

As described in Chapter 1, the objectives of this thesis are twofold: having researched the 

field of unanticipated dynamic adaptation, to design and build a prototype dynamic 

adaptation framework that supports completely unanticipated dynamic adaptation and to 

demonstrate the feasibility of using runtime behavioural reflection and dynamic use of 

metatypes to support dynamic adaptation of software in a general-purpose manner As these 

objectives are discussed, a number of requirements that must be satisfied by the Chisel 

framework will become apparent. 

3.1.1 Requirements for completely unanticipated dynamic 
adaptation 

Completely unanticipated dynamic adaptation is introduced in Chapter 1. A particular 

adaptation is completely unanticipated only if, the nature of the adaptation (what), the 

location of the adaptation (where), when the adaptation is applied (when), and what control 

logic drives or triggers the application of the adaptation (how), can all remain unanticipated 

and unprepared until after the application being adapted has started executing.  

Location of an adaptation unanticipated until runtime 

If the location at which an adaptation is to be applied is to remain unanticipated until 

runtime, there must exist a mechanism for the insertion of a hook to support the 

unanticipated placement of adaptive code at the required location at runtime. An alternative 

is to have a very extensive set of prepared locations (hooks) for adaptations already woven 

into the target application. In this alternative situation the location of particular adaptations 

remains unanticipated, only the possible need for arbitrary future adaptations has been 

anticipated. This does not break the requirement at which the location that a particular 

adaptation is applied remains unanticipated 

If the system is capable of dynamic adaptation, unanticipated adaptations can be applied at 

an unprepared location, or one of a large set of prepared locations. In order for this 

requirement to be fulfilled, there must also exist some mechanism to name, describe, and/or 

specify the adaptation location at runtime, otherwise the locations cannot be found and used. 

This dictates that some form of runtime support is available to support the dynamic 

identification and specification of adaptation locations. In an object oriented system the 



  

79 

granularity of these locations will be have the granularity of an object, an interface, or a 

class.  

This requires support for inspection of the software in order to locate where the adaptation is 

required, and in addition, support to apply a unique identifier to that location for use in the 

adaptation control logic. This requirement is discussed in more detail in section 3.1.2.  

Management and control of an adaptation unanticipated until runtime 

The control logic that is used to manage the application of an adaptation can also remain 

unanticipated at runtime if there exists some method for the control logic to be specified and 

interpreted at runtime. This control logic must be capable of specifying what adaptation 

should be applied, where and when it should be applied, and conditions to restrict the 

application of the adaptation if necessary. This adaptation logic may be of a reactive nature, 

whereby the adaptation manager should wait for something to happen and then react to that 

event in the manner specified, or, the adaptation logic may be proactive in nature, whereby 

the adaptation should be immediately applied.  

Since many dynamic adaptations are necessarily required because some state, resource, or 

requirement has changed for the user, application, or execution environment, this 

dynamically specified control logic must also support the querying of this runtime context. 

If this context information remained constant, many adaptations would not be required, or 

could be anticipated before runtime. However, what context information is of importance 

may not be known before the need for an adaptation has arisen. Therefore it must be 

possible to have access to arbitrary context information, but allow the unanticipated 

specification of what context information should be managed, 

Timing of the application an adaptation unanticipated until runtime 

When an adaptation is applied will be defined by the control logic used by the adaptation 

manager to manage its application. As stated above, this control logic may be either 

proactive or reactive in nature. Proactive adaptation control logic means that the application 

of the adaptation is triggered as soon as possible after the adaptation manager receives and 

interprets the adaptation control logic, which can be specified at an unanticipated time. For 

reactive control logic, the application of the adaptation is triggered after the occurrence of 

some arbitrary event or the evaluation of some arbitrary condition. In this case it should be 

possible to apply the adaptation after the possibly unforeseeable triggering of an adaptation 

operation. Therefore, the adaptation framework must support the dynamic binding of 

adaptations at unanticipated times. It should also be possible to unbind that adaptation in the 



  

80 

case that an adaptation it is no longer required, or would conflict with another previously 

unanticipated adaptation. 

Contents of an adaptation unanticipated until runtime 

In order to support completely unanticipated adaptation, it must also be possible to support 

the dynamic and unanticipated specification of the particular adaptations themselves. This is 

only possible if the execution environment of the target application supports the dynamic 

loading the new executable code that defines the adaptation. In addition, it must be possible 

to refer to the possibly newly-loaded adaptation so that it can be used in a controlled manner 

at runtime, since some form of reference to the adaptation must be incorporated into the 

adaptation logic used by the adaptation manager. In order to support dynamic adaptation it 

is also a requirement that the adaptation mechanism support the dynamic binding and 

unbinding of the adaptation with its target once it is loaded, otherwise it cannot be applied. 

Summary of requirements for completely unanticipated dynamic adaptations 

The objective to design and build a general-purpose adaptation framework that supports 

completely unanticipated dynamic adaptation where the nature of the adaptation (what), the 

location of the adaptation (where), when the adaptation is applied (when), and what control 

logic drives or triggers the application of the adaptation (how), can all remain unanticipated 

and unprepared until after the application being adapted has started executing, necessitates 

that each of the requirements specified in this section are addressed. These requirements 

form the primary design requirements of the Chisel dynamic adaptation framework. 

Unanticipated 
location (where) 

• Ability to dynamically create adaptation hook locations at runtime 
  or, 
   Have already inserted a large set of hook locations, suitable for any adaptation 
• Ability to identify and refer to adaptation locations at runtime 

 
 

Unanticipated 
control (how) 

• Ability to dynamically specify adaptation control logic, and have this control 
 logic interpreted at runtime 

• Ability to include arbitrary context monitoring in this control logic, and support 
 the dynamic specification of what should be monitored. 

 
 
Unanticipated timing 
(when) 

• Ability to bind and unbind adaptations at specified points at any time during 
 execution 

 
 
Unanticipated 
adaptation contents 
(what) 

• Ability to dynamically create arbitrary executable code at runtime 
• Ability to load this newly created code refer to this executable code after it is 

 loaded  

Table 3.1.1 Summary of requirements to support completely unanticipated dynamic adaptation 



  

81 

3.1.2 The ability to inspect and identify internal parts of the 
software 

In any closed or compiled system where unanticipated dynamic adaptation is required, it is 

first required to locate and identify the part of the software to be adapted. For software 

written using an object-oriented methodology the adaptation is usually required at the 

granularity of a class, an object, or a group of objects or classes. This is made particularly 

difficult when the software to be adapted is written according to a "black-box" model, 

whereby the implementation details of how a software module operates are hidden [82]. The 

black-box model has a number of advantages. It hides unnecessary implementation detail 

and clutter from users of the module. It protects, by obscuring, the internal operation of the 

module, thereby securing the value of the software module. It protects the module's internal 

working data and code from being used in unsupported and possibly dangerous manners. It 

also provides an easy to use modular building block for building more complex software 

whereby the boundaries and interface to a module are clearly defined. But this black-box 

model for software has some very serious disadvantages, some of which even severely 

restrict the reusability of the software, one of the core aims of the model in the first place. It 

reduces the set of use-cases of the module to a set that is restricted to exactly those 

supported by its interface, even if the module would be capable of wider use with possibly 

very minor changes. There should be no need to reinvent a module because it cannot fulfil 

an unanticipated requirement, especially if the original module could fulfil that requirement 

with only slight adaptation. Yet another drawback of this black-box approach is that the user 

of a software module has no way to discern how the module is operating, so that the user 

might improve upon it, debug it, tailor their own code to use this module in a better manner, 

or learn from the lessons and contributions of the module's implementation. A closed black-

box module is difficult to adapt because its operation is obscured, making the inspection and 

identification of the operation of compiled software modules a difficult task. If a module's 

internal operation can be probed and observed, then it may be possible to adapt that module 

to extend its capabilities. 

To challenge this model, the Chisel framework should support the probing and inspection of 

a compiled class or object. It should be possible to inspect and view all method and state 

accesses, both into and out of the object or class, as well as the types and values of all 

method parameters and return values, and the types of all classes and objects used by that 

class. Along with these requirements, this must be achieved without access to the source 

code of the module. 



  

82 

Once a complete picture of all of the fields and methods of a particular object or class, with 

a set of data values as method parameters and their corresponding return values, and the 

same for all classes and objects accessed by that particular class or object, the observer has a 

good deal more information to help deduce and reverse engineer the internal operations and 

behaviours of the class or object, and so break down the black-box model to a certain extent. 

Once the user has determined how the object or class operates, the user is then in a position 

to adapt that object or class in an intelligent and informed manner. This ability to adapt and 

extend third-party software in a general-purpose manner, without requiring access to the 

source code of that software, is a core objective of this research. As stated, the ability to 

inspect, probe, and profile the operation of arbitrary software is therefore a key requirement 

of the design of the Chisel framework. 

While it is often not necessary that these inspection and probing features are available for 

use in an unanticipated manner, the Chisel framework still aims to provide a mechanism to 

support the unanticipated runtime probing, debugging, and evolution of software modules.  

Introspection 

• Ability to dynamically inspect, probe, and profile the operation of arbitrary compiled 
 software at runtime 

• Ability to perform this introspection without access to the source code of the software 
• Ability to perform this introspection in an unanticipated manner 

Table 3.1.2 Summary the requirements to enable introspection of arbitrary software 

3.1.3 Demonstrating metatypes 

Metatypes [125, 127, 139], as introduced in Chapters 1 and 2 are type-independent changes 

in behaviour, i.e., “snap-on” behaviours, that can be associated with classes and objects, 

which may change the current functional behaviour of the target, or may implement new 

non-functional behaviours with that class or object. The metatype model is relatively new 

and untested, and has not been demonstrated to any large extent. This thesis aims to prove 

the capabilities, explore the limitations, and demonstrate the operation of metatypes for 

dynamic adaptation of running software. It is therefore a requirement that the Chisel 

adaptation framework makes use of the metatypes to perform dynamic adaptations. A 

detailed discussion of metatypes, i.e. what they are, what they do, what they cannot do, and 

how they do it, follows in the section 3.2 of this chapter. Further discussion about the 

metatype model will follow throughout this thesis. 

Metatypes • Make use of metatypes as a dynamic adaptation mechanism, to demonstrate their 
 abilities and usefulness  

Table 3.1.3 Summary the requirement to demonstrate the use of metatypes 



  

83 

3.2 The Chisel adaptation mechanism: dynamic 
metatype association 

This section describes in detail what exactly metatypes are, and how they are used. This 

section also describes how dynamic metatype association can be used as a mechanism to 

achieve dynamic software adaptation. How this mechanism for dynamic adaptation is 

harnessed by the Chisel dynamic adaptation framework is also presented. 

3.2.1 What are metatypes 

Although metatypes have been introduced and discussed in Chapters 1 and 2, this section 

will define what is meant by a "metatype" with respect to this research.  

In an object-based computational system, each object models some distinct entity in an 

application domain. An object's "object model" refers to the set of concepts used to 

construct that object so that it represents that part of the modelled domain, i.e., the way the 

object is implemented and how it makes use of facilities provided by both the programming 

language and the runtime environment during its execution. An object's object model is 

different from its type or class, since many objects of different types can make use of the 

same language and implementation support, and be defined in terms of the same underlying 

concepts and constructs (i.e., have or use a similar object model).  

Schäfer first introduced the concept of a metatype by stating that an object's metatype is a 

characterisation of an object's object model [139], and every object has an associated 

metatype. This metatype may be the default metatype defined by the programming language 

used to implement the object, and provided by the object's execution environment at 

runtime. This metatype can be changed, either statically or dynamically. The new metatype 

extends the default metatype by introducing new concepts and behaviours that will be 

automatically used by the object at runtime. 

Redmond [125] refines the concept of what a metatype is by stating that a non-default 

metatype represents a behaviour change to the object from the behaviour specified in the 

object's source code. This means that behavioural change can be accomplished by changing 

the metatype of an object. This is achieved by either changing the way the object is 

implemented, or wrapping the behaviour of the object with code implementing a new 

behaviour, either statically or dynamically.  



  

84 

However, directly changing or replacing the implementation of an object is a difficult 

process, especially if the part to be replaced or changed is currently active, so this 

replacement model is usually best suited to evolving a system in a debug environment [42, 

43]. Behavioural change can also be accomplished by "associating" these changes with 

locations in the target object, or locations within the execution environment, where instead 

of inserting the new behaviour's code into the application source code at these positions, the 

execution of the operation is delegated to an object responsible for carrying out that 

operation, while adapting or redirecting its operation if necessary [125]. The execution of a 

new behaviour can occur alongside or around the original behaviour of the target object, by 

wrapping the behaviour of the target object and adapting or tailoring the intercepted 

operation, or by introducing the new behaviour before, after, or instead of the intercepted 

operation [125]. This mechanism has the added advantage of maintaining a clean separation 

between the new behaviour's code and the target object's code.  

Metatypes can also be associated with classes. In this case the behaviours that are changed 

may be both the staticTP

1
PT behaviours of the class, the behaviours of each current and future 

instance of the class, and the behaviour of all subclasses and their current and future 

instances [125]. This is a useful method where the behaviours of many objects are to be 

changed, instead of just one.  

Dynamic metatype association refers to associating a new metatype with an object or class 

at runtime and so changing its behaviour on the fly. Dynamic metatype association is not a 

specialisation of metatype association, but instead a core constituent of the metatype model. 

Each time metatype association is mentioned in this section, dynamic metatype association 

can also apply. 

3.2.2 The use of metatypes for behavioural change 

Since metatypes contain behavioural changes, metatype association implies behavioural 

change. This section looks specifically at adapting or evolving an object or class, possibly 

changing the functional operation of the object or class. One particular focus of the Chisel 

project is the investigation of the usefulness of dynamic metatype association as a 

mechanism to perform dynamic introspection and adaptation of behaviour. 

                                                      

TP

1
PT Here static refers to the behaviour and data embedded in a class, instead of in each of its instances. 

For example, static methods, static data fields, and class initialisation procedures, implemented using 

the static keyword in Java and C++ 



  

85 

A short discussion on software adaptation and evolution is presented in Chapter 1. This 

section will deal with the types of software adaptation that can be accomplished with 

metatype association, particularly dynamic metatype association. This section also focuses 

primarily on behaviour change rather than structural or architectural change. 

Metatype association is an adaptation mechanism whereby the operations and accesses to an 

object are intercepted and wrapped by adaptation code providing new behaviours. This 

allows the insertion of adaptation code instead of, before, after, or around the operation of 

the intercepted operation, or redirection of the operation to a different operation or perhaps a 

different object, all without changing, replacing, or damaging any part of the object's source 

code. The metatype association model does not support the insertion, or replacement of code 

in the adapted object. This means that the blocks of code in an adapted object can be treated 

as "black boxes", that may be used, possibly combined with extra processing of their inputs 

and outputs, but may not be changed themselves. If the code is fully compiled and the 

source code is not available, this is especially true. 

An object's functional behaviour is described as "how an object acts and reacts, in terms of 

its state changes and message passing", where a message is analogous to an operation or 

method-call, so "message passing" refers to method calls performed on and by the object 

[16]. If accesses to the object state, method calls into and out of the object, and creation and 

deletion of that object, can all be intercepted and possibly changed, then the behaviour of an 

object can be completely wrapped or changed. The metatype model supports these 

interceptions. So all behaviours, of all objects, can be changed in any manner. In practice 

however, this is rarely the case. The degree of behavioural change supported is restricted to 

the amount of interception support provided by the particular implementation of the 

metatype model used.  

An object's functional behaviours dictate what the object does. An object's non-functional 

behaviours describe how it performs its functional behaviours. Non-functional behaviours 

are often not specified directly in the object source code since default versions of these non-

functional behaviours are often provided at runtime as part of the execution model of the 

runtime environment. Example non-functional behaviours include characteristics of 

performance, security, remote accessibility, persistence, concurrency control, etc. These 

types of non-functional behaviours can also be provided or adapted by metatype association.  



  

86 

3.2.3 Adaptations using metatypes implemented using Iguana 

As described in Chapter 2, Schäfer and Redmond both used the Iguana reflective model to 

implement metatype associations. Schäfer presented, and then used Iguana/C++ in [139], 

while Redmond presented, and then used Iguana/J in [125]. Firstly, computational reflection 

was used to selectively reify parts of the underlying object model of objects and classes. 

Metatype association was then accomplished by adapting the reified representation of the 

object model, thereby associating the new behavioural change with the target object by 

intercepting and wrapping its reified object model.  

Both mechanisms tightly bind metatype implementations with runtime behavioural 

reflection. Metatype behaviours are embedded in the meta objects that are instantiated, 

ordered, and controlled by a runtime meta-level management system. Behavioural 

interception is accomplished by providing default meta object implementations for the 

reified parts of the object model, and then allowing these meta objects to be extended. 

A MOP implementation is a collection of meta objects that act together to provide a new 

behaviour, i.e., a metatype implementation. An object or a class can only select one MOP, 

but this MOP may be composed of other MOPs. MOP composition follows the rules of 

metatype composition described above. In Iguana/C++ the concept of a metatype is tightly 

bound to that of a MOP (hence, only one metatype per object). In Iguana/J metatypes are 

also implemented by MOPs, but each MOP is considered to be a different metatype, each 

providing a change in behaviour. 

Different implementation of the Iguana reflective programming model support different 

types of interceptions by reifying different parts of the underlying object model. (See 

reification categories in [19, 59, 64, 125, 126, 139]). Since Iguana/J is used by the Chisel 

framework, the reification categories provided by Iguana/J are of primary importance to this 

design. The operations that can be intercepted, called reification categories, include: object 

creation, object deletion, method invocations inwards, method invocation to other objects, 

and state read and write accesses. Once an operation is intercepted, the performance of that 

operation is delegated to a meta object to perform or adapt the performance of that operation 

by wrapping its execution. As described in Chapter 2, a metatype is implemented as a 

combination of meta objects each of which provides an implementation of a reified 

reification category. Figures 3.2.1 - 3.2.5 below demonstrate, using segments of code from 

an Iguana/J meta object class, TExampleExecuteIntercepted T, how method 

invocations are reified, and how these reified invocations can be adapted.  



  

87 

class ExampleExecuteIntercepted extends ie.tcd.iguana.MExecute { 
 public Object execute(Object obj, Object[] args, Method meth )  …   { 
  … 
  Object result = proceed(obj, args, meth);      /* execute the method */ 
  … 
  return result; 
 } 
}; 

Figure 3.2.1 Default operation of an intercepted method invocation 

Once an operation is intercepted additional adaptation operations can be inserted before or 

after the original operation, as seen in figure 3.2.2, where synchronisation operations can be 

profiled, for example to allow the user to detect synchronisation errors. 

class ExampleExecuteIntercepted extends ie.tcd.iguana.MExecute { 
 public Object execute(Object obj, Object[] args, Method meth )  …   { 
  …   
  // Perform some before processing e.g. 

 if ( (meth.getName().compareTo("wait")==0) 
  System.out.println("Iguana: Sync: wait starting for object: "+obj.toString()); 
 … 

  Object result = proceed(obj, args, meth);      /* execute the method */ 
  …   
  // Perform some after processing e.g. 

 if ( (meth.getName().compareTo("wait")==0) 
  System.out.println("Iguana: Sync: wait is over for "+obj.toString()); 

  … 
  return result; 
 } 
}; 

Figure 3.2.2 Before and after behaviours for an intercepted method invocation 

import java.lang.reflect.Method; 
class ExampleExecuteIntercepted extends ie.tcd.iguana.MExecute { 
 public Object execute(Object obj, Object[] args, Method meth )  …   { 
  …   
  // redirect the invocation to the static method "mywait" of class "MySemaphore" 

 if ( (meth.getName().compareTo("wait")==0){  
  obj = null;    //call to a class static method, so invocation target is set to null 
  meth = MySemaphore.class.getDeclaredMethod("mywait" … ); 
  … 
  args[0] = 1000;   //change a parameter, in this case the wait timeout in millisec 
 } 
 … 
 Object result = proceed(obj, args, meth);    // execute the new method  

  … 
  return result; 
 } 
}; 

Figure 3.2.3 Redirecting and adapting an intercepted method invocation 

Once an operation is intercepted the operation itself can be adapted by changing the 

parameters, changing the return value, redirecting the operation to a different operation, or 

redirecting the operation to a different class or object, and then performing the adapted 



  

88 

operation. This is demonstrated in figure 3.2.3 above, where all synchronisation accesses for 

the target object are redirected to a static method call in a different class. 

These meta object classes can then be combined to form a metatype and dynamically 

associated with an arbitrary application object or class, as seen in figure 3.2.4 and figure 

3.2.5, and as seen in section 2.1.1 of Chapter 2. 

protocol ExampleMetatype { 
 reify Creation: ExampleCreationIntercepted(); 
 reify Execution: ExampleExecuteIntercepted(); 

… 
} 

Figure 3.2.4 Iguana/J: metatype declaration 

import ie.tcd.iguana.Meta; 
java.net.Socket  mySocketObject = new java.net.Socket (); 
Meta.associate( mySocketObject, "ExampleMetatype", …); 
Meta.associate( java.awt.Button.class, "ProtocolVerbose", …); 

Figure 3.2.5 Iguana/J: Dynamic metatype association 

The examples above declare a new metatype called TExampleMetatype T, which is then 

associated with the object TmySocketObject T, which is of typeT java.net.Socket 

Tand also with the class Tjava.awt.Button T. Further examples of the use of Iguana/J are 

included throughout this thesis.  

These mechanisms of intercepting and adapting the behaviour of an application object or 

class can be used to adapt either the functional or non-functional behaviours of the object or 

class. Depending on the behavioural adaptation that is required, different parts of the 

object's object model may need to be reified, either for introspection or for adaptation. 

Different versions of the Iguana reflective frameworks, which implement the metatype 

model, support the selective reification of different parts of the object model, e.g., reification 

of method invocations on the object, object creation, object state access, the object's class, 

inheritance information, etc. Examples of possible behavioural changes may include 

introspection and error checking [139], persistence and remote operation [64], software 

evolution [125], selection of alternative method implementations [46]. All were achieved 

using metatype association. All of these behaviour changes can be applied to objects of 

different types, since the metatype of an object is orthogonal to its type. For example, 

adding persistence behaviour to an object by wrapping its old behaviour and redirecting 

object creation and deletion to a persistent object store, all without changing the object's 

data, interface or internal behaviour, does not change its type, but rather its metatype. 



  

89 

As an example, the following section looks specifically at the dynamic addition of non-

functional behaviours for introspecting, probing, and profiling of an object or class. 

3.2.4 Introspection, probing, and profiling using metatypes 

It is often difficult to know what is happening as an application executes, even for the 

designer and developer who actually specified what should happen in the design and source 

code of the application. Sometimes it is necessary to look inside an object as its data is 

accessed and updated, and its code executed. The degrees of introspection required may 

include the ability to indicate what the access patterns are, to identify what is being accessed 

or changed, to see the value that something has been changed to, to identify the results of an 

operation, etc. [41] 

Rather than rewriting the source code of a class or object to include the behaviour that 

supports introspection, probing, and profiling, an ideal mechanism to enable this non-

functional behaviour is the association of a metatype with that class or object, which 

implements this introspective behaviour. This can be accomplished by intercepting all 

accesses to the data and operation of the object or class. The observer may also want to 

know the result of the original intercepted operation, how long the operation took, what 

information was on the call stack or in memory when that operation was called, etc. Once 

these access operations have been intercepted, information contained in the operation 

request can be made available to the observer or simply logged for later inspection or 

interpretation. All of these behaviours can be embedded in metatypes. A simple example of 

how object creation and method invocation can be profiled is shown in figure 3.2.6 below. 

Combined with dynamic metatype association, this means that whenever the observer needs 

more insight into the operation of an object or class, the metatype can be associated with the 

class or object at runtime. When the observer has enough information, the metatype can be 

disassociated, and the object or class continues its operation as before. This is especially 

useful for runtime debugging, error detection and prevention, identification of bottlenecks 

and hotspots, etc. Of added interest to the Chisel project, this mechanism can be used to 

probe an object or class and can provide the observer with valuable information about how a 

class or object works, and how it might be adapted, particularly if the observer did not 

design or develop the code for that object or class, or does not have access to sufficient 

documentation about the operation of the class. The observer may have no other way except 

profiling, introspection, and probing to discover how an object or class works or what it is 

doing.  



  

90 

class ProfileExecuteIntercepted extends ie.tcd.iguana.MExecute { 
 public Object execute(Object obj, Object[] args, Method meth )  …   { 
  … 

 Profiler.log("Starting method "+meth.toString()+", method parameters: "); 
 for(int cnt = 0; cnt < args.length; cnt++) { 
  Profiler.log ("<"+args[cnt].getClass().getName()+">:"+args[cnt].toString()) ;  
 long strtme = Timer.getTime(); 

  Object result = proceed(obj, args, meth);      /* execute the method */ 
  long endme = Timer.getTime(); 

 Profiler.log("End of method "+meth.toString()+": Operation timing: "+(endme-strtme)); 
 Profiler.log("Result was <"+result.getClass.getName()+">:"+result.toString()); 
 … 
 return result; 

 } 
}; 
class ProfileCreateIntercepted extends ie.tcd.iguana.MCreate { 
 public Object create(Constructor cons, Object[] args)  …   { 
  … 

 Profiler.log("Starting creation of "+cons.getName()+", constructor parameters: "); 
 for(int cnt = 0; cnt < args.length; cnt++) { 
  Profiler.log ("<"+args[cnt].getClass().getName()+">:"+args[cnt].toString()) ;  
 long strtme = Timer.getTime(); 

  Object result = proceed(cons, args);      /* create the object */ 
  long endme = Timer.getTime(); 

 Profiler.log("End of object creation "+ cons.getName()+": Creation timing: "+(endme-strtme)); 
 Profiler.log("Result was <"+result.getClass.getName()+">:"+result.toString()); 
 … 
 return result; 

 } 
}; 

Figure 3.2.6 A example of profiling intercepted object creation and method invocations 

There remains an open issue with respect to how the user makes the semantic leap to 

understand how the application operates, just from the profiling and probing information 

available about an application and its constituents. It is necessary for the user to interpret the 

results of probing and profiling information, to establish the roles, behaviours, and modes of 

operation of the different elements within the system. Without this user's intelligence to 

understand how to interpret and exploit the probing and profiling data collected, this and 

other methods of introspection are of limited use. However, depending on the complexity of 

the system being inspected, this level of understanding should be attainable in many cases. 

For example, if the user initially knows enough about a system to require it to be probed, 

profiled, or adapted, that user must already have some understanding of why these 

requirements have arisen, and so will already possess some degree of semantic knowledge 

about the system to assist in interpreting profiling data. The Chisel framework provides no 

high-level support to help the user understand how a system operates or how it can be 

adapted, but rather provides the mechanisms to allow this probing, profiling, and adaptation 

to be achieved in a structured manner.. 

These methods presented to probe and examine third party software may be considered to be 

only somewhat promising and of an ad-hoc nature, since the use of probing techniques to 



  

91 

reverse engineer [27] and re-engineer black box software is an old and active research field 

[116], as seen with the integration of commercial-off-the-shelf software modules when 

developing software [105], the use of legacy systems [8] etc. However, the use of the 

metatype model is a valid, useful, and powerful technique to support the profiling 

techniques described or more sophisticated techniques to reverse engineer, refactor, and 

expose the operation of arbitrary compiled software modules, especially where the source 

code for that module is unavailable. Once exposed, the internal operations of these modules 

can be adapted, or alternatively, the interface of these modules can be wrapped in an 

adaptive manner. In the event that a naïve user wishes to adapt a piece of software, but is 

unable to locate where the adaptation should be applied, then the Chisel adaptation 

framework would not be useful for that user 

3.2.5 Metatype composition and metatype inheritance 

When Schäfer [139] and Redmond [125] introduced metatypes, they also introduced a set of 

rules for the use and combination of metatypes. 

 Metatype composition refers to the combination of two metatypes, each possibly providing 

very different behaviours, so that together they can be associated with objects and classes, 

thereby associating both of the behavioural changes with that class or object.  

A metatype can be inherited from other metatypes. Metatype composition is accomplished 

using this method. All behaviour changes from both the parent metatype and the new 

metatype are composed. Metatype behaviours are not specialised by inheritance, they are 

combined. If it necessary to compose a number of available metatypes, a new metatype is 

derived from them, thereby composing them. Schäfer [139] asserts that an object can only 

have one metatype, so these combined behaviours are considered one metatype. Redmond 

[125] declares that they are considered distinct metatypes. The default mechanism for 

composing metatypes is that the behaviours are composed sequentially. The order in which 

metatypes are composed may be an issue with respect to interference and conflict between 

metatypes. For example, when a metatype providing persistence behaviour is combined with 

a metatype providing remote access behaviour, the two behaviours may conflict if they are 

not ordered correctly. Metatype model implementations may support the specialisation of 

ordering mechanisms, as seen in Iguana/C++.  



  

92 

• The set of metatypes of a class must include the set of metatypes of its superclasses 

• The set of metatypes of an object, must include the set of metatypes of its class 

• The metatypes of a class are inherited by subclasses 

• The metatype of a class is propagated to all its current and future instances 

Table 3.2.7 The four rules of metatype use 

Table 3.2.7 describes the four rules of metatype use, metatype inheritance relationships, and 

automatic metatype propagation. These rules also hold for dynamic metatype association 

with classes and objects. These rules result in a number of effects that may not be obvious 

from casually reading the rules. A new metatype can be dynamically associated with an 

object, so long as that metatype is somehow inherited from the metatype(s) associated with 

the object's class. That metatype can then be disassociated from the object by associating a 

metatype further down the inheritance chain. However, a metatype cannot be dynamically 

disassociated from an object, if the object's class or superclasses still has that metatype 

associated with it. In addition, a metatype cannot be dynamically disassociated from a class, 

if one of that class's superclasses still has the metatype associated with it. 

Since the metatype model assumes the multiple metatypes can be associated with an object 

or class, with composition performed automatically in Iguana implementations, there is no 

way to automatically detect if the multiple metatypes are interfering with each other. 

Research described in [64] discusses the effects of composing metatypes and presents a 

model to prevent and resolve such conflicts, but such a mechanism does not exist for 

Iguana/J. 

3.2.6 Alternatives to Iguana and reflection for metatypes 

Although only implemented in Iguana, the metatype model can be implemented by any 

system that supports reification of the object model or interception of object behaviours, and 

implements the four rules of metatype use specified above. A key requirement is support for 

dynamic metatype association.  

A number of the adaptable systems analysed in Chapter 2 provide some support for 

metatypes, e.g. Kava, Guaraná, MetaXa, AspectWerkz, PROSE, Wool, etc., but none of 

these frameworks fully support the metatype model at present. However, almost any 

adaptation framework could be used when implementing a new metatype implementation 

framework.  



  

93 

A new metatype implementation framework must provide a mechanism for behaviour 

interception of individual objects. This intercepted behavioural operation must be redirected 

to a runtime manager, which in turn supports the insertion and ordering of metatype 

behavioural changes, while maintaining the metatype association rules. This interception 

can be achieved using source code reprocessing (as seen in Iguana/C++ and the original 

Aspect/J versions), compiled executable or bytecode reprocessing (as seen in Javassist), 

load-time reprocessing of code (as seen in Iguana/J, Kava, JMangler), or runtime 

interception (Java HotSwap, Wool, PROSE, Guaraná, MetaXa, Java Platform Debugger 

Architecture).  

As described above, the Iguana implementations that support metatypes [125, 127, 139] use 

computational reflection to implement metatypes. Any computational system that maintains 

a causally connected representation of its own behaviour and supports computation about its 

own behaviour is, by definition, a behaviourally reflective system. Therefore, any system 

that implements the metatype model is a reflective system. 

However, it is not necessary that reflective programming techniques be used in a system 

implementing metatypes. As seen from the list of systems above that could implement a 

metatype system, a number of these systems are not designed to support behavioural 

reflection, e.g., dynamic AOP systems, source code and executable code re-processors, 

debug architectures, ad hoc solutions, etc. 

Although the Iguana models presented in [58, 59, 125, 126, 139] are language independent, 

each version of these versions of the Iguana model is implemented and restricted to 

individual languages. Recent research in language-independent AOP techniques (e.g.,[94]) 

has prompted ongoing research to reimplement the Iguana model to support a language 

independent metatype model. 

3.2.7 Why use metatypes in the Chisel framework 

Dynamic metatype association was chosen as the adaptation mechanism for the Chisel 

framework because from the very start of this research, one of the objectives of the Chisel 

research project is to evaluate the usefulness of metatype association as an adaptation 

technique.  

The primary objective of the Chisel project is to design and implement a dynamic adaptation 

framework that supports completely unanticipated dynamic adaptation. This objective is 

partially fulfilled by the use of dynamic metatype association, since dynamic metatype 

association is a mechanism that supports the dynamic adaptation of objects and classes, 



  

94 

irrespective of the type of the target object or class, at any time during the execution of 

application. This means that behavioural adaptations can be applied to unanticipated 

locations at unanticipated times.  

3.2.8 Consequences of the use of metatypes in the Chisel 
framework 

The primary consequence of the use of metatypes in the Chisel dynamic adaptation 

framework stems from the limited availability of mechanisms that implement the metatype 

model. There are currently only two implementations based on prototype versions of the 

Iguana reflective programming model, i.e., Iguana/C++ and Iguana/J discussed above, 

neither of which have been widely adopted, used, or tested. The alternative of re-

implementing the metatype model, possibly using or adapting a more stable adaptation 

mechanism, was however outside the scope of this research project. Therefore, Iguana/J was 

chosen as the adaptation mechanism to be used. Iguana/J was chosen over Iguana/C++ 

because to its better support for metatypes, its support for the dynamic association of 

unanticipated metatypes, and because the Java programming language (compared to C++) 

supports more high-level runtime manipulation of structural and type information, 

especially in dynamically loaded code.  

A consequence of the use of the metatype model, and as an extension the Iguana/J platform, 

which focuses on adaptation by behavioural reflection, means that there is limited support 

for structural or architectural adaptation, except through the use of behavioural reflection. 

Many adaptations, such as the dynamic direct manipulation or inspection of operation code, 

are not possible in the Chisel framework.  

Secondly, the metatype model is tightly bound with the object-oriented (OO) model of 

software engineering. There is no support to handle non-OO constructs such as components, 

non-method functions/procedures, aspects, etc. In addition, the metatype model has no 

automatic support for dealing with groups of objects as a unit, or anonymous classes. 

Since metatypes can be disassociated as well as associated, at disassociation time the 

metatype and its constituent meta objects will be discarded, with all state lost. If it is 

necessary to maintain state across metatype changes, it is necessary that a separate meta-

level data store mechanism be used. In addition, the choice of Iguana/J results in a lack of a 

structured mechanism to detect and resolve conflict between multiple metatypes associated 

with a single class or object. Examining such a mechanism would prove a complex and 

rewarding research topic; however it is outside the scope of this research. 



  

95 

Each of these consequences erodes the generality of Chisel dynamic adaptation framework, 

since only adaptations supported by Iguana/J can be specified for use by the Chisel 

framework. However, as can be seen from the literature concerning Iguana and metatypes 

[19, 59, 64, 124-127, 139] and in particular the Iguana/J literature [125-127] the adaptation 

domains to which the Chisel framework would be restricted is still broad enough to consider 

the Chisel framework to be a general-purpose adaptation framework. 

Consequences of the use of the Java programming language 

In addition, this choice of Iguana/J has also restricted the Chisel framework to use the Java 

programming language. Ideally, a language independent implementation of the Chisel 

framework would be preferable. However, this restriction to use Java is in some ways 

fortuitous since Java is a suitable language with which to implement the Chisel framework. 

Although Chisel is not specifically designed for implementation in any particular language 

the Java language provides a good deal of support for runtime manipulation and inspection 

of both the adaptation software and the target software, and their metadata. The 

manipulation and inspection of the software and its metadata is particularly difficult in fully 

compiled languages (for example, C++) since nearly all of the metadata concerning the 

software is compiled and optimised away. Java provides extensive support for such runtime 

inspection and manipulation with its extensive reflective API and by its runtime 

interpretation of the software rather than direct execution. This runtime inspection and 

manipulation of software and its metadata could have been made even easier by selecting a 

fully interpreted language such as LISP, where application and adaptation code can be 

directly treated as data. However, in an effort to be usable in a more widespread manner, 

and to demonstrate the ability to dynamically adapt compiled code, it was decided that the 

Chisel framework should not limit itself in such a manner, but rather to use a programming 

language in widespread commercial use to preserve the generality of the Chisel framework. 

In this respect, due to the difficulties presented by implementation using C or C++, the 

Chisel framework implementation would have been restricted to use either Java, or one of 

the languages provided by the Microsoft P

®
P .NET platform [101]. 

3.2.9 Summary of the metatype model for dynamic adaptation 

This section has described in detail the metatype model for dynamic adaptation. This draws 

mainly from the work on the Iguana project [19, 59, 64, 125, 126, 139] and is based on the 

metatype models introduced by Schäfer in Iguana/C++ [139] and extended by Redmond in 

Iguana/J in [125]. The following sections of this chapter and the following chapters continue 



  

96 

the discussion of how the metatype model is incorporated into the Chisel project, with a 

number of examples being presented to demonstrate how dynamic metatype association can 

be used as a mechanism to support unanticipated dynamic adaptation of arbitrary compiled 

applications in a generalised manner. 

3.3 The design of the Chisel dynamic 
adaptation framework 

This section provides an overview of the Chisel dynamic adaptation framework. The design 

of the framework is introduced, along with the major design decisions made during the 

design. This section also introduces the main constituent parts of the framework and how 

each of these parts work together during the adaptation process to fulfil the objectives of the 

Chisel project. 

3.3.1 The Chisel dynamic adaptation manager 

The Chisel adaptation manager (see later in figure 3.3.1) is the primary constituent of the 

Chisel dynamic adaptation framework. Since the Chisel project aims to adapt arbitrary 

applications in a general-purpose manner and apply those adaptations in a manner that may 

be unanticipated, it is necessary to have some form of runtime controller to initiate and 

manage these dynamic adaptations. As described in the previous section, this adaptation 

framework makes use of dynamic metatype association as its adaptation mechanism. The 

metatype model also requires runtime support to manage how metatypes are associated with 

base-level objects and classes, in this case, the Iguana/J runtime component is used.  

As discussed at the start of this chapter, the Chisel dynamic adaptation framework must 

meet a set of requirements, and so the Chisel runtime component, the Chisel adaptation 

manager, must satisfy the runtime aspects of these requirements. There must be support to 

dynamically identify and specify unanticipated arbitrary adaptation locations at runtime. 

There must be support for the dynamic specification of adaptation control directives that 

specify when, where, and how individual unanticipated adaptations will be applied. There 

must be support for the dynamic identification and loading of adaptation code, in this case 

metatypes, and support the manipulation of these metatypes.  

The adaptation manager cannot contain any a-priori knowledge of any adaptation that may 

be applied if completely unanticipated specification of adaptations and their management 



  

97 

controls are to be supported. The adaptation manager must allow adaptation directives to be 

specified at runtime, so support for the unanticipated loading and interpretation of these 

directives is included. This is handled by the Chisel policy manager. The policy manager is 

responsible for accepting these specifications and translating them into data that can be used 

to control the adaptation process. The Chisel rule manager is responsible for taking this 

control logic data and acting as the runtime adaptation controller, managing the adaptation 

process as the supplied adaptation logic changes dynamically.  

New behaviour can be dynamically specified within a metatype, which may then be 

compiled, located, and loaded in an unanticipated manner. Once loaded, the metatypes must 

be applied in a controlled manner to unanticipated target objects or classes within the 

managed application. This dynamic manipulation and association of metatypes is achieved 

using the Chisel behaviour manager, and in this respect, it is the Chisel behaviour manager 

that actually performs the dynamic adaptation by performing dynamic metatype 

associations. 

These adaptations should be performed in a manner where user, application, and 

environmental context can be used to drive adaptations. Dynamic adaptations are mostly 

required due to changes in the state, resources, or requirements of the application, user, or 

operating environment, all of which are classified as context changes in the Chisel 

framework. This concept of context-awareness is achieved by the Chisel context manager 

and the Chisel service manager. 

The adaptation manager must also support the dynamic identification and use of arbitrary 

target objects and classes for these adaptations, since any object or class may be adapted. A 

mechanism is required to identify and find these objects and classes at runtime for 

adaptation. This is handled by the Chisel service manager, in conjunction with the Chisel 

named object store. Together the service manager and the named object store must provide 

access to any application object or class, and allow the state and methods of these objects 

and classes to be accessed as context lookups. 

If adaptation is to be driven by changes in context as described above, it is necessary that 

these changes are signalled to the adaptation manager to allow the adaptation manager to 

initiate these adaptations. This is achieved using an event-based model, which is supplied by 

the Chisel event manager. Since this event-based model is used to signal changes to 

unanticipated context information in a responsive manner, this event model must support the 

dynamic specification of events and the logic that controls how they are fired in order to 

handle this unanticipated context monitoring and signalling.  



  

98 

This modularised design allows the Chisel adaptation manager to be built in a flexible and 

extensible manner, with each sub-manager assigned a number of responsibilities. An 

overview of the design of the Chisel adaptation manager is presented in figure 3.3.1 below. 

The design and operation of each of these sub-managers are described in further detail in the 

remainder of this chapter.  

<<uses>>

Rule ManagerEvent Manager

Service
Manager

Behaviour
Manager

Chisel Policy Parser

Named Service Store

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

<<events>>

Chisel Adaptation Manager

Context
Manager

<<events>>

<<uses>>

 

Figure 3.3.1 Overview of the Chisel Adaptation Manager 

There are a number of possible mechanisms to implement the linking of the adaptation 

manager to the target application. One option is a launcher program to initialise the 

adaptation manager and then start the target application. Another alternative is to link the 

adaptation manager as a meta object with the main class of the application object so the 

adaptation manager is initialised as the target application class is loaded. Yet another 

possible mechanism that can be used, if the application source code is available, is the 

addition of initialisation code for the adaptation manager in the application source code, and 

the recompilation of the application code. None of these mechanisms break the requirement 

to support completely unanticipated dynamic adaptations since only the possible future need 



  

99 

for adaptation support is anticipated, and not any particular adaptation that may be needed 

later. However, the Chisel framework specifically aims to support the unanticipated 

dynamic inspection and adaptation of arbitrary compiled applications, so it is preferable to 

make use of the mechanisms that do not require access to the application source code. 

3.3.2 Why event-based adaptation management? 

A requirement of the Chisel framework is the support of unanticipated adaptation, in 

response to unanticipated context change. Here context refers to the state, resources, and 

requirements of the operating environment, the application, and the user. In order to adapt in 

response to context change, it is necessary that the context be monitored to track such 

context changes. 

The two main mechanisms used to monitor a dynamic system are event-driven monitoring 

and time-driven monitoring [97]. Time-driven monitoring loosely relates to periodic probing 

(polling) of the system being monitored to provide a view of the system's status. Event 

driven monitoring refers to waiting for a change in the status of the system, then being 

notified of the change. For the Chisel framework, or any system that requires waiting for 

contextual values to change, an event-based system is the obvious choice. Polling a value to 

monitor change requires a trade-off between time spent polling for values that may have not 

changed, and the sampling rate. Trying to monitor change by polling also presents the 

opportunity to miss the context change of interest, if the sample rate is too low. Event-

driven monitoring leads to "liveness" without the need for constant polling.  

The state or status of an object is a representation of the cumulative results of its behaviour, 

and is represented by the values of all of its properties [16]. An event is defined as an atomic 

entity that reflects a change in the status of an object [97]. Since this status usually changes 

continuously, the behaviour of an object is normally observed as a subset of these events 

that are of significance to the management system and so are only generated when a set of 

defined conditions are satisfied [97]. This idea of events is therefore central to the design of 

the Chisel framework since the firing of an event in the Chisel framework can easily be used 

to signal an interesting change in context.  

At design time or when developing any software system, there is no generalised way to 

anticipate what context change may be of interest. The specification of what constitutes an 

interesting change must be specified dynamically. A particular requirement of the Chisel 

framework is the ability to monitor any object, of any type, since neither the designer nor 

developer of an application can be expected to anticipate at design time what information 



  

100 

may be of interest to the user when controlling unanticipated adaptations at runtime. This is 

achieved in conjunction with both the Chisel service manager and the Chisel context 

manager. 

The Chisel framework must also be capable of the dynamic definition of events, and the 

dynamic specification of a set of conditions to specify when this event should be fired. With 

this support, not only can particular adaptations and their reactive application management 

be specified in a possibly unanticipated manner, but the triggers used to initiate the 

application of these adaptations can also be dynamically defined in an unanticipated 

manner. It should also be possible to manipulate events in an unanticipated manner to allow 

the combination and filtering of event signals. This is achieved by the use of event 

declaration policy rules, in conjunction with the Chisel policy manager. 

All aspects of event manipulation in the Chisel framework are supported by the Chisel event 

manager. The event manager is responsible for the dynamic definition and registration of 

new events, and the specification of when these events are triggered. The event manager 

also provides the mechanism to allow these events to be manipulated and fired at runtime. In 

all, the event manager is responsible for supporting the entire operation of the Chisel event 

model. More information on the operation of the Chisel event manager, what happens when 

an event fires, and the manipulation of events is the Chisel adaptation framework is 

presented in the following sections of this chapter, and in the following chapter. 

3.3.3 Why have a policy based management approach? 

An adaptable system that has its adaptation logic encoded directly into the application 

cannot operate in a general-purpose manner or adapt in response to unanticipated changes. 

Chapters 1 and 2 have introduced the use of policy-based adaptation management to 

decouple the adaptation control support and the adaptation mechanism in adaptable systems.  

This need for general-purpose completely unanticipated dynamic adaptation requires some 

mechanism where adaptation logic can be dynamically specified by the user, and then 

dynamically interpreted by an adaptation manager at runtime to determine how the system 

should be adapted. If the system is to support adaptations that remain unanticipated until 

during execution, there must exist some mechanism to support the dynamic specification 

and adaptation directives, and support dynamic change of these directives. A prime 

candidate for this type of dynamic adaptation directive would be the use of a configuration 

file that contains adaptation directives specified by the user, which the adaptation manager 

then parses and interprets.  



  

101 

Any adaptation directive must contain a number of necessary elements, including, what to 

adapt, which adaptation to apply, how or when should it be applied, what constraints may 

limit the application of the adaptation, etc. The use of adaptation directives, or adaptation 

rules allow a declarative specification of how the system should be adapted, without the 

necessity to specify how this adaptation should be accomplished, thereby allowing complete 

decoupling of the adaptation logic and the adaptation mechanism. When combined with the 

use of events in the Chisel framework to signal a change in context, and thereby a possible 

need to adapt the behaviour of the application, these types of adaptation policy rules can be 

cleanly specified in an Event-Condition-Action (ECA) format, a method commonly used for 

controlling adaptable reactive systems, as seen in Chapter 2 [17, 33-38, 44, 45, 47, 67, 68, 

71, 78, 79, 98, 104, 120, 143]. 

Adaptation in the Chisel dynamic adaptation framework is driven by adaptation policy rules 

in this ECA format. These adaptation rules can be in one of two formats, reactive rules and 

proactive rules. Reactive rules are specified by selecting an event that is fired in response to 

a context change, an adaptation target, and an adaptation to apply to that target. In order to 

focus the application of the rule, a set of guard statements may be included in the rule, to be 

evaluated when the rule is triggered. Proactive rules, which also specify an adaptation target, 

an adaptation to apply, and a set of conditions, are triggered immediately upon parsing, 

instead of waiting for an event.  

The same rule-based approach can also be used to perform event manipulations instead of 

adaptations. This would allow events to be dynamically fired to indicate a contextual change 

in a responsive manner.  

The Chisel rule manager is responsible for the interpretation of these rule conditions and the 

initiation of adaptation or event manipulations if required. The contents of these rules will 

be completely unanticipated, so the rule manager must act as a general-purpose rule 

interpreter. The control logic embedded in the adaptation rules may be arbitrarily 

complicated, so the rule manager must have substantial support to interpret any rule 

specifications that can embedded in the rule formats. Further information on the types of 

rule formats that the rule manager must interpret is provided in section 3.6, where the Chisel 

policy language is introduced. Since these rules may change at runtime, the rule manager 

must support the dynamic loading and unloading of these rules. The rule manager will also 

be required to interact with the event manager to enable these rules to be triggered by 

events. If any runtime interpretation error occurs during the evaluation of any rule, the rule 



  

102 

manager should provide a warning that the adaptation directive is faulty and should be 

replaced.  

Any actual event manipulations are performed by the event manager. Any adaptation is 

performed by the Chisel behaviour manager, with the Chisel service manager given the 

responsibility to find the target object or class that will be adapted, and to find any fields or 

methods of arbitrary objects or classes used as context information within the rule 

conditions.  

3.3.4 How to find the object or class to adapt? 

As described, it must be possible to dynamically identify which objects or classes will be 

adapted since it is a key requirement of the Chisel framework, that it must be possible to 

allow the location of any particular adaptation to remain unanticipated. Additionally, as a 

result of the deliberately wide definition of context, and that any runtime state may be 

considered important contextual information, a requirement exists that arbitrary application 

classes and objects can act as context information sources. Since there may be no way to 

identify which objects or classes will be queried, the Chisel framework must allow any 

object or class to be queried. 

The Chisel service manager is responsible for finding the named class or object to query or 

adapt. Application classes can easily be found with the support of the runtime environment 

since they can be referred to and looked-up by name at any time. For individual objects, this 

is more difficult to achieve since objects do not usually have any human readable reference 

at runtime.  

The Chisel named object store is used to associate a name with individual application 

objects, so that they too can be used in the adaptation policy script. To do this for any 

object, in an unanticipated manner, is indeed a challenging requirement as it becomes 

difficult to find the individual object in the runtime execution environment. The Chisel 

named object store provides an extensive logging and profiling metatype that allows the 

user to selectively profile application classes to identify individual instances of that class. 

Once the user has identified a particular object of interest, that object can have a user-

friendly names associated with it. Once this name is associated with the object, the name 

can then be used to refer uniquely to that object via the Chisel named object store. This 

name can be used in any policy rule, either as an adaptation target itself, or as an 

information source to direct the operation of the policy rules for other classes, objects, and 

events. 



  

103 

As discussed in section 3.2.4, when using profiling and logging mechanisms to inspect the 

operation of executing software, it is a requirement that the user interprets the operation of 

the application in order to establish the roles and behaviours of individual classes and 

objects, and so decide which classes should be adapted or which objects should be named in 

order that they can be adapted. Although the Chisel framework provides a number of 

mechanisms to assist the user in this regard, the operation of identifying and naming an 

object remains the ultimate responsibility of the user. A naïve or inexperienced user may 

have difficulty with such a task, and as such the use of the Chisel framework to probe and 

inspect a compiled software module would prove difficult. However, it is judged that such a 

tool would be very useful to an experienced or determined user. 

In order to adapt or query an application object or class, the user must know which object or 

class is to be adapted. If the user needs to search for this object or class using the 

introspection and monitoring techniques described in section 3.2.4, this often takes some 

time, as the application objects or classes need to be executing for a time to be profiled and 

inspected. For this reason, if a user needs to adapt an unknown object or class, it is 

necessary that the user anticipates the need to find that class or object in order to adapt that 

object or class. However, this need for anticipation of adaptation does not break the 

requirements for completely unanticipated dynamic adaptation since there is no requirement 

for this anticipation to occur before the start of execution, only that this anticipation occurs 

before the unknown object or class must be adapted. 

In the current design, the user must individually name each object of interest. No 

mechanism currently exists to allow the user to either have an object automatically named, 

or have a group of objects selected for naming. Research on such a mechanism was seen to 

be outside the scope of this thesis. In addition, the binding of a name to an object is only 

valid as long as that object is in context. Once the object becomes unused and garbage 

collected, or the application exits, the name to object binding will become invalid. Any use 

of an invalid or out of context name will prompt a warning to the user. However, for the 

same reason, as long as a named object stays in use, it can be shared by different users.  

Once the user has identified which classes needs to be adapted or queried, or has selected 

which objects to name, these named objects and classes can be retrieved using the Chisel 

service manager, which uses the Chisel named object store if necessary. 



  

104 

3.3.5 How is the new behaviour applied? 

In the Chisel adaptation framework, dynamic metatype association is used as the adaptation 

mechanism. The Chisel framework must also support the dynamic creation, loading, and 

identification of arbitrary metatype code at any time during runtime. Section 3.2.3 describes 

how a named metatype can be defined offline as the target application executes. Iguana/J 

provides the mechanisms to compile this named metatype in a separate parallel process 

alongside the executing application. Policy rules can then be dynamically created and 

passed to the policy manager to have this named metatype associated with an arbitrary 

application object or class.  

When an adaptation operation is required, the Chisel behaviour manager performs that 

adaptation. The behaviour manager will first request the target class or object from the 

service manager. The behaviour manager will then load the meta-level class containing the 

metatype behaviour and associate an instance of it with the target class or object. According 

to the metatype model, described in section 3.2 above, this metatype association may fail if 

the rules that govern metatype association are not followed. In this case, the target class or 

object will keep their current metatype and continue operation. A runtime exception will 

inform the rule manager, which will then inform the user that the metatype association rules 

have been broken and the rule that caused the adaptation may need to be replaced.  

According to the metatype model, if the adaptation target is a class, all subclasses of that 

class, and all current and future instances of the target class and its subclasses will also have 

their metatype changed. For this reason metatype association with classes should be 

performed with care. When a metatype is associated with a class or object, if that metatype 

is a parent metatype of the currently associated metatype, its current metatype will be 

replaced immediately with the new metatype, thereby discarding the old metatype. This 

mechanism, where another metatype is applied to a class or object, is the mechanism used in 

the metatype model to remove an applied adaptation, within the constraint that the newly 

applied metatype is, or is derived from, the metatype of the class of the object, or the 

metatype applied to any parent class.  

3.3.6 Summary of the design and operation of the Chisel 
dynamic adaptation framework 

This section has described the requirements and outline design of the Chisel adaptation 

manager and its constituent parts and how dynamic adaptation is accomplished in the Chisel 



  

105 

framework. The requirements described in section 3.1 can all be fulfilled with this design. 

The Iguana/J reflective framework supports the dynamic association of metatypes with 

arbitrary objects and classes at runtime, thereby allowing the location at which an adaptation 

is applied to remain unanticipated until runtime. The Chisel service manager supports the 

dynamic identification and specification of these adaptation locations. The Chisel policy-

based specification of adaptation rules allows the location at which an adaptation is applied, 

when it is applied, and how it applied to remain unanticipated until runtime. The Chisel rule 

manager then interprets this changeable control logic at runtime. The service manager also 

supports the dynamic lookup of arbitrary contextual values of any object or class in the 

application, which is used by the rule manager when evaluating rules containing context-

aware logic. The Chisel behaviour manager, using the Iguana/J runtime component, 

supports the dynamic binding and unbinding of adaptations by supporting dynamic 

associations of arbitrarily named metatypes, according to the dynamic interpretation of the 

control logic. Introspection of arbitrary compiled code is supported using the profiling 

metatype mechanisms described in section 3.2.4, with the Chisel framework supporting the 

dynamic association and disassociation of these metatype. These profiling techniques are 

also used by the Chisel named object store. 

As shown in Figure 3.3.2, the operating mode of the Chisel adaptation manager requires the 

cooperation of all constituent parts of the adaptation manager. Firstly an adaptation event is 

fired, possibly by the context manager in response to a change in a monitored context value, 

or automatically by the event manager as specified in the triggering specification of a newly 

defined event, or perhaps fired by the evaluation of an event manipulation rule. As the event 

is fired, the rule manager is alerted. The rule manager then requests the set of fired events 

from the event manager. Once received, the rules that are triggered by each event are 

retrieved. For each rule in this set, the conditions section of the rule is evaluated, in 

cooperation with the service manager and named object store if named objects or classes are 

used in the condition set. If the condition set evaluates successfully, the rule evaluation 

continues. If an event manipulation operation is required, the operation is invoked via the 

event manager. If an adaptation request is required, an adaptation request is sent to the 

behaviour manager. The behaviour manager then retrieves the target named object or class 

to be adapted from the service manager via the named object store if necessary, performs a 

dynamic metatype association on that adaptation target.  

 



  

106 

The Chisel Adaptation Process
Behaviour
Manager

Named
Service Store

Service
Manager

Rule
Manager

Event
Manager

#1 #2

#3

#4

#5

#6a

#1: An event is fired
#2: Signal the rule manager
#3: Get fired events
#4: Find affected rules
#5: Evaluate conditions
#5a: Access service manager if required
#5b: Access the named object store  if required
#6a: Perform event operation for event

manipulation rules
#6b: If adapting, request adaptation by the

behaviour manager
#6c: Access service manager to find target
#6d: Access the named object store to get an

object if required
#6e: Perform dynamic metatype association

#5a #5b

#6d

#6b

#6e

#6c

 

Figure 3.3.2 Overview of the Chisel adaptation process 

The following section contains more detail about the Chisel event model, the Chisel context 

model, and the Chisel policy-based management model. The implementation of each part of 

this design is provided in the following section, along with in depth information about how 

these constituent parts of the Chisel dynamic adaptation framework work together to support 

the general-purpose completely unanticipated dynamic adaptation of arbitrary compiled 

software in a context aware manner. 



  

107 

3.4 The Chisel event model 

Section 3.3.2 above describes the need for an event-based monitoring mechanism in the 

Chisel adaptation framework, and a set of requirements that must be fulfilled. In particular, 

this event model must support the dynamic definition of events, and support the dynamic 

firing of events. The Chisel event system operates in conjunction with the Chisel context 

system, which is described in the next section, by using events  to signal changes in context 

and communicate the possible need to adapt.  

Although the event model used in the Chisel framework must meet the requirements above 

regarding dynamic definition and naming of event types, and support the dynamic 

specification of triggering logic, the event model need not otherwise be very complex, since 

the Chisel adaptation manager is the only consumer of events in the Chisel framework. In 

addition, in this initial design of the Chisel framework, only context relevant to the local 

application is supported, so no support for a distributed event model is required. No easily 

usable event mechanism that fulfilled these requirements without requiring extensive 

runtime support could be found. For this reason it was necessary to design and implement a 

custom event mechanism. One resultant design requirement was added, that the event 

mechanism be of a general-purpose nature to support later enhancement, particularly to add 

support in a later design for a distributed event model; for these reasons it should be a 

modular and extensible system.  

The Chisel event manager is responsible for all aspects of event handling and management 

in the Chisel framework, and so provides the Chisel event model. In the Chisel event model, 

all events have a unique name to allow them to be referred to by name. All event operations 

are performed in conjunction with the event manager. The Chisel event model does not 

support a publish-subscribe mechanism, since all objects within the adaptation framework 

and the application being adapted can be considered publishers of events (event sources). 

The adaptation manager is the only event subscriber, and subscribes to all events (event 

sink).  

In the Chisel framework, each event type is implemented as one named event object. These 

individual named event objects are created by the event manager each time a new event type 

is registered. These event objects are maintained by the event manager, which provides an 

interface for each named object to be repeatedly fired. Each object representing a named 

event type must be of, or extend, the generic TChiselEventObject T type, seen in figure 

3.4.1. The class TChiselEventObject T can also be extended to define event types that 



  

108 

contain extra methods and data fields. New event types can be dynamically created, 

registered, and deregistered using the event manager's programmatic interface. Each event 

type can be fired, cleared, enabled, and disabled, again via the event manager. Each instance 

of the Chisel adaptation manager has just one event manager so access to the event manager 

is via a single system-wide interface, so objects do not need to maintain a reference to the 

event manager in order to define or use Chisel events.  

+String getName()
+String getSource()

ChiselEventObject
-String name
-String source

 

Figure 3.4.1 The ChiselEventObject class 

Using the Chisel policy language, events can also be dynamically defined, fired, cleared, 

enabled, and disabled. Figure 3.4.2 below shows the simplest form of event definition.. 

NEW NetworkDisconnected 

Figure 3.4.2 Simple example of a dynamic event definition 

In figure 3.4.2 above, the event type TNetworkDisconnected T is defined. When parsed, 

this policy directive will cause a new instance of TChiselEventObject T, called 

" TNetworkDisconnected T" to be created registered with the event manager. For the 

event objects created programmatically and the event objects created using the policy 

directives, the unique name associated with each event type can be used in any adaptation 

policy rule.  

ON Event1 Event2.FIRE 

Figure 3.4.3 Simple of an event manipulation rule 

Once the event fires, any rule that uses that event as a trigger will be evaluated. As 

described in section 3.6.3, rules can be defined to fire, clear, enable, and disable any named 

event, as shown in figure 3.4.3 above, where an event of type TEvent2 T is fired every time 

an event of type TEvent1 T fires. This mechanism provides elementary support for the 

conditional specification of composite events, and provides a mechanism for event 

combinations and manipulations such as event filtering etc.  



  

109 

Also described in full in section 3.6, the Chisel policy language design provides a 

mechanism to specify automatic triggering specifications for events that are defined by 

policy directives. These automatic triggering specifications can be based on the evaluation 

of a set of context conditions, or based on a single or periodic time specification. If based on 

context conditions, the event will be repeatedly fired automatically while the conditions 

evaluate successfully. The time-based automatic triggers must be defined in a format that is 

intuitive and easy to understand, so extensive support for the translation and interpretation 

of multiple timing formats is required. This requirement for time-based automatic triggering 

of events is inspired by the contributions of the GEM [97] event specification language, 

where the Tat T and Tevery T operators are used for automatic event triggering. For every 

operator a time period is specified. For the Tat T operator a particular time is specified. Similar 

support is provided in the design of the Chisel policy language, as described in section 3.6, 

to allow the user to convey in intuitive and simple formats an abstract concept such as 

timing, and then have it translated into a strictly defined set of timing specifications. These 

mechanisms together support the definition and controlled use of events in a dynamic 

manner, and in a manner that can remain completely unanticipated until during runtime. 

Based on this design, the Chisel event model supports the dynamic definition of named 

event types and the dynamic firing of events, using both a programmatic interface for use in 

compiled code, and via the Chisel policy manager to fully support the unanticipated 

definition and use of events. With this design, the Chisel event model satisfies the event 

model requirements described in section 3.3.2, and satisfies the requirement for completely 

unanticipated dynamic adaptation, that the specification and use of unanticipated control 

logic must be supported. A more detailed description of the implementation, operations, and 

architecture of the Chisel event manager, and how it combines and operates with the other 

parts of the Chisel framework is provided in the following chapter. Further examples of how 

dynamically-defined events are specified, their automatic triggering specification, and the 

specification of event manipulation rules using the Chisel policy language are also presented 

in section 3.6.3. 

3.5 The Chisel context model 

As stated in sections 1.1 and 3.1, the primary objective of the Chisel framework is the 

support of unanticipated adaptation, in response to unanticipated context change, where 

context refers to the changing state, resources, and requirements of the operating 



  

110 

environment, the application, and the user. This definition of context is designed to be wide 

ranging to encompass all characteristics of the user, application, and environment that can 

be measured and queried. This is required since what may be regarded as important context 

cannot be anticipated when the application being monitored and adapted is designed, or 

indeed when this adaptation framework is designed. The Chisel context model describes 

how these context values can be specified, measured, and automatically monitored. This is 

achieved in two ways.  

Firstly, the Chisel service manager supports the dynamic querying of arbitrary fields and 

methods of arbitrary classes and objects. Since each field and method return value might be 

considered an unanticipated context variable, this is one mechanism to query context values. 

This mechanism to query context values is used extensively in the rule directives that 

specify how the rule manager should initiate adaptations and event manipulations. In 

particular the use of events to trigger rules, which can contain complex context queries to 

direct the operation of the rule, and which can then manipulate other events, provides a 

powerful mechanism to signal the changing context of the user, application, and execution 

environment. These context change signals can then be used to initiate adaptation rules, 

which may themselves contain context-aware adaptation control logic. And in addition to 

this, the rules that direct these context-aware adaptations are themselves dynamically 

updateable to support both the users changing requirements, and the ability to dynamically 

specify what should be considered an important context variable. The format of adaptation 

rules and event manipulation rules is described in the next section. 

Secondly, the Chisel context manager supports the programmatic definition of context 

variables as instances of the TContextVariable T class, shown in figure 3.5.1. These 

context variables contain details on a context source, and a context value belonging to that 

source, whose value can be retrieved. In the default design for the TContextVariableT 

class, only fields of classes and named objects can be queried. However, this class can be 

overridden to extend its operation to support queries of a more complicated nature.  

The Chisel context manager also provides an automatic context monitoring mechanism, 

with support for the automatic firing of events in response to monitored context changes. 

This is achieved by registering a context variable check condition, and a set of tolerance 

values for that context variable with the context manager. An event type can be associated 

with this alert condition, to be fired if the context value moves outside the specified 

tolerance range. These automatic context alert monitors are instantiations of the 

TContextCheckCondition T class shown in figure 3.5.1. These objects are passed to the 



  

111 

Chisel context manager, which performs the monitoring operations and fires the relevant 

event when the context variable moved outside of tolerance values. 

+Object getValue()

ContextVariable
-String sourcename
-String fieldname

+boolean doCheck()

ContextCheckCondition
-ContextVariable tocheck
-ChiselEventObject tofire
-int comparisontype
-Object lovalue
-Object hivalue

 

Figure 3.5.1 Data representations of context variables and context alert conditions 

The current Chisel policy language design does not support the dynamic specification of 

TContextVariable T objects or TContextCheckCondition T alerts. These can only be 

defined in source code. This source code may be part of the adapted application, but only if 

the context variable is anticipated to be important at the design time of the application. Since 

the Chisel framework is primarily designed to support completely unanticipated dynamic 

adaptation, this method is not discussed further. The source code containing these context 

variable definitions and alert definitions can also be contained in metatype code. Since 

metatypes and their constituent meta objects can be designed and built after the target 

application has started execution, this is the method favoured. How these context variable 

definitions and alerts are defined is left to the metatype designer. 

The Chisel context model is closely linked with the Chisel event model, since events in the 

Chisel framework describe context changes. In this respect, the Chisel adaptation 

framework was designed in a manner that supports unanticipated dynamic definition and 

manipulation of events, in a context-aware manner. These events are then used to trigger 

unanticipated dynamic adaptations. So in effect, the Chisel framework supports 

unanticipated dynamic adaptation in a context-aware manner. 

More details on the implementation, architecture, and operation of the Chisel context 

manager, the Chisel service manager, and the Chisel event manager are given in the 

following chapter. 



  

112 

3.6 Policy-based management in Chisel 

This section describes the use of policy-based management techniques in the Chisel 

dynamic adaptation framework. The Chisel policy language is also described, which is used 

to specify adaptation policies for use by the Chisel dynamic adaptation manager to control 

possibly unanticipated dynamic adaptations in a manner that exploits user-, application-, and 

environment-specific information. 

3.6.1 Why use the Chisel policy language 

Despite the requirements for the Chisel adaptation framework to be flexible and support 

general-purpose use, the type of operations supported by the Chisel framework is quite 

small. The Chisel framework is designed to allow the user to control the initiation of 

adaptation operations in a policy based manner. To achieve this, the user must be able to 

define both proactive and reactive adaptation rules and event manipulation rules. The 

reactive rules must specify an event that would trigger the rule. These rules could be used to 

either associate a named metatype with a named class or object, or perform one of a small 

set of event operations on a named event. These rules should also support the definition of 

arbitrarily complex condition statements that can be evaluated when the rule is triggered to 

determine if the adaptation operation or event operation should proceed. The language must 

also support the definition of new named events and a set of automatic triggers for these 

events. 

Many policy-based management frameworks exist that could have been incorporated into 

the Chisel framework to provide this support, e.g. Ponder [33-35, 47] or REI [78, 79] as 

discussed in Chapter 2, however it is apparent that these policy frameworks focus more 

particularly on security aspects and enterprise level management than on adaptation control. 

General purpose event-based languages were also considered, particularly Esterel [6, 51] 

and Jess [137] with their support for Java since this was the programming language to be 

used in the Chisel framework. However each of these systems require an extensive runtime 

environment, and for each, the user would be required to learn a new language, just to 

control adaptation.  

It was decided that a fully functional scripting language, or a general-purpose policy-based 

management framework would be excessively over expressive and heavyweight for the 

limited requirements of the Chisel framework. It was also felt that the benefits of designing 

a new lean adaptation policy language would allow easier use of the Chisel framework since 



  

113 

the user would only be required to learn a few simple language constructs rather than a full 

expressive language. 

The Chisel policy language performs as the interface between the Chisel adaptation manager 

and the user adapting the application software. In order for the Chisel language to be used in 

a flexible manner, it is necessary that this interface is as easy as possible for the end user to 

use. It is also necessary that the policy management method used supports the dynamic 

loading and unloading of new policies to support unanticipated adaptations.  

Since the Java programming language was to be used to create the metatype constructs for 

unanticipated dynamic adaptations, it was also decided that the policy language should 

resemble Java where possible. This is especially the case in the conditions specification 

section of rules, where support is required for access to methods and fields of arbitrary 

objects and classes, calculations and comparisons, and the interpretation of user-specified 

data values.  

The reason for using a human-readable declarative language approach was to allow the user 

to understand how the adaptation manager controls adaptation. Rather than use a machine-

readable language such as XML, the language must display, in an obvious and 

comprehensible way, what will happen when adaptations are necessary. The most complex 

section of a rule is the specification of conditions, for which a standard programming 

language such as Java is ideally suited, since language-level constructs such as operators, 

the naming of classes, methods, fields etc. are needed. Tool support could have been added 

to a machine-readable language such as XML to specify and display rule and condition 

information in a comprehensible manner. However, this type of display of rule logic would 

still only provide the same experience that a human-readable language would provide 

without any support. The Chisel policy parser is responsible for taking this human-readable 

format and converting it to a data format for use by the adaptation manager. This mapping 

from language to adaptation directives data would still be necessary for a machine-readable 

language, without added benefit. Any tool support for the display of adaptation logic could 

still be provided, based on the parsed representation of the control rules. 

3.6.2 Alternatives to policy-based management of 
unanticipated adaptation 

There are a number of alternatives to using a rule-based or policy-based approach to control 

dynamic adaptation. If an adaptable program presents an interface (either graphical or 

console based) that allows the user to find and identify an adaptation location, and then 



  

114 

provide an unanticipated adaptation for that location, no policy-script is required to drive the 

adaptation process. This is the approach used in several adaptable systems, some supporting 

unanticipated adaptation, e.g., the console solution in Iguana/J, the Java HotSwap Client 

Tool, the Doctor interface in DynamicTAO etc. However, these mechanisms force the user 

to adopt a "hands-on" approach to adapt the application since, whenever the adaptation is 

required, the user must be available and ready to initiate the adaptation. Like a policy-based 

management system, this mechanism requires anticipation of the possible need to adapt, but 

without anticipating individual adaptations, before the application is started as the interface 

will require runtime support.  

Another alternative is the use of a dynamically loaded agent component to perform and 

control the adaptation. In this case a software module or agent is created, possibly 

dynamically, that embeds an adaptation and the logic to install and control that adaptation. 

That agent is then incorporated into the application so that the agent can then intelligently 

update the application by deploying its adaptation code. This mechanism is seen in systems 

such as DynamicTAO, 2K, aspects in Wool, management components in OpenORB, the use 

of install scripts to update software, or more malicious forms of mobile code seen with 

computer viruses. These mechanisms are often difficult to use and may pose a security risk 

to the application. These modules are inflexible and require more anticipation of adaptation 

since the adaptation logic must be anticipated before the adaptation is deployed and, once 

the adaptation is compiled, the logic cannot be changed. This mechanism also requires that 

there exists some mechanism to support the dynamic acceptance and execution of these 

modules, so again, like policy-based management, this mechanism anticipates the possible 

future need to support adaptation. 

3.6.3 The Chisel policy language 

There are three distinct parts to the Chisel policy language. The first part of the language is a 

means of specifying reactive adaptation rules, as described in figure 3.6.1 below:  

ON EventType  NamedClassOrObject . NewBehaviourMetatype  IF Conditions 

Figure 3.6.1 Format of a reactive behaviour adaptation policy rule 

As part of the Chisel event model, every type of event has a unique name. In reactive rules, 

the name of the triggering event is specified, in place of TEventType T in the rule 

specification above. When an event of that type is fired, in conjunction with the Chisel event 

manager, the Chisel rule manager will select the rules triggered by that event to be 



  

115 

evaluated. Adaptation rules are used to specify which metatype should be associated with 

which application object or class. In the rule specification above, TNamedClassOrObject T 

is replaced with the name of an arbitrary object or class. If a class, this name is the fully 

qualified class name, e.g., Tjava.io.InputSream T. If the adaptation target is an object, 

the name assigned to that object, as entered in the Chisel named object store, is used. 

TNewBehaviourMetatype T is replaced with the name of a metatype, e.g., 

TNullProtocol T, which the behaviour manager should associate with the target object or 

class. A set of arbitrary conditions can also be specified to constrain the operation of the 

rule, replacing TConditions T in the rule specification above. All named objects and classes, 

all events, and user specified values can be queried and compared to evaluate a series of 

constraints or guard statements to control the operation of this adaptation policy rule. The 

Chisel rule manager is responsible for dynamically evaluating the condition section of the 

rule, which should result in a boolean value. If the conditions successfully evaluate to true, 

the rule manager will then request that the Chisel behaviour manager perform the adaptation 

operation.  

Reactive event manipulation rules can be used to perform more complex event operations 

such as event filtering, the format of which is described in figure 3.6.2 below. 

ON EventType   EventType . EventOperation  IF Conditions 

Figure 3.6.2 Format of a reactive event manipulation policy rule 

The reactive rule above is also triggered by fired events of a named event type. Here, when 

the event fires, any named event type, including the triggering event type, can have an event 

operation performed on it. In place of TEventOperation T in the example one of four 

operations can be specified: TFIRE T, TCLEAR T, TDISABLE T, or TENABLE T. TFIRE T is used to fire 

the named event. TCLEAR T is used to clear a named event that may have been already fired, 

thereby preventing it from triggering the evaluation of a following rule. TDISABLE T disables 

the event type so that it cannot be fired. TENABLE T is used to reenable an event type that was 

previously disabled.  

The second part of the Chisel policy language supports the definition of proactive adaptation 

policy rules. These rules are very similar to the reactive rules described above, but the rule is 

triggered immediately, and just once, as the policy script is loaded, instead of waiting for a 

triggering event. The conditions section, the adaptation of managed objects and classes, and 

the manipulation of named events are all supported as specified in the reactive rules. Figures 

3.6.3 and 3.6.4 below show the format used to specify proactive rules.  



  

116 

INITIALLY  ClassOrObject . NewBehaviourMetatype  IF Conditions 

Figure 3.6.3 Format of a proactive behaviour adaptation policy rule 

INITIALLY  EventType . EventOperation  IF Conditions 

Figure 3.6.4 Format of a proactive event manipulation policy rule 

The third part of the policy language provides a mechanism to support the dynamic 

definition and triggering of new events. 

NEW    EventType    Trigger    TriggeringSpecification 

Figure 3.6.5 Format of a dynamic event specification rule 

Figure 3.6.5 describes how a new event is declared and will be automatically set to fire 

according to its triggering specification. In the example above, TEventType T is replaced 

with the name that should be associated with the new event type. A number of different 

automatic triggering specifications are included in the design of the Chisel policy language. 

Trigger can be replaced with the keywords TEVERY T, TAT T, or TWHEN T. If the TEVERY T keyword is 

used, a time period specification replaces TTriggeringSpecification T in the rule 

above. If the TAT Tkeyword is used, a certain time or date is specified to have the event 

automatically fired at that time or date. If the TWHEN T keyword is used, a condition block 

similar to the adaptation rules and event manipulation rules above is specified. In this case, 

the event will be repeatedly fired when the condition evaluates to true.  

Each of these parts of the Chisel policy language is described in more detail in the following 

sections. 

Specification of new events 

This mechanism is used to define new events that could not have been anticipated at design 

time, possibly because the event indicates a condition that was unknown at design time, or 

one that was not anticipated to be of importance by the application designer. In order to 

support adaptation in response to unanticipated stimuli, the Chisel policy language supports 

the dynamic declaration of new triggering events.  

Figure 3.6.6 shows how a new event called TUnluckyDay T is defined dynamically, and will 

be fired every Friday. If the trigger TEVERY T is used, a set of time specifications is specified 

by means of a time interval. If the trigger TAT T is used, a single time point or date is specified. 

As with the GEM event specification model, partial timing specifications result in the use of 

default values for unspecified parts of a timing specification. If no seconds values are 



  

117 

specified, the value T0 T is assumed. If no day is specified, the current day is assumed, etc. For 

example, " TFriday T" in the rule specification above, results in the automatic triggering of 

the event every Friday at T00:00:00 T, so the event TUnluckyDay T will be next fired 

immediately after midnight, in the morning of the next occurring Friday. The event will then 

be fired at the same time every following Friday. Along with the names of each day, the 

other descriptive language constant values supported are the names of the months, TmiddayT 

and Tmidnight T, Tday T, Tweek T, Tmonth T, Thour T, and Tminute T are provided in the framework 

design. Here the Tminute T keyword represents T60 T seconds, the Thour T keyword represents 

T3600 T seconds, Tweek T refers to T604800 T seconds, i.e., the number of seconds in a week, the 

Tmidnight T keyword refers to the time T00:00:00 T etc. The full specification of a time 

point or date is in the formT dd/MM/yy@hh:mm:ss Twhere Tdd T is the day of the month, TMM T 

is the month number, Tyy T is the abbreviated year number, Thh T is the hour, Tmm T is the minute, 

and Tss T is the seconds value. As stated, if the time is omitted, midnight is assumed. If the 

date is omitted, today is assumed. If either the date or the time is omitted, the T@ T symbol can 

also be omitted. Individual parts of the time/date specification can also be omitted values, 

but only in order from right-to-left. For example, Tdd/MM Tcan be specified without the year 

value since this year will be assumed, Thh T can be specified for a time without the minute or 

second value since T0 T will be assumed for both. The full specification of a time interval must 

be given in seconds, or using one of the language constants described above. Arithmetic 

operators are currently not supported in this design of the Chisel language.  

NEW UnluckyDay EVERY Friday 

Figure 3.6.6 Example dynamic event definition 

Standard conditions, as used in proactive and reactive rules and described in the following 

section, are evaluated for use with the TWHEN T trigger. These conditions must be continuously 

checked in the background, and when these conditions evaluate successfully, the event is 

fired via the event manager. An alternative approach to using the TWHEN T trigger in a rule 

specification, is to use the Chisel context manager in a programmatic manner to monitor a 

context-variable condition and fire the event when that variable goes outside specified 

bounds, as described in section 3.5.  

As discussed earlier in this chapter this ability to define new event types is crucial to the 

design of the Chisel framework. This mechanism allows the unanticipated definition of what 

context information is of importance to the adaptation management, and how the Chisel 



  

118 

event model can be used can represent possibly changing context conditions with events 

fired to alert the adaptation management of the occurrence of these context conditions. 

Specifying rule conditions 

The rule conditions specification block, used in reactive rules, proactive rules, and TWHENT 

automatic event triggers, contains arbitrary code that is interpreted at runtime by the Chisel 

rule manager. The final result of the evaluation of this code must be a boolean value, to 

indicate if the adaptation operation or event should proceed or not. This code is specified in 

standard Java notation. Conditions can contain calls to any field or method, of any class or 

named object, and constant string, integer, floating point numbers, boolean, and character 

values.  

Strings are specified using quotation marks T" " T, integers as ordinary numbers, floating 

point numbers as numbers with a decimal point, boolean values as Ttrue T or Tfalse T, and 

characters using single quotation marks T' ' T. 

Field accesses are specified in the format: TNamedObjectOrClass.FieldName Twhere 

TNamedObjectOrClass T can be replaced by any fully qualified class name or by a named 

object as registered in the named object store, and TFieldName T can be replaced by the 

name of a declared public field for that class or objects. Method calls are specified like Java 

in the format: TNamedObjectOrClass.MethodName(Parameters,…) T with 

TNamedObjectOrClass T replaced by any fully qualified class name or by a named object 

as registered in the named object store. TMethodName T is replaced by the name of the 

declared method to be called in that class or object. Parameters can be replaced by one or 

more parameters for that method call. Other classes, objects, method return values, field 

access, and user defined constant values can be used as parameters in a recursive manner. 

Object and classes returned by field accesses and method invocations can also by used as 

the target object for other field access and method calls, using the following format: 

T(NamedObjectOrClass.MethodName(Parameters,…)).FieldName Twith 

parentheses used to separate the different parts of the call. 

Standard arithmetic operators, including subtraction (" T- T"), multiplication ("T* T"), addition 

(" T+ T"), division ("T/ T"), and unary boolean negation ("T! T") are included in the design. Standard 

boolean comparison operators, including equals ("T== T"), not equals (" T!= T"), greater than (" T> T" 

and T">= T"), less than (" T< T" and "T<= T"), with multiple conditions combined using the boolean 

combination operators AND (" T&& T") and OR (" T|| T") are also supplied. The conditions block 

can be arbitrarily complex provided each block is enclosed in brackets. If the condition 



  

119 

section is omitted, the condition "TIF true T" is presumed, so the condition will always be 

satisfied.  

The most difficult task of the Chisel rule manager is the dynamic interpretation of these 

arbitrarily complex condition specifications to determine if the rule's adaptation operation or 

event manipulation operation should proceed. Full details on the implementation of the rule 

manager are given in the following chapter. Examples of rule condition blocks are given in 

the example rules used throughout this thesis. 

Specification of new reactive rules 

Reactive rules are the mechanism that the Chisel framework uses in order to perform user 

defined event manipulations and initiate adaptations in response to context changes. This 

section introduces a series of examples to illustrate how these reactive rules are specified.  

ON WirelessNetworkDisconnect   NetworkConnectionService.WiredConnectionBehaviour  

               IF (NetworkConnectionService.WiredConnectionAvailable  == TRUE  &&     

      WirelessNetworkDisconnect.IsTemporary == FALSE  )  || 
     (UserPreferences.getPreferredComms()).compareTo("Wireless") != 0 

Figure 3.6.7 Example reactive adaptation policy rule 

In figure 3.6.7, TWirelessNetworkDisconnect T is a named event type, for example, 

fired by a network resource monitor or by the Chisel context manager to signify that a 

wireless connection may have become disconnected. For this example, if the 

TWirelessNetworkDisconnect T event is fired, this rule will be triggered. The rule 

manager will then request that the behaviour manager associates the named 

TWiredConnectionBehaviour T metatype to the object or class named 

TNetworkConnectionService T, but only if the condition block evaluates to true. As can 

be seen, the fields and methods specified in the fired event object, 

TWirelessNetworkDisconnect T, can also be used in the conditions, as well as method 

calls and field accesses of arbitrary classes and named objects. However, as described in 

section 3.4, this is only possible for event types that extend the TChiselEventObject T 

class to include additional field or methods. 

In figure 3.6.8, TUnluckyDay T is an event, fired by the example rule given in figure 3.6.6 

above. When it fires, event TReallyUnluckyDay T will also be fired if it is the 13P

th
P day of 

the month when the rule is triggered, as determined by the Java code specified in the 

condition block. Even though a rule of this nature may seem contrived and have little 



  

120 

anticipated practical use, this rule shows that particular user requirements and resources 

cannot be anticipated by the software's original designers and developers. 

ON UnluckyDay   ReallyUnluckyDay.FIRE  

   IF (((java.util.Calendar).getInstance()).getTime()).TgetDate()T == 13 

Figure 3.6.8 Example reactive event manipulation policy rule  

Specification of proactive rules 

Chisel proactive adaptation policy rules are very similar to reactive rules, except they are 

not triggered by events but rather they triggered immediately, and just once, when the policy 

script is loaded and interpreted. Proactive rules are used where the user requires that an 

adaptation is applied immediately instead of waiting for a context change. This mechanism 

is appropriate where the need for adaptation has already arisen and is being addressed by 

providing a new policy script for the Chisel framework. Again, proactive rules can contain 

arbitrarily complex conditions in a manner similar to the reactive policy rules. 

INITIALLY MyNamedApplicationObject1 . ChiselVerboseOperation  

Figure 3.6.9 Example proactive adaptation policy rule  

Figure 3.6.9 shows how a metatype, TChiselVerboseOperation T will be applied to the 

named object TMyNamedApplicationObject1 T immediately when the policy rule has 

been parsed. This new behaviour will be unequivocally applied since the condition "TIF 

true T" is assumed, as stated above. The Chisel event manager will make use of the Chisel 

named object store to find the object that corresponds to the name 

TMyNamedApplicationObject1 T. This demonstrates that useful and recognisable object 

names, applied to any object via the Chisel service manager and the Chisel named object 

store, can be used in Chisel policy rules. More information on the Chisel named object store 

is presented later in the following chapters, including, how names can be applied to arbitrary 

objects, and how these names are used to find the object for use in rules as shown in the 

example above. 

Passing parameters to metatypes 

The current design of the Chisel policy language does not support the specification of 

metatype parameters. Although this powerful technique of passing parameter data when 

metatypes are associated, allows metatypes to be more flexible and reusable, this version of 

the Chisel programming language does not support metatype parameters, since this would 



  

121 

affect the readability and simplicity of the language. However, parameters can be embedded 

directly in the metatype code and then dynamically recompiled offline. This current design 

is not ideal, but the support for metatype parameters was not seen as a core requirement of 

the Chisel policy language. Metatype parameters can also be specified if metatype 

associations are performed from within other metatypes or other arbitrary execution code.  

3.6.4 Summary of policy-based management in the Chisel 
architecture 

This section has described the use of policy-based management techniques to control 

adaptation in the Chisel framework. The use of this policy-based control model allows the 

clean decoupling of adaptation logic from the adaptation mechanism used by the Chisel 

framework. The dynamic loading and interpretation of policy directives can also be used to 

support the management of new unanticipated adaptations, by allowing those new 

adaptations to be referred to dynamically, along with where they should be applied and what 

management logic should be used to control how and when those adaptations are applied. 

This section has also described the Chisel policy language, and how it can be used to define 

new events, specify proactive and reactive event manipulation rules and adaptation rules, 

and how complex control logic can focus and direct the operation of these rules. It is 

important that the Chisel policy language is easy to use and easy to understand, allowing 

users to manipulate the target application software in ways that cannot be anticipated by the 

software designers and developers.  

The Chisel policy manager supports the dynamic loading of policy scripts containing a set 

of rules defined using the Chisel policy language. The Chisel rule manager is responsible for 

controlling the adaptation process by processing these rules, either when the script is loaded 

for proactive rule, or in response to events for reactive rules. As described in the Chisel 

event model and context model, these events signify a change in the state, resources, or 

requirements of the user, application, or execution environment. This mechanism allows 

adaptations to proceed in a controlled, reactive, context-aware manner. 

The use of the Chisel policy language to specify possibly unanticipated adaptation control 

logic, and the Chisel adaptation manager to have those specifications parsed and interpreted 

at runtime, is the key design characteristic that allows the Chisel framework to support 

completely unanticipated dynamic adaptation in a context-aware manner. 



  

122 

However, the use of the Chisel policy language does restrict the generality of the Chisel 

framework to support general-purpose adaptations. The Chisel policy language, and the 

Chisel framework, is specifically designed to allow new rules to be specified dynamically, 

with adaptation triggered by events which can be dynamically defined and manipulated, and 

with adaptation initiations and event manipulations constrained by rule conditions specified 

in a manner as close as possible to a general-purpose programming language. In this respect, 

every effort has been made to maintain the generality of the Chisel framework. Only with 

further research and design could alternative or supplementary dynamic adaptation control 

mechanisms be leveraged to enhance the generality of the framework. 

3.7 How context-aware general-purpose completely 
unanticipated dynamic adaptation is achieved  

This chapter has described the design of the Chisel dynamic adaptation framework. As 

stated the primary goal of the Chisel framework is to support completely unanticipated 

dynamic adaptation. This can be achieved if the all aspects of individual adaptations remain 

unanticipated until during the execution of the application being adapted. To achieve this the 

contents, location, timing, and control logic of the adaptation must remain unanticipated. 

3.7.1 Unanticipated adaptation contents achieved 

Since the dynamic association of metatypes is the adaptation mechanism used by the Chisel 

adaptation framework, it is necessary that metatypes can be created in a dynamic manner at 

any time as the target application is running. To support unanticipated behaviour adaptation, 

there can be no a-priori knowledge about what the dynamically created metatype will do, or 

how the adaptive behaviour will be achieved.  

The Chisel framework supports this dynamic definition and use of metatypes by using a 

runtime lookup mechanism to find the metatype, only after it has been referred to by an 

adaptation policy rule, which may itself have been dynamically defined in an unanticipated 

manner. As discussed in section 3.2, this design of the Chisel framework makes use of the 

Iguana/J reflective architecture to provide the mechanism to support dynamic metatype 

association. At any time as the application to be adapted is executing, in the background a 

user can dynamically define a new metatype for unanticipated use by the adaptation 

manager. This means specifying the parts of the object model to reify, then dynamically 

declaring, developing, and compiling behavioural meta objects for these reifications, and 



  

123 

then combining these meta objects to form a meta-level class embedding the metatype 

behaviour, all as the target application is executing. This metatype can contain any adaptive 

behaviour that can be supported using the metatype model. 

Since the metatype is implemented as a standard Java class, it can be dynamically loaded 

using Java dynamic classloading techniques. Therefore, this new and unanticipated 

metatype class can then be dynamically loaded by the Chisel framework's behaviour 

manager and associated with any class or object in the application, thereby adapting either 

the functional or non-functional behaviours of that class or object. If necessary, the Chisel 

framework can be used to pause the execution of the application while waiting for the 

metatype to be compiled. 

3.7.2 Unanticipated adaptation locations achieved 

In the Chisel framework, dynamic metatype association can be used to dynamically adapt 

any class or named object, which acts as the location. If the object or class already has a 

metatype associated with it, it will be replaced by the new metatype, unless the new 

metatype is derived in some manner from the original metatype, in which case it will 

already contain the behaviour of the old metatype. Also, if a metatype is to be associated 

with an object, that metatype must be derived from the metatype associated with the object's 

class. The same restriction applies to the dynamic association of metatypes with classes; the 

metatype must be derived from the metatypes of its superclasses. However, all objects and 

classes initially have a default null protocol associated with them, and all metatypes are 

derived from this null protocol. 

The design and operation of the Chisel service manager and the Chisel named object store 

has been discussed in a number of sections of this chapter. The Chisel service manager is 

responsible for finding the target object or classes for adaptation, and so any object or class 

that can be found at runtime can be dynamically adapted. For any dynamically applied 

adaptation, if its location is to remain unanticipated, there must exist some mechanism to 

have this location information specified at runtime. From this location specification, it must 

also be possible to find one distinct target object or class to adapt. The location specification 

is made in the adaptation policy script, which may be changed at any time during the 

execution of the target application. It is then the responsibility of the Chisel service manager 

to find this location at which to apply the adaptation. If the adaptation location is a named 

object, this name must first have been associated with an individual object using the Chisel 

object store interface. These mechanisms combined mean that the location of any adaptation 



  

124 

can remain unanticipated until during the execution of the target application, and until the 

time the control logic for that adaptation is interpreted by the Chisel policy manager. More 

information on the implementation of the Chisel service manager, the Chisel object store, 

and the Chisel policy manager is presented in the next chapter. 

3.7.3 Unanticipated adaptation control logic achieved 

The Chisel policy language, described in section 3.6, in conjunction with the Chisel policy 

manager allow users to dynamically decide what logic should guide the process by which an 

arbitrary adaptation is applied to an arbitrary target. Any time the user wishes to update the 

policy script, the Chisel policy parser will accept the new script, parse the control directives 

and pass the rules to the Chisel rule manager and the Chisel event manager for processing. 

There are no requirements to control what the user should have in these policy rules. The 

user can refer to any context variable, any field or method in any class or named object, any 

event, or can define their own requirements when creating the condition set for a proactive 

or reactive rule. The user can dictate that the adaptation be applied immediately as a 

proactive adaptation directive, or choose any event as the trigger for a reactive adaptation 

rule. The user can also dynamically specify the control logic of when this event will fire. 

These supports combined allow the user to define arbitrarily complex rules about how 

individual adaptation should be applied, and all in an unanticipated manner, as the target 

application runs. 

3.7.4 Unanticipated adaptation timings achieved 

The time that an adaptation is applied is strongly related to the adaptation logic declared in 

the adaptation policy rules. In the Chisel adaptation framework, an unanticipated adaptation 

can be applied as the result of a proactive rule or a reactive rule. 

A proactive rule will result in the application of an adaptation immediately as the policy 

script is interpreted, but only if the conditions specified in the rule are satisfied. This means 

that the timing of these adaptations is bound to the time that the script is changed. However, 

as described above, this script can be changed in an unanticipated manner, so the time at 

which these proactive adaptation rules are applied, can remain unanticipated until during 

runtime, i.e., until the user decides that an adaptation requirement exists, a therefore uploads 

a new policy script for the policy manager to interpret and then apply the adaptation. 

A reactive rule will result in the application of the adaptation at an even later stage. A 

reactive rule will only be triggered if the event used as the rule trigger is fired. Only then 



  

125 

will the condition section of the reactive rule be evaluated. The condition section can 

contain arbitrarily complex combinations of operations, arbitrary context lookups, and 

arbitrary constant values. Only if these conditions evaluate successfully and result in a true 

boolean value will the adaptation be applied. Again the event that triggered the rule can be 

fired as a result of another arbitrary policy rule, by the Chisel context manager, by the event 

manager as part of an automatically triggered event, or indeed by any part of the application 

or adaptation manager that makes use of the event manager programmatically. Combined, 

this means that the time at which adaptations caused by reactive adaptation rules are 

applied, is indeed unanticipated.  

3.7.5 General-purpose dynamic software inspection and 
adaptation achieved 

As seen, each of the requirements for the support of completely unanticipated dynamic 

adaptation can be fulfilled by the Chisel dynamic adaptation framework, thereby meeting 

the primary goal of the Chisel project. However, it should be possible to use this framework 

to adapt any general-purpose application and not just those designed especially with the 

possible need for adaptation anticipated.  

Metatype association can be used to adapt any object, since all state and method accesses, 

both into and out of the object, can be intercepted. There are no requirements about how the 

object's source code was written, and indeed no requirement for access to the source code of 

the object. All that is required is a reference to the object, in order to associate any arbitrary 

metatype with that object.  

If the functional behaviours of the object are to be adapted, then it may be necessary to have 

some form of information about how those functional behaviours are implemented. This is 

difficult without adequate documentation and if the source code for the object is 

unavailable. However, as described in section 3.2.4, Chisel supports the dynamic attachment 

of introspective and probing metatypes with the object to facilitate attempts to deduce as 

much information as possible about the internal implementation of the object. Although this 

mechanism is likely to produce a significant amount of useful information about how the 

object works, this mechanism is restricted by the lack of support in the metatype model to 

directly access the functional code of the target object. However, the separate use of a 

number of other techniques, such as decompilation, the use of bytecode manipulation tools 

such as Javassist [24, 26], BCEL library [32], or the use of debug tools to extract any debug 



  

126 

symbolic information remaining in the code would likely lead to more information about the 

operation of the object. 

If the non-functional behaviours of an object are to be adapted, there is often less need for 

access to the implementation details of the object, since these behaviours can often be 

applied by completely wrapping or redirecting the operations of the object, without regard to 

the type of the object, what the functional behaviours of the object may be, or how these 

behaviours are achieved. However, this cannot always be the case since some non-

functional behaviours require tight integration with the internal operations of the object, e.g., 

memory management or debugging.   

Since the Chisel framework can be used to dynamically adapt software that was designed 

and developed without any a-priori knowledge that these adaptation would be performed, 

the Chisel framework satisfies the requirement that arbitrary objects and classes, of arbitrary 

applications, can be dynamically adapted in a general-purpose manner.  

By making use of the inspection mechanisms described in section 3.2.4, the Chisel 

framework can be used to dynamically inspect and probe the operation of any general-

purpose compiled software application, providing vital information about how that module 

can be adapted and tailored, and all without requiring any access to the application's source 

code. Therefore, these inspection mechanisms can be used to open up software modules that 

have been designed according to the black box principle of software engineering. 

However, the generality of the Chisel dynamic adaptation framework is restricted by it use 

of Iguana/J as its dynamic adaptation mechanism, and by the degree of control provided by 

the Chisel policy language to drive the adaptation process. 

3.7.6 Context-aware dynamic adaptation achieved 

As described throughout this chapter, the Chisel context model uses a very wide-ranging 

description of context to include all resources, requirements, and state of the user, 

application, and execution environment. The main reason why this definition is so wide-

ranging is that there is no way to anticipate what would be considered context and what 

would not. Different applications and different users would all have different context 

requirements and would consider definitions of context ranging from very specialised and 

focused, to very wide-ranging and vague. The Chisel framework is designed to act as a 

general-purpose context-aware adaptation framework, so the widest definition of context 

must be used. 



  

127 

Since there is no way to anticipate or determine prior to execution, what context values the 

user may require access to during runtime, the Chisel context model supports the dynamic 

specification of what should be monitored, whether as a direct value lookup, or using events 

to signal changing context values. This is achieved in the Chisel framework by supporting 

the dynamic definition of event types, and the dynamic specification of rules to be evaluated 

based on those event types. The rules can also query any public field or method of any 

arbitrary named object or class at runtime, by making use of the service manager.  

For context lookups that can be anticipated prior to runtime and so inserted in application 

code, or lookups that are anticipated as metatypes are written and so embedded in metatype 

code, the Chisel context manager can be used to register, and automatically monitor, named 

context variables. These context monitors then fire events when the context variable 

changes in an interesting manner. 

So once events signalling interesting changes in context are being fired, the Chisel policy 

language can be used to specify rules for context-aware dynamic metatype associations in a 

completely unanticipated manner, with further context lookups incorporated into the 

condition block of these rules. 

Unanticipated 
location (where) 

• Ability to dynamically create adaptation hook locations at runtime 
  or, 
   Have already inserted a large set of hook locations, suitable for any 
   adaptation 
• Ability to identify and refer to adaptation location at runtime 

 

Unanticipated 
control (how) 

• Ability to dynamically specify adaptation control logic, and have this 
 control logic interpreted at runtime 

• Ability to include arbitrary context monitoring in this control logic, and 
 support the dynamic specification what should be monitored. 

 

 
Unanticipated 
timing (when) 

• Ability to bind and unbind adaptations at specified points at any time 
during execution, in a timely manner   

  
Unanticipated 
adaptation 
contents (what) 

• Ability to dynamically create arbitrary executable code at runtime 
• Ability to load this newly created code refer to this executable code after 

 it is loaded   

 

Introspection 

• Ability to dynamically inspect, probe, and profile the operation of 
 arbitrary compiled software at runtime 

• Ability to perform this introspection without access to the source code of 
 the software 

• Ability to perform this introspection in an unanticipated manner 

 

 

Metatypes 
• Make use of metatypes as a dynamic adaptation mechanism, to 

 demonstrate their abilities and usefulness   

Table 3.7.1 Meeting requirements in the Chisel dynamic adaptation framework 



  

128 

3.8 Conclusion 

This chapter described in detail the requirements, concept, and design of the Chisel dynamic 

adaptation framework. The metatype adaptation model and the use of dynamic metatype 

association as a dynamic adaptation mechanism are also presented. 

An overview of the design and operation of the Chisel adaptation framework first 

introduced the adaptation manager and its constituent sub-managers: the event manager, the 

rule manager, the behaviour manager, the service manager, and the context manager. The 

design of each of these managers was then described in detail, with their key operations 

introduced.  

The Chisel policy language, used to dynamically drive the Chisel adaptation manager was 

also described in detail. The use of the Chisel language to specify rules to manage the 

application of dynamic adaptations in a proactive or reactive manner, and to manage the 

dynamic definition and manipulation of events for use in these reactive rules, was also 

described. 

How the Chisel framework can be used to perform completely unanticipated dynamic 

adaptation is also presented, by describing how all aspects of individual adaptation can be 

specified after the target application has started execution. 

The next chapter describes in depth a prototype implementation of the Chisel adaptation 

framework and the implementation of the Chisel policy parser. Chapter 4 also describes in 

detail how the Chisel event model and the Chisel context model are achieved. 



  

129 

Chapter 4 
CHISEL FRAMEWORK IMPLEMENTATION 

This chapter describes in detail a prototype implementation of the Chisel dynamic 

adaptation framework that conforms to the design presented in Chapter 3.  

The majority of the chapter is made up of detailed descriptions of how the individual parts 

of the Chisel adaptation manager are implemented and how they operate. How these parts 

operate together to provide the operation of the adaptation manager is then discussed. 

Finally, this chapter shows how the Chisel adaptation manager is initialised and attached to 

an application to be monitored or adapted. 

4.1 Overview 

The Chisel dynamic adaptation framework is implemented based on the design given in the 

Chapter 3 to support completely unanticipated dynamic adaptation in a context-aware 

manner. As described, the Chisel dynamic adaptation manager is composed of a number of 

sub-managers, where the adaptation mechanism, the adaptation logic interpretation, and 

context monitoring are all decoupled from each other. The adaptation logic, which is 

specified in adaptation policy rules written using the Chisel policy language, is interpreted 

by the Chisel policy parser and then handed to the Chisel rule manager for enforcement. The 

Chisel service manager is responsible for the identification and specification of target 

objects, and classes, and is used to retrieve those named objects and classes as adaptation 

targets or for use when conditions are being evaluated as part of the evaluation of adaptation 

rules. The Chisel named object store is also provided for use by the service manager to 

support the mapping of recognisable names to individual objects. The Chisel event manager 

is responsible for managing events, including event creation, specification, triggering, and 



  

130 

monitoring. When events are fired, the Chisel rule manager is signalled so that it can then 

request a list of all fired events. The rule manager selects all rules triggered by those events 

and then, in cooperation with the service manager, dynamically evaluates any conditions for 

those affected rules. If these conditions evaluate to Ttrue T, the Chisel behaviour manager 

uses the service manager to find the adaptation's target object or class, and applies the 

specified adaptation to it, dynamically loading the metatype class that contains the 

adaptation if required.  

The following sections provide a more in-depth discussion of the operation of each of these 

constituent parts of the Chisel adaptation manager. 

4.2 Event manager 

As described in Chapter 3, the Chisel event manager is responsible for providing the Chisel 

event model, so the event manager deals with all aspects of the event system in the Chisel 

adaptation manager. The main operations of the Chisel event manager are shown in figure 

4.2.1 below. The event manager maintains a set of registered named event types, where each 

event type is implemented as a single named instance of the TChiselEventObject T class. 

The event manager provides an interface to allow each event to repeatedly be fired, cleared, 

enabled, and disabled. The event manager is also responsible for retrieving method return 

values and data field values from named event objects that are implemented by extending 

the TChiselEventObject T class, and so may contain custom fields and methods. These 

fields and methods can be used in the conditions block of policy rules, as described in 

section 4.3. The event manager is also used by the Chisel policy compiler when a policy 

script is validated while being loaded and interpreted, to verify that each event used is first 

registered.  

Each new event type, represented as an instance of the TChiselEventObject T class or 

subclass, is registered with the Chisel event manager. As stated, each event type has a 

unique name, which can be used at any time to refer to the particular event object that 

represents that event type. The event manager maintains this mapping of names to event 

objects. When an event is fired, the object representing that event type is copied into a 

separate data set containing only fired events. When an event is cleared, it is removed from 

this set. As events are fired or cleared, the rule manager is also alerted. When the rule 

manager requests the set of fired events, this set of fired events is copied to the rule manager 



  

131 

for processing, and then this set of fired events is cleared. If an event is disabled, it cannot 

be fired. Disabled events can be re-enabled at any time. 

Chisel Event Manager

-ChiselEventObject[] registeredEvents
-ChiselEventObject[] firedEvents

+static void initialise()
+static ChiselEventObject findRegisteredEvent(String)
+static boolean isField(ChiselEventObject, String)
+static boolean isMethod(ChiselEventObject, String)
+static void  registerEvent(ChiselEventObject)
+static void  deregisterEvent(ChiselEventObject)
+static void acceptNewDynamicEvents(NewCodeLine[])
+static boolean FIREevent(String)
+static void DISABLEevent(String)
+static void ENABLEevent(String)
+static boolean CLEARevent(String)
+static ChiselEventObject[] getFiredEvents()

 

Figure 4.2.1 Key functions of the Chisel Event Manager 

If an event is defined in a policy specification using the TNEW T keyword, that event definition 

is first parsed by the Chisel policy manager, and then passed to the event manager as a 

TNewCodeLine T object, (see figure 4.8.2). When the specification is first parsed, a new 

TChiselEventObject T is dynamically created for that event, and then registered with the 

event manager. From then on, that newly defined event can be used in the same way as any 

other event. If an event manipulation policy rule causes an event to be fired, cleared, 

enabled, or disabled, that operation is translated into a method invocation on the event 

manager to perform that operation. When the name is passed to the event manager, the event 

manager first finds the event type (i.e., the corresponding TChiselEventObject T) for that 

name, and then performs that operation. TFIREEvent Tfires the event by copying that event 

to the fired events set. TCLEAREvent T removes the event from the set of fired events if 

present. TDISABLEEvent T first clears the event, and then sets the event status to disabled so 

that it cannot be fired. TENABLEEvent T clears the disabled status of the event if set, enabling 

the event to be fired. 

Also described in Chapter 3, the Chisel event model is designed to support the automatic 

firing of events according to automatic triggering specifications. This automatic triggering is 

only designed for events defined dynamically using TNEW T in policy specification scripts, and 

not for event types that are created in source code and are registered programmatically with 

the event manager. The TAT T keyword is designed to cause the newly defined event to be fired 



  

132 

at a certain future time. The TEVERY T keyword is used to cause events to be fired according to 

a periodic time specification. The TWHEN T keyword allows a set of conditions to be specified, 

whereby the event will be repeatedly fired while those conditions are true. 

In the current implementation, only the operation of the TWHEN T keyword is implemented. The 

TAT T and TEVERY T operations are designed, but not currently implemented. The mechanisms to 

support these time-based automatic triggers will be completed in the immediate future. 

The event manager defines internally the TChiselEveryTimeEvent T event type, which 

remains in a permanently fired state, however, this event type cannot be used from outside 

of the Chisel adaptation manager, and so cannot be used as part of a user defined rule. The 

automatic triggering specifications in TWHEN T rules are internally translated into reactive 

event-firing rules, with the specified TWHEN T conditions forming the conditions block for that 

rule, with the TChiselEveryTimeEvent T event used as the triggering event. This reactive 

event manipulation policy rule is then passed to the rule manager for evaluation along with 

the set of other reactive rules evaluated by the rule manager. Since these TWHEN T rules are 

always triggered, these are evaluated during each rule evaluation pass by the rule manager  

For demonstration and testing purposes, a dialog based user interface is provided that allows 

direct manipulation of events, as shown in figure 4.2.2. This graphical interface is 

implemented by the TEventmaker T class. This dialog box provides support to use the event 

manager to dynamically define new events, or fire any registered event.  

 

Figure 4.2.2 The Chisel "Eventmaker" dialog 

4.3 Rule manager 

The Chisel rule manager forms the core of the Chisel adaptation manager. After new 

adaptation policy rules have been parsed by the Chisel policy parser, the rules' data are 

passed to the rule manager. The Chisel rule manager acts as both a rule repository and a rule 



  

133 

evaluator within the Chisel framework. The main operations of the rule manager are shown 

in figure 4.3.1. 

Chisel Rule Manager

-static RuleCodeLine[]  RuleSet

+static void initialise()
+static void acceptRules(RuleCodeLine[])
+static void evaluateRules()
+static void EventSignal()

 

Figure 4.3.1 Key functions of the Chisel Rule Manager 

Once an event is fired or cleared using the event manager, the rule manager is notified. The 

rule manager, operating in a separate background thread, then requests the current set of 

fired events from the event manager. The rule manager must then select and evaluate the 

rules that are triggered by one of the events in this set of fired events. The rule manager 

iterates sequentially through the rules, in the order they were specified in the policy script. 

For each pass of the rules, each rule is only checked once. An event remains fired for one 

entire pass over the rules, at which point it is cleared. If one of the triggered rules causes a 

fired event to be cleared, that event is then removed from the set of fired events, and so will 

not cause any following rule that would be triggered by that event to be evaluated. If an 

event is fired, enabled, or disabled by the evaluation of a rule, that event operation is carried 

out by the event manager. When an event operation occurs, the rule manager pauses its pass 

over the rule set and requests an update of the set of fired events from the event manager, 

with any newly fired events added to the rule manager’s list of currently fired events. The 

rule manager then continues its pass over the rule set to find triggered rules. This enforces a 

design choice that the order of rules specified in the policy script file when it is parsed is 

important, such that events fired or cleared by policy rules, will only affect rules further 

down in the list of rules. An event cannot be fired or cleared to affect a rule further up the 

list of specified rules.  

This sequential evaluation of rules based on a single pass over the rule-set, can result in a 

situation where dependencies between rules and events are difficult to specify, but it does 

mean that a ping-pong situation resulting from a circular dependency, where one rule 

triggers another rule that in turn re-triggers the first rule, is not possible. 



  

134 

Once an event triggers a rule for evaluation, the primary role of the rule manager is the 

interpretation and evaluation of condition statements for that rule. The rule manager 

contains a comprehensive runtime interpreter to evaluate the rule’s conditions, which are 

specified in a manner similar to the Java programming language. As described in the Chisel 

policy language specification in the previous chapter, these rule conditions must evaluate to 

Ttrue T to indicate that the rule operation should be performed. Rule conditions can contain 

user-specified constant values, arbitrary method calls and field accesses to named events, to 

arbitrary application classes, or to named individual objects. These constants, field values, 

and method return values can act as parameters for other method invocations, or as the 

target objects or classes for further field accesses and method calls. These values can be 

compared to other values using boolean comparison operators including, "T== T" (equals), 

" T!= T" (not equals), " T> T"(greater than), " T>= T" (greater than or equals), "T< T" (less than), and "T<= T" 

(less than or equals). Boolean values and expressions can be combined using boolean 

combination operators, " T&& T" (and) and "T|| T" (or). 

While evaluating rule conditions the rule manager's condition interpreter makes extensive 

use of the service manager and event manager to retrieve named event objects, named 

classes, and named objects to act as the invocation targets for method and field access. Once 

the object or class is retrieved using its name, the Java reflective API is used to find the 

appropriate named method using Tjava.lang.Class.getDeclaredMethod, Tor the 

appropriate field using Tjava.lang.Class.getDeclaredField T. An extensive 

collection of operations is provided to support runtime type comparisons and casting, which 

are required to allow constant values and arbitrary objects and classes of different types to 

be used as invocation targets or as method parameters. Once the correct method or field is 

found for the named event, class, or object, the method call or field access is invoked, with 

the return value then available for casting or comparison operations for use with other 

condition subsections. The direct specification by the user of type casting code is not 

supported in the Chisel policy language, so this support for dynamic type checking and 

casting is vital for the interpretation and evaluation of the conditions code. Yet another 

collection of operations is provided to support the dynamic comparison of arbitrary objects, 

which may be of different types.  

The Chisel policy language, and as a result the Chisel rule manager does not support the use 

of the Java Tnew T keyword to instantiate new objects in a rule's condition block. However, 

instantiations can be implemented using the Tjava.lang.Class.NewInstance() 

Toperation provided by the Java reflective API. The Chisel policy language was also 



  

135 

designed to support arithmetic operations on values within the condition block of a rule, 

however, this is not supported in the current implementation of the Chisel framework.  

Once the conditions section for a rule has been fully evaluated, the result must be a boolean 

value. This value dictates whether the rule operation will be performed. Here the rule 

operation will be either an event manipulation, translated into a call to the event manager, or 

a behavioural adaptation, which is translated into a call to the behaviour manager. 

So far in this section, only reactive adaptation rules and reactive event manipulation rules 

have been discussed. As policy scripts are parsed, an event type TChiselInitialEvent T 

is defined and registered with the event manager. This event is fired once only, after the rule 

manager has been passed its set of rules, after which the event type is then disabled. 

Proactive rules are translated into reactive rules with this event type used as the rule trigger. 

This means that proactive rules are then triggered only once, immediately after the policy 

script has been parsed. These rules are then evaluated only once, as standard reactive rules, 

thereby providing the behaviour of proactive rules 

The object casting and comparison operations supplied in the rule manager are also used by 

the Chisel policy parser to verify newly loaded policy specification scripts. Although many 

comparison and casting errors may only arise when the conditions are actually evaluated, 

these parse-time consistency checks are important to identify syntax errors in newly 

specified rules. The use of brackets in rules is also checked at rule parse time. 

This implementation of the Chisel rule manager, with its extensive support for the dynamic 

interpretation of arbitrary code expressed in a manner very similar to Java, supports the 

evaluation of unanticipated dynamically specified adaptation control logic, one of the key 

requirements to support completely unanticipated dynamic adaptation. The ability to 

dynamically interpret which adaptations should be applied, and where and when they are 

applied, means that it is no longer necessary to embed adaptation directives in compiled 

code. This fulfils two more key requirements for completely unanticipated dynamic 

adaptation, that the location and timing at which an adaptation will be applied can remain 

unanticipated until after the target application has started execution. The dynamic 

interpretation of event manipulation directives means that context changes, signalled as 

events, can be directed in a customisable manner, allowing the unanticipated incorporation 

of context requirements, thereby supporting the Chisel context model, to allow the use of 

context information that may not be anticipated to be of importance until during runtime. 



  

136 

4.4 Behaviour manager 

The Chisel behaviour manager encapsulates the dynamic adaptation mechanism, i.e. 

dynamic metatype association. Although the Chisel behaviour manager implements the 

most important operation of the Chisel framework, i.e., performs dynamic adaptation, the 

design and operation of the behaviour manager is not complicated. The interface to the 

Chisel behaviour manager, illustrated in figure 4.4.1 below, is characterised by only two 

functions, a function to test if a metatype can be associated with a named object or class, 

and a function to perform that dynamic association. As discussed in Chapter 3, Iguana/J was 

chosen as the mechanism to support this dynamic metatype association.  

The operation TtryChangeBehaviour T simply wraps Iguana/J's 

Tie.tcd.iguana.Meta.associate Tfunction after retrieving the named target object 

or class from the service manager, and loading the named class that implements the 

adaptation behaviour. As described in the previous section the behaviour manager is used by 

the rule manager to handle adaptation requests. Like the other managers, the behaviour 

manager is also used by the Chisel policy compiler when the policy script is validated 

during the policy loading and interpretation process, to verify that the required metatype can 

be associated with the specified class or object, according to the metatype association rules 

described in Chapter 3. This however does not ensure that an unanticipated dynamic 

metatype association will succeed at runtime since the metatype of the target object, its 

class, or the superclasses of that object's class may have changed to one that is not 

compatible with the metatype requested by the adaptation operation. If an error occurs, the 

user is warned and advised to remove the offending rule. Even if this rule is not removed, 

the rule manager continues operation, and continues attempting to use the rule in case the 

metatype association later becomes valid. 

Chisel Behaviour Manager

+static boolean isBehaviour(String, String)
+static void tryChangeBehaviour(String, String)

 

Figure 4.4.1 Key functions of the Chisel Behaviour Manager 

Although the use of the metatype model is a requirement of the Chisel framework, all use of 

the metatype model is encapsulated inside the behaviour manager. Since the behaviour 



  

137 

manager is designed and implemented as a modular element of the Chisel framework, so if 

replaced, the Chisel framework could be used to support any dynamic adaptation 

mechanism that supports the dynamic naming, loading, and application of individual 

adaptations to individual named objects and classes. In the same manner, any other 

mechanism that implements the metatype adaptation model by supporting dynamic 

metatype association could be integrated in the behaviour manager without difficulty. 

4.5 Service manager 

The Chisel service manager, shown in figure 4.5.1, is responsible for finding appropriate 

named objects and classes for use by the other managers, either to perform adaptations or 

for use in evaluating rule conditions. In the Chisel framework, all objects and classes are 

referred to by name, so the Chisel service manager is responsible for the mapping between 

these names and the classes and objects they represent. For named classes, this is achieved 

using the Java reflective API, simply using the T java.lang.Class.forName 

functionT. For objects, this is achieved using the Chisel named object store, which maintains 

a mapping between individual objects and unique names for those objects. The 

implementation and operation of the Chisel named object store is described separately in the 

following section. In this regard, the internal class-specific operations of the service 

manager are largely provided by the Java reflective API, while the object-specific 

operations are largely provided by the Chisel named object store, so the service manager 

implementation is relatively uncomplicated.  

Chisel Service Manager

+static Class getService(String)
+static Object getNamedServiceObject(String)
+static Field isField(String, String)
+static Method isMethod(String, String)

 

Figure 4.5.1 Key functions of the Chisel Service Manager 

Like the event manager, the service manager is also used by the Chisel policy compiler 

when a policy script is validated while being loaded and interpreted, particularly to verify 

that object and class names are valid, and that named method and field accesses are valid for 

their target objects or classes. The service manager is also responsible for using the Java 

reflective API to retrieve these fields and methods for use by the Chisel rule manager as it 



  

138 

interprets rule conditions. If the field request, but particularly the method request, would 

return more than one method or field, this search functionality is overridden in the rule 

manager. It should be noted that the standard Java rules regarding permissions and usage 

scopes apply here, so only public methods and fields can be accessed using the service 

manager and rule manager. It is also possible to retrieve protected (but not private) methods 

and fields of objects and classes in the same package as the rule manager, i.e., those objects 

and classes used in the Chisel adaptation framework in the Tie.tcd.Chisel packageT. 

As described in section 3.5 in the previous chapter, any named object, or named class can 

act as a context source. In this respect, the Chisel service manager also plays an integral role 

in the Chisel context model, alongside the Chisel context manager. The service manager 

allows the user to add unanticipated context lookups, in the form of arbitrary field and 

method accesses, to the conditions section of arbitrary adaptation rules and event 

manipulation rules. This allows the adaptation process to operate in a context-aware manner, 

where the specification of what is considered an important context value can remain 

unanticipated until during runtime, at which point the user can specify what context value to 

look up in Chisel policy rules. This can all occur as the requirements for adaptation change 

dynamically, in unanticipated and erratic manners. 

4.6 Named object store 

A key requirement of the Chisel framework is that individual objects can be dynamically 

adapted in a completely unanticipated manner, and without access to the source code where 

that object is instantiated. However, in the Java execution environment, there is no built-in 

mechanism to specify and refer to individual object instances in a human-readable manner 

at runtime without associating a name with that object and maintaining a mapping between 

the name and the object referred to. This behaviour is implemented in the Chisel named 

object store. 

The Chisel named object store supports the programmatic insertion of name-object 

mappings. This insertion of name to object mappings can be used either in an anticipated 

manner by adding a call to this function in the application source code, or more importantly, 

in an unanticipated manner from within a dynamically loaded metatype. This registration of 

a name to object mapping is accomplished using the TaddObjectReference T function 

provided by the named object store, as seen in figure 4.6.1. Within the Chisel named object 

store, each object registered in the store is referred to using a weak reference to that object. 



  

139 

If the weak object reference becomes stale, e.g., if the object is deleted, the object reference 

and its associated name are removed from the named object store.  

Once the easily recognisable name is coupled with the object reference, that name can be 

used at any time in the adaptation policy rules, either as a target for adaptation itself, or as 

part of a condition block in any adaptation rule. As discussed in the section above, the 

Chisel service manager makes extensive use of the Chisel named object store to find 

individual named objects that are used in adaptation rules and event manipulation rules. The 

TgetObject T operation, shown in figure 4.6.1, is used to perform this query.  

A prototype implementation of an object naming mechanism for the Chisel named object 

store provides logging and profiling behaviours that can be associated dynamically with any 

class, thereby logging all instantiations and invocations, along with the parameter values and 

types, of all objects of that type. By presenting these logs in a clear and filtered format, the 

user or administrator can select which object is to be named. Once the object is selected for 

naming, the user provides a user-friendly name, at which point that name to object mapping 

is registered in the named store. This profiling behaviour, implemented as a metatype, can 

be dynamically disassociated from the target class at any time, while the named objects 

retain their names. This implementation of the Chisel named object store is treated in detail 

as a case study in the following chapter.  

Chisel Named Object Store

-WeakReferenceHashStore namedServiceObjRefs

+static void addObjectReference(Object ,String)
+static void removeObjectReference(String)
+static Object getObject(String)

 

Figure 4.6.1 Key functions of the Chisel Named Object Store 

Section 3.2.4 has discussed the requirement that the user must first decide which object or 

class to adapt or use in rule conditions, before that object or class is used in policy rules. If 

the user wishes to refer to a named object, that object must first be named by using this 

Chisel named object store. Whether the programmatic interface is used directly from meta-

level code, or the profiling mechanism described above is used, the user must first anticipate 

at some stage prior to adaptation which objects must be named. The amount of time that it 

takes the user to identify the object or class that needs to be adapted or queried is dependent 

on the user, the complexity of the application, and the type of adaptation required. However, 



  

140 

this monitoring and understanding of the operations of the target application does not need 

to occur before the application has started execution, so this anticipation remains post-

runtime anticipation. 

4.7 Context manager 

As discussed in Chapter 3, the Chisel context model is partly provided by the Chisel context 

manager, and partly provided by the Chisel service manager, as described above. The roles 

of the Chisel context manager are twofold: to provide a mechanism to identify and query the 

values of context variables, and to monitor these variables for change according to context 

monitor alerts. Named context variables can be dynamically defined by creating an instance 

of the TContextVariable T class. Alerts can be created by creating an instance of the 

TContextCheckCondition T class also shown in figure 4.7.1. The design and operation 

of these context variables and context alert monitors is also discussed in section 3.5 of 

Chapter 3. 

+Object getValue()

ContextVariable
-String sourcename
-String fieldname

+boolean doCheck()

ContextCheckCondition
-ContextVariable tocheck
-ChiselEventObject tofire
-int comparisontype
-Object lovalue
-Object hivalue

 

Figure 4.7.1 Data representations of context variables and context alert conditions 

Once a TContextVariable T object is created, it is registered with a name in the context 

manager using the TaddContextVariable T function, as shown in figure 4.7.2. The 

context manager can then be used to query the value of named context variables using the 

TgetContextVariable Tfunction, which uses the service manager to retrieve this 

context variable value.  



  

141 

-NamedContextStore namedcontext
-ContextCheckConditon[] alerts

static void addContextVariable(ContextVariable,String)
static Object getContextVariable(String)
static void removeContextVariable(String)
static void addContextAlert(ContextCheckCondition)
static void removeContextAlert(ContextCheckCondition)

Chisel Context Manager

 

Figure 4.7.2 The principal functions of the Chisel Context Manager 

After a ContextCheckCondition object is added to the context manager, the context manager 

constantly monitors its context variables, and performs the specified test on the context 

variable's value and fires the event via the event manager if required. The comparison test 

types supported in ContextCheckConditions are TBETWEEN T, TLESSTHAN T, TMORETHAN T, 

TNOTBETWEEN T, TEQUALS T, and TNOTEQUALS T. If only one boundary value is required, e.g., 

for the TEQUALS T comparison, the Thivalue T object is not used. The context manager makes 

use of the comparison and casting operations implemented in the rule manager to evaluate 

these conditions. If the context variable comparison evaluates to a value outside of the 

bounds defined by the Tlovalue T and Thivalue T objects, the event manager is used to fire 

the event specified in the Ttofire T field. This monitoring operation could also have been 

translated into reactive event manipulation rules, as for the TWHEN T keyword described in 

section 4.2 above.  

Section 3.5 in Chapter 3 also states that these named TContextVariable T objects and 

TContextCheckCondition T alert monitor objects cannot be created using policy rules, 

but instead must be implemented in source code. Context queries from within policy rules 

are supported using the Chisel service manager. 

4.8 Policy parser / policy manager 

The Chisel policy parser is responsible for taking the policy specification file and parsing its 

event definitions, the adaptation rules, and the event manipulation rules, and converting 

them to a data format that can be used by the rule manager and the event manager. In order 

to support dynamic policy specifications, policy scripts can be loaded at any time into the 



  

142 

policy parser at runtime, at which point the policy manager is then responsible for 

propagating the new policies to the other parts of the Chisel adaptation manager.  

Chisel Policy Parser

+CodeLine[] parsePolicyFile(File)
+boolean evaluateRulesAndEvents(CodeLine[])

 

Figure 4.8.1 The principal operations of the Chisel policy parser 

Although not created by a parser generator, the Chisel policy parser contains a complex set 

of internal operations to first tokenize the policy file, identify the type of each token in two 

passes, and convert each token into a TCodeUnit T object, shown in figure 4.8.1. Each line is 

made up of a series of TCodeUnits T, grouped into a TCodeLine T object. A parsed policy 

script file is represented as an array of TCodeLine T objects. 

The Chisel parser is responsible for the correct parsing and verification of the rules specified 

using the Chisel policy language. This parsing and verification is performed in a practical 

and informal manner, whereby each rule is extensively verified to ensure that all events used 

are correctly registered with the event service, that all adaptations (metatypes) are 

compatible with the target objects or classes according to the metatype association rules 

described in section 3.2.5 in Chapter 3, that all method calls and field accesses used in the 

conditions section are valid, and that the syntax of the rules is correct. This verification is to 

aid the user to correctly specify adaptation logic and to minimise the possibility of runtime 

interpretation errors when rules are evaluated. 

CodeUnit
-int type
-String stringvalue

CodeLine
-String originalLine
-int lineNum
-int lineType
-CodeUnit[ ]  lineCodeUnits

NewCodeLine
-CodeUnit  eventName
-CodeUnit  trigger
-CodeUnit[ ]  constraints

RuleCodeLine
-CodeUnit  eventName
-CodeUnit  target
-CodeUnit  eventOpOrAdaptation
-CodeUnit[ ]  conditions

 

Figure 4.8.2 Data representations of policy rules 



  

143 

When the script is verified, the array of TCodeLine T objects that represent the policy script 

file is split into two arrays, where new event declarations are converted to objects of type 

TNewCodeLine T, and all reactive and proactive rules are converted to objects of type 

TRuleCodeLine T, both shown in figure 4.8.2 above. The TNewCodeLine T objects are then 

passed to the event manager, as described in section 4.2 above, with the TRuleCodeLine T 

objects passed to the rule manager, as described in section 4.3 above. When the event 

manager and the rule manager have been updated the event manager and rule manager 

resume operation as normal.  

By supporting the dynamic specification and dynamic parsing of policy scripts, the Chisel 

policy language and the Chisel policy parser together support the specification of new, 

unanticipated, and context-aware adaptation control logic during runtime. This fulfils the 

requirement for the Chisel adaptation framework to support the unanticipated specification 

of adaptation control logic, and the unanticipated specification of where and when 

unanticipated adaptations should be applied.  

 

Figure 4.8.3 The Chisel policy file viewer demonstration 



  

144 

As part of the Chisel framework implementation, a demonstration graphical interface was 

developed to allow the user to view the currently selected adaptation policy script, and to 

allow the user to dynamically provide a new policy script file for the policy manager to 

parse. This viewer allows the user to view the policy rules, as they are specified in the 

policy script, and how they are represented once parsed. This viewer, shown in figure 4.8.3 

above, is provided by the TPolicyFileViewer T class. 

4.9 Summary of the operation of the Chisel framework 

The sections above describe in detail the implementation and operation of the constituent 

parts of the Chisel dynamic adaptation framework, i.e., the event manager, the rule manager, 

the behaviour manager, the service manager and named object store, the context manager, 

and the policy parser. When combined, these constituent parts work together to allow the 

Chisel dynamic adaptation framework to support context-aware, completely unanticipated 

dynamic adaptation, in an open and extensible manner. 

This is achieved by providing an event model provided by the Chisel event manager and a 

context model provided by the Chisel service manager and Chisel context manager, which 

signal dynamic changes in possibly unanticipated context variables using events. The Chisel 

policy parser supports the dynamic and unanticipated specification of adaptation control 

logic using the Chisel policy language. This adaptation policy specification is based on the 

dynamic monitoring and manipulation of context events, and the evaluation of arbitrarily 

complex condition evaluations and context lookups, with these adaptation policy 

specifications interpreted and evaluated using the Chisel rule manager. Finally, if these rules 

specify that an adaptation should be performed, the Chisel behaviour manager performs the 

dynamic association of possibly unanticipated metatypes to arbitrary application classes and 

named objects, thereby performing unanticipated adaptation in a context-aware manner. 

Figure 4.9.1 below, based on figure 3.3.2 in Chapter 3, demonstrates the operation of the 

Chisel adaptation manager. Firstly, an event is fired, using the event manager's 

TFIREEvent T function. The rule manager is signalled that an event has fired using the rule 

manager's TEventSignal T function. By default, this operation causes the rule manager's 

thread to request the set of fired events from the event manager via theT getFiredEventsT 

call. The rule manager then iterates through its rule set to find the first rule triggered by any 

of the fired events. When it finds a rule that has been triggered, the rule manager begins 

evaluating the conditions for that rule, if any. During the evaluation of these conditions, it  



  

145 

Service Manager

+static Class getService(String)
+static Object getNamedServiceObject(String)
+static Field isField(String, String)
+static Method isMethod(String, String)

Behaviour Manager

+static boolean isBehaviour(String ,String)
+static void tryChangeBehaviour(String, String)

Creation /
Execution

Logs

1: An event is fired

3: Get fired events

4: Find affected rules

5: Evaluate conditions

The Chisel Adaptation Process

2: Signal the
rule manager

6a & 7d: Find named objects if necessary

6a: Find services or named
objects for rule conditions

7a: Perform event operation

7b: Perform behaviour adaptation

7c: Find services or named
objects for adaptation 7e: Perfrom metatype association

Event Manager
-ChiselEventObject[] registeredEvents
-ChiselEventObject[] firedEvents

+static void initialise()
+static ChiselEventObject findRegisteredEvent(String)
+static boolean isField(ChiselEventObject, String)
+static boolean isMethod(ChiselEventObject, String)
+static void  registerEvent(ChiselEventObject)
+static void  deregisterEvent(ChiselEventObject)
+static void acceptDynamicEvents(NewCodeLine[])
+static boolean FIREevent(String)
+static void DISABLEevent(String)
+static void ENABLEevent(String)
+static boolean CLEARevent(String)
+static ChiselEventObject[] getFiredEvents()

Rule Manager
-static RuleCodeLine[]  RuleSet

+static void initialise()
+static void acceptRules(RuleCodeLine[])
+static void evaluateRules()
+static void EventSignal()

Named Service Store
-WeakReferenceHashStore
namedServiceObjRefs+static void addObjectReference(Object ,String)
+static void removeObjectReference(String)
+static Object getObject(String)

 

Figure 4.9.1 The detailed operation of the Chisel dynamic adaptation manager 

may be necessary to lookup a named class from the service manager, using theT 

getService T call, or if this indicates that the name refers to a named object, the 

TgetNamedServiceObject T method is used, which in turn invokes the named object 

store's TgetObject T method. Once the rule manager has evaluated all of the rule's 

conditions, and if successful, the rule manager must either perform an event manipulation 

operation or initiate an adaptation. If an event manipulation is required, the event manager's 

TFIREEvent T, TCLEAREvent T, TENABLEEvent T, or TDISABLEEvent T methods are used. If a 

behavioural adaptation is required, the behaviour manager's TtryChangeBehaviour T 

function is called with the name of the service object or class to adapt and the name of the 

metatype to associate with that object or class. The behaviour manager then requests the 

named class or object from the service manager using the TgetService T or 

TgetNamedServiceObject T method as above. The behaviour manager then locates the 

class implementing the metatype, checks that it is a valid metatype, and then attempts to 

associate the metatype with the class or object. The evaluation of this rule is then finished, 



  

146 

so the rule manager continues with the evaluation of the next triggered rule, but first 

requesting an update of fired events from the event manager if the previous rule's outcome 

was an event manipulation operation. Once all of the rules are evaluated, the rule manager 

waits for another event, or until a timeout has occurred. 

While the operations described above are being performed, the context manager monitors 

named context variables specified in registered TContextCheckCondition T objects, and 

raises context events if the values of those context variables move outside specified bounds. 

Meanwhile the policy parser waits for the user to pass in a new policy script specification 

file. At the same time the event manager should be checking automatic event triggering 

specifications, but this is not currently implemented. The managed application also executes 

at the same time, along with any other executing software that the user launched when the 

adaptation manager was launched. For example, the user may have started the execution of 

additional context monitoring modules, which can register and manipulate new event types, 

register named context variables and monitoring alerts, register object names with the 

named object store, or perform any other action, including access the programmatic 

interfaces of the adaptation manager. 

4.10 The programmatic interface and the 
policy-based interface 

As mentioned throughout this chapter, there are a number of operations that can only be 

performed either using programmatic interfaces in code, or using the policy-based interface 

using the Chisel policy language.  

New objects cannot be instantiated using the Tnew TJava keyword in policy scripts. This can 

be frustrating when specifying parameter objects for method invocations. This restriction, 

along with the restriction that the conditions section of a rule must result in a boolean value, 

was introduced to try to prevent the use of the rule manager as a general-purpose Java 

language interpreter, rather than as a mechanism solely for the evaluation of rule conditions. 

It is intended that all behavioural changes be implemented as metatypes, rather than as 

arbitrarily executed code specified in rule conditions.  

It is currently not possible to define named context variables or register context-monitoring 

alerts with the Chisel context manager using the Chisel policy language. Again, this is can 

only be achieved using the context manager's programmatic interface. To add the feature to 



  

147 

the Chisel policy language would require the definition of a new type of rule, since these 

operations should not form part of a rule condition block. The specification of rules to 

dynamically fire events in response to the evaluation of a context monitoring operation is 

already supported by the use of TWHEN T for newly defined events. In this respect, it is possible 

to provide the behaviour of context monitoring alerts. 

The specification of automatic triggering conditions is currently only possible when using 

the Chisel policy language to define new event types. This automatic triggering mechanism 

is not supported for event types defined in code. The triggering of events defined from 

source code should be handled by the code used to define them. Of these automatic triggers, 

only the TWHEN T keyword is currently supported. The implementation of support for the TAT T 

and TEVERY T keywords is planned.  

4.11 Attaching the adaptation manager  

There are a number of mechanisms mentioned in Chapter 3 to attach the Chisel adaptation 

manager to the operation of arbitrary application classes. The Chisel adaptation manager is 

created as an instance of the TChiselC1 Tclass. This object simply initialises the rule 

manager, the event manager, and the context manager. This object also provides the 

interface for the policy manager. The code to create a TChiselC1 T object must be attached 

to the application code for execution in some manner. This TChiselC1 T object can then have 

new policy scripts occasionally passed in for parsing, or instead an instance of the sample 

TPolicyFileViewer T class described above can be created which presents a user interface 

to the user to support the dynamic location, loading, and parsing of policy scripts. 

import ie.tcd.Chisel.*; 
… 
  ChiselC1 chiselc = new ChiselC1(); 
  PolicyFileViewer pviewer = new PolicyFileViewer ( chiselc, …); 
… 

Figure 4.11.1 Example of code needed to start the Chisel dynamic adaptation framework 

Whichever way the Chisel adaptation manager is attached to the application being 

monitored, the Java execution environment must be started in a manner to enable the 

Iguana/J runtime component. This is accomplished using a command-line option, described 

in the Iguana/J documentation [124]. 



  

148 

4.11.1 In the application source code 

If the application source code is available, the adaptation manager can be started from 

within the application, with the application recompiled, and executed. This simply requires 

adding the code described in figure 4.11.1 into the application source code. However, this 

solution is far from ideal since the application source code may not be available, and 

challenges the objective of the Chisel framework to perform unanticipated dynamic 

adaptation of arbitrary applications without damaging the original application. 

4.11.2 As a custom application launcher 

A custom launcher class TChiselLauncher T was developed to start the Chisel adaptation 

manager, and then start the application class. To use this launcher, the user must execute the 

TChiselLauncher T class instead of the application class, but pass the name of the 

application class and all of its command-line arguments to the TChiselLauncher T class. 

As shown in the code excerpt in figure 4.11.2, the launcher implementation simply locates 

the Tmain T entry point into the application class and invokes it, passing in the original 

command-line arguments. This results in the normal execution of the application in all 

respects, except that the Chisel adaptation manager is also enabled. 

import java.lang.reflect.Method; 
public class ChiselLauncher  { 
 public static void main(String args[]){ 
  … 

 String args2[] = new String[args.length-1]; 
  System.arraycopy(args, 1, args2, 0, args2.length); 
  Class application = Class.forName(args[0]); 
  Method mainmethod = application.getDeclaredMethod("main", new Class[]{args.getClass()}); 

 /********* Enable Chisel ***********/ 
  ChiselC1 chiselc = new ChiselC1(); 
  PolicyFileViewer pviewer = new PolicyFileViewer ( chiselc, …); 
  /*************************************/  
  mainmethod.invoke(null, new Object[]{args2}); 
  … 
 } 
} 

Figure 4.11.2 The implementation of the ChiselLauncher class 

4.11.3 As a statically assigned metatype 

Another mechanism to attach the Chisel adaptation framework to an application in an 

unobtrusive manner is to embed the initialisation of the Chisel adaptation manager in a 

metatype. Figure 4.11.3 and figure 4.11.4 show the metatype TEnableChisel T, and its 

meta object class TMetaObjectExecuteEnableChisel T. This metatype performs no 



  

149 

behavioural change except to disassociate itself from the class with which it is associated. 

However, when the meta object class TMetaObjectExecuteEnableChisel T is first 

loaded, it initialises the Chisel adaptation manager in static code, i.e., as the class is loaded. 

class MetaObjectExecuteEnableChisel extends MExecute { 
  static{ 

  /********* Enable Chisel ***********/ 
  ChiselC1 chiselc = new ChiselC1(); 
  PolicyFileViewer pviewer = new PolicyFileViewer (chiselc, … ); 
  /*************************************/ 
  /********* Any other initialisation code **********/ 
  … 
  /***************************************************/ 

  } 
 
    private String newprotocol = "ie.tcd.iguana.NullProtocol";  //default value 
    public MetaObjectExecuteEnableChisel(String newMetatype){ 
     super(); 
     newprotocol = newMetatype;  
    } 
    public Object execute(Object o, Object[] args, Method m) … { 
   … 

  Class theclass = m.getDeclaringClass();       //find the application class 
   ie.tcd.iguana.Meta.associate ( theclass, newprotocol ); //disassociate this metatype 
   … 
   return proceed(o, args, m);         //continue 
  } 
} 

Figure 4.11.3 Meta object class that initialises the Chisel adaptation manager 

protocol EnableChisel (){ 
  reify Execution : MetaObjectExecuteEnableChisel(); 
} 
protocol EnableChiselEx ( String newProtocol ){ 
  reify Execution : MetaObjectExecuteEnableChisel ( newProtocol ); 
} 

Figure 4.11.4 The EnableChisel metatypes that initialise the Chisel adaptation manager 

This metatype can be associated with the main application class using static metatype 

association, specified in an initialisation file for the Iguana/J runtime component. It is 

reasonable to require that the name of the main class of the application is known, since this 

name is required by the Java execution component. In the example shown in figure 4.11.5, 

the main application class TSomeService T, has one of the TEnableChisel T metatypes 

statically associated with it. In this case, as the TSomeService T class is loaded to start the 

application, the TEnableChisel T metatype class will be loaded, so the meta object class 

TMetaObjectExecuteEnableChisel T will be loaded, and so the Chisel adaptation 

manager will be initialised. When the main method of the TSomeService T class is called, 

the class will have the Iguana/J TNullProtocol T metatype associated with it, i.e., the 

metatype that would have been associated with it by default if this mechanism were not 



  

150 

used. If the user wishes to have different metatype associated with the class, this metatype 

name can be passed as a parameter to the static metatype association specification. 

SomeService==>EnableChiselEx ("ie.tcd.iguana.NullProtocol"); 

Figure 4.11.5 Static association of the EnableChisel metatype with an application class 

4.12 Summary  

This chapter described in detail the implementation of the Chisel dynamic adaptation 

framework. This chapter also discussed how the adaptation manager operates and how the 

Chisel framework can be used to dynamically adapt general-purpose compiled software. 

Also included are descriptions of a number of mechanisms to attach the Chisel adaptation 

manager to an arbitrary compiled application, and how this can be achieved in an 

unobtrusive manner, and in a manner that remains unanticipated until the start of execution. 

This requirement to anticipate the need to enable and initialise the Chisel adaptation does 

not break the requirement to support completely unanticipated dynamic adaptations, since 

only the possible need to adapt is anticipated, but no part of any individual adaptation needs 

to be anticipated until during the execution of the application. 

The following chapter describes in detail two case studies to evaluate the Chisel dynamic 

adaptation framework and its ability to support completely unanticipated dynamic 

adaptation of arbitrary applications, in a context-aware manner, without requiring access to 

the source code of the application. 



  

151 

Chapter 5 
USING THE CHISEL FRAMEWORK: 
CASE STUDIES AND EVALUATION 

This chapter describes two case studies used to evaluate the capabilities and limitations of 

the Chisel dynamic adaptation framework. The objective of these case studies is to 

substantiate the contributions of the Chisel framework and evaluate its usability to perform 

completely unanticipated dynamic adaptation on arbitrary general-purpose software in a 

context-aware manner. While demonstrating these case studies the strengths and weaknesses 

of the metatype model for dynamic adaptation will also be discussed where appropriate. 

This chapter also discusses the performance penalty of using the Chisel dynamic adaptation 

framework in terms of the time taken to perform some of the key functions of the Chisel 

adaptation manager.  

5.1 Evaluation criteria 

This general-purpose support for context-aware completely unanticipated dynamic software 

adaptation will be evaluated using a number of criteria. These criteria are presented in table 

5.1.1, and discussed below. 

Since completely unanticipated dynamic adaptation is the primary objective of the Chisel 

dynamic adaptation framework, the degree of support for unanticipated adaptation will be 

discussed for both case studies. This discussion of completely unanticipated dynamic 

adaptation will be broken into 4 subcategories: firstly, the ability to dynamically perform 

adaptations where the actions of the adaptation are unanticipated; secondly, the ability to 

perform adaptations at arbitrary locations which have not been explicitly prepared; thirdly, 



  

152 

the use of adaptation policies that are specified and interpreted at unanticipated times, with 

those policies containing unanticipated control logic; and, finally, the ability to perform 

adaptations at unanticipated times.  

While making use of unanticipated control logic, this control logic should be able to exploit 

contextual information about the state, resources, and requirements of the user, application, 

and execution environment, some of which could not be anticipated to be of importance by 

the application designers and developers. The ability to specify which changing context 

values are of importance, and how this context information can be exploited to tailor the 

adaptation process will also be evaluated. 

Also discussed is the degree to which the Chisel framework can be used to open up a closed 

system and expose the operation of that system to allow it to be adapted and tailored, 

without requiring access to the source code of that application. 

The case studies in this chapter both perform dynamic adaptation using the metatype model 

for adaptation, particularly by using dynamic metatype association to change the behaviour 

of compiled software, either by changing the functional behaviours of the software, or by 

inserting new non-functional behaviours into the software. The degrees to which these case 

studies demonstrate the usefulness of the metatype model, and expose the limitations of the 

model will also be analysed. 

• Support for completely unanticipated dynamic adaptation: 

o Dynamic adaptation where the adaptation performed was unanticipated 

o Dynamic adaptation at unanticipated and unprepared locations  

o Use of unanticipated control logic and adaptation policies to drive adaptation 

o The unanticipated timing of the application of adaptations 

• Support for awareness of changing and possibly unanticipated context 

• The ability to adapt general-purpose software in an open manner, without requiring 
access to source code  

• The use of the metatype model for dynamic adaptation, demonstrating its usefulness 
and limitations. 

Table 5.1.1 Evaluation criteria for the Chisel dynamic adaptation framework 

The case studies presented demonstrate the usefulness of the Chisel dynamic adaptation 

framework to support particular adaptations, but the case studies should also demonstrate 

how other general-purpose adaptations could be performed in a similar manner. These case 

studies are representative of a range of possible adaptations, and the extent to which this is 

demonstrated by each case study will be addressed.  



  

153 

The particular case studies selected are: an implementation of the Chisel named object store 

where support for profiling and naming individual objects was implemented as an 

unanticipated dynamic adaptation; and the application of a dynamic adaptation to support 

the operation of an off-the-shelf network application to operate in a mobile computing 

environment. These case studies were chosen to demonstrate and evaluate the Chisel 

framework from two distinct but complementary viewpoints. 

The first case study, an implementation of the Chisel named object store was particularly 

selected to demonstrate that any application can be probed, profiled, and inspected without 

any preparation of the target application. The fact that the Chisel named object store is 

completely independent of the target application demonstrates the general-purpose nature of 

the Chisel framework. This case study also demonstrates the unanticipated nature of the 

naming of individual objects since the location of an object to be named, when it is named, 

or how the named object will be later used, demonstrate some of the features of completely 

unanticipated dynamic adaptation. The ability to name random objects and use them either 

as targets for adaptation, or as context sources, further demonstrates the flexibility of the 

Chisel framework. 

The second case study, the unanticipated adaptation of a network application to operate in a 

mobile computing environment, demonstrates what may be an unanticipated need to adapt a 

third-party application to operate in an environment for which it was not designed. No 

assistance is required from the application developers, or indeed access to the source code of 

the application, to allow it to be adapted to operate in an environment requiring frequent and 

unanticipated changes. The mobile computing environment was chosen specifically because 

of its erratically changing context. A middleware for mobile computing, ALICE, was 

chosen because of its availability and the author’s familiarity with its operation. A telnet 

application was chosen because of the telnet protocol’s particularly inflexible approach to 

disconnection and reconnection and so its incompatibility for use in a mobile computing 

environment.  

5.2 Case Study: The Chisel named object store 

Although a key component of the design of the Chisel framework, the Chisel named object 

store is itself implemented and enabled using the Chisel framework. The case study 

demonstrates both the operation of the named object store, and how the association of non-



  

154 

functional behaviours with arbitrary application classes is supported by the Chisel dynamic 

adaptation framework, and therefore demonstrates its usefulness and flexibility. 

5.2.1 Motivation 

A requirement of the Chisel framework is the ability to perform unanticipated dynamic 

adaptation on individual application objects. The Java programming language and execution 

environment provides no mechanism to identify or refer to individual objects from outside 

the source code of the application. In order to perform completely unanticipated dynamic 

adaptation of individual objects, without access to the application source code or the ability 

to recompile the application to embed hooks to identify individual objects, individual 

objects have to be identified, or have their identification associated with them, as or after the 

objects are created. At runtime, the identification of individual objects is handled internally 

by the execution environment, which cannot be inspected or altered at runtime without 

substantially altering the runtime environment itself. In Java, it is possible to obtain a unique 

identifier for each object, using the TSystem.identityHashCode Toperation, but there 

is no mechanism to obtain a reference back to the object using this identifier. 

In the Chisel framework, the adaptation directives regarding how objects are to be adapted 

are specified using the Chisel policy language. In order to adapt an individual object, it must 

be possible to uniquely refer to that particular object in the policy rules. In order to make the 

Chisel framework and the Chisel policy language easy to use, these object identifiers should 

be human-readable and should clearly identify individual objects within the application. For 

this reason, it was decided that the user should be able to provide the name used for an 

individual object since the user can associate a useful and memorable name to the object for 

later use in adaptation policy rules. Since the Chisel framework was designed to support 

completely unanticipated dynamic adaptation, it is impossible to anticipate which objects 

will be adapted; therefore, it is impossible to anticipate which objects will require names 

and which will not. It would be infeasible to request a name for every object created during 

the execution of an application, as this level of required constant interaction with the 

application as it operates would make the application frustrating, if not impossible, for the 

user to use.  

5.2.2 Design 

Since objects do not exist, and so cannot be used until after they are created, it is not 

necessary that an object be named until some time after it is created. Once an object is 



  

155 

created, the main mechanisms that can be used to differentiate an object from an object of 

the same type are: its constructor parameters; the operations performed on it, along with the 

parameters passed and values returned; when the object was created; and the state of the 

object. If all operations, along with their parameters and return values, that are performed on 

each object of that type, the constructor arguments for each object, and the time each object 

is created, are all profiled and clearly presented to the user in a filtered manner, the user can 

then select which objects of that type should be named. Once the user has selected the 

objects of interest, recognisable names can then be specified for those objects. Once a 

mapping exists between the name and the object, the user can use that object name in policy 

adaptation scripts, either as adaptation targets themselves, or for use in the conditions 

section of rules to direct the adaptation of another object or to manipulate events. 

This profiling mechanism is embedded in a metatype, which can then be associated with any 

class. When this metatype is associated with a class, the metatype is also associated with all 

current and future instances of the class and its subclasses. All method calls to all of those 

objects are then profiled and logged, including information on the method called, object 

invoked, the time, the number of parameters along with their types and values, and the type 

and value of the result. When a new instance of the class is created, the metatype logs the 

constructor parameters and the creation time. 

The first step to locating an object of interest is the association of this profiling metatype, 

called the TChiselBaseLogging T metatype, with the object's class. It was seen as a 

reasonable requirement, that if a user wished to name an object, they must first know the 

type of the object. This association can be performed using the Chisel policy interface, by 

creating a new proactive adaptation rule as described in figure 5.2.1 below. 

INITIALLY ApplicationClassName.ChiselBaseLogging  

Figure 5.2.1 Association of the ChiselBaseLogging metatype with an application class to profile operation 
of all of its instances 

This profiling information is then logged to a database for inspection by the user. A web-

based user interface was developed to allow the user to view and filter the contents of this 

database as operations continue on the profiled objects. Once the user has selected an object 

to be named, a name is requested and then applied to that object. Immediately afterwards 

that name can be used in adaptation policy rules. At any time, the profiling metatype can be 

disassociated from the application class to discontinue logging the operations of its 

instances. The named objects will maintain their names even after the disassociation of this 

metatype. 



  

156 

Figure 5.2.2 shows this web-based interface, where the operations of an object of type 

TSomeService T are profiled. This view is for one object, which the user has selected from a 

set of profiled objects. In this example, TSomeService T is a simple Java class with one 

method, TsayHello T, which passes back a string containing the current time. In a sample 

application, a number of TSomeService T objects are instantiated with the TsayHello T 

method repeatedly called at random. The Chisel web service also allows the user to specify 

a name for any object once the user has selected the relevant object. Once this name is set, 

the object name is reflected back to the named object store. This store is then used by the 

Chisel service manager to locate object references when names are used in adaptation policy 

rules.  

 

Figure 5.2.2 Filtered view of the Chisel webservice database containing profiling data about arbitrary 
application objects 

From figure 5.2.2, the user can see that the TsayHello T method of this instance of the 

TSomeService T object is repeatedly called with no parameters. Once the user has decided 

that this object should be named, the user simply clicks the "Click to set" hyperlink to be 

presented with a simple dialog to enter a name that will be assigned to this object using the 

Chisel named object store's programmatic interface to register the name with the chosen 



  

157 

object. As shown in figure 5.2.3 below, copied from section 4.6 in Chapter 4, the method 

TaddObjectRefence T is provided for this registration operation. 

Chisel Named Object Store

-WeakReferenceHashStore namedServiceObjRefs

+static void addObjectReference(Object ,String)
+static void removeObjectReference(String)
+static Object getObject(String)

 

Figure 5.2.3 Key functions of the Chisel Named Object Store 

Once a name-to-object mapping is passed to the Chisel named object store, an internal 

mapping between the name and a weak reference to the named object is created. Inside the 

named object store, this information is stored in a TReferenceHashStore T, which 

maintains the internal data mapping between weak object references and names. This use of 

weak references to each object allows each object to be removed and garbage-collected 

when it is no longer in use by the application. Once garbage-collected, the weak object 

reference becomes stale, so the name no longer maps to a valid object. When this happens 

the name is disassociated from the reference so no further use of the object is possible. If a 

rule contains the name of an object that has been deleted, a warning is presented to the user 

by the Chisel rule manager to request that the user removes the offending rule, after which 

the application and rule manager continue normal operation. If the user is unavailable, or 

chooses not to remove the rule, the rule manager will continue to warn the user, but keep 

operating as normal without evaluating that rule. If at any time the user reuses the name for 

a different object, the rule will then operate normally again as before. 

As discussed in the previous chapters, although this is a supporting mechanism for the user, 

the responsibility of identifying the object, by interpreting its behaviours and roles, remains 

with the user. The amount of time it takes the user to decipher the behaviours and roles of an 

object is dependent on the complexity of the object and the abilities of the user. This time 

taken to decipher the behaviour and roles of a particular object requires that the need to 

name this object must be anticipated before the object can be named. However, there is no 

requirement that this anticipation should occur before the profiled application has started 

execution. In this respect, runtime unanticipated naming of individual objects is achieved. 

This mechanism supports the identification of individual application objects, in any general-

purpose application, without any requirement to access the source code of the application, 



  

158 

stop the application, or interfere with its normal operation in any way. The only requirement 

is that the class of the object to be named is known, either by name, or identified by other 

meta-level code. 

5.2.3 Implementation 

The first step to implementing the Chisel named object store is the specification of the 

TChiselBaseLogging T metatype using Iguana/J. This metatype is composed of two meta 

object classes, one to reify object creation TMetaObjectCreateBaseLogging T, and one 

to reify method execution TMetaObjectExecuteBaseLogging T.  

From the source code extract in figure 5.2.4 for the TMetaObjectCreateBaseLogging T 

meta object class, the Iguana/J operation Tproceed T creates the object and places the return 

value in the Tresult T object. An unnamed reference to this object is then added to the 

TReferenceHashStore T. If the user decides later to specify a name for this object, the 

TReferenceHashStore T will be updated to include this name, and so provide a mapping 

between the name and the object. The class TDBConnection T provides the operation to 

have the creation of this object logged to the database used by the Chisel webservice, along 

with the object's type, constructor parameters, and time of creation. The Tresult T object is 

then passed back to the application for normal use. 

class MetaObjectCreateBaseLogging extends ie.tcd.iguana.MCreate { 
 public Object create(Constructor cons, Object[] args)  …   { 
   … 
   Object result = proceed(cons, args);          // create the object  
   … 
   ReferenceHashStore.addObjectReference(result, … ); // add an unnamed reference to the store  
   DBConnection.logCreation(result, cons, args, … );      // log creation to the database  
   return result; 
 } 
}; 

Figure 5.2.4 The MetaObjectCreateBaseLogging meta object class 

Since the TChiselBaseLogging T metatype will be associated with the application class, it 

will also be associated with every instance of that class. The meta object class, 

TMetaObjectExecuteBaseLogging, shown in figure 5.2.5 belowT, reifies the 

execution of all method calls to each of these instance objects. When a method is invoked, 

the TReferenceHashStore T is first checked to determine if the target object is registered 

in the store, and if not it is added. If the object was created before the 

TChiselBaseLogging T metatype was associated with the object's class and the current 

method call is the first since that association, and so the object's reference will not registered 



  

159 

in the TReferenceHashStore T. The Iguana/J operation Tproceed T then performs the 

method invocation on the base object, passing the method parameters untouched, and then 

stores the return value, if any, in the Tresult T object. The class TDBConnection T also 

provides the operation to have the execution of this object's methods logged to the database, 

including the method called, the number of arguments along with their types and values, the 

type and value of the method's result if any, and the start time of the execution of the 

method. The Tresult T object is then passed back to the application for normal use. 

class MetaObjectExecuteBaseLogging extends ie.tcd.iguana.MExecute { 
 public Object execute(Object obj, Object[] args, Method meth )  …   { 
  … 
  if(  ! ReferenceHashStore.containsObjectReference(obj) ) /* If the object's not in the store */ 
   ReferenceHashStore.addObjectReference(obj, … );  /* add it to the reference store */ 
  … 
  Object result = proceed(obj, args, meth);      /* execute the method */ 
  … 
  DBConnection.logExecution(obj, meth, args, result … );  /* log creation to the database */ 
  return result; 
 } 
}; 

Figure 5.2.5 The MetaObjectExecuteBaseLogging meta object class 

These two meta object classes are then combined into a single metatype and compiled by 

the Iguana/J MOP compiler to produce the metatype class TChiselBaseLogging T as seen 

in figure 5.2.6 below. 

protocol ChiselBaseLogging { 
 reify Creation:MetaObjectCreateBaseLogging(); 
 reify Execution:MetaObjectExecuteBaseLogging(); 
} 

Figure 5.2.6 Definition of the ChiselBaseLogging metatype  

As was seen in figure 5.2.1, this TChiselBaseLogging T metatype can then be associated 

with any application class during the operation of the application by using a proactive 

adaptation rule, specified using the Chisel policy language which is passed to the Chisel 

policy parser. In figure 5.2.7 below, the application class TSomeService T has the 

TChiselBaseLogging T metatype associated with it.  

INITIALLY SomeService . ChiselBaseLogging 

Figure 5.2.7 Association of the ChiselBaseLogging metatype with application class SomeService 

As introduced in the previous section, TSomeService T is a simple Java class with one 

method, TsayHello T, which passes back a string containing the current time. The operations 

of each object of this class are then profiled, with the profiling information for each object 

displayed to the user, as seen from figure 5.2.2 in the previous section. A similar view of the 



  

160 

collected profiling data is available for each object of each class that has the 

TChiselBaseLogging T metatype associated with it. The user can then select an object, 

associate a name with that object, and then use that name in any policy rule. 

Once the name is used in a policy rule, the Chisel service manager will check if the name is 

registered with the named object store using the TgetObject T method shown in figure 5.2.3. 

The named object store will check its store of name-object mappings stored by the 

TReferenceHashStore T to locate a weak object reference. Once found, the object 

referenced by the weak object reference will be retrieved if the object is still available. If the 

particular object is not available, the named object store will alert the service manager, 

which will alert the rule manager, which in turn warns the user the rule cannot be evaluated. 

5.2.4 Alternatives 

A number of alternative methods to assign unique names could have been used instead of 

the method described above. One method would involve using the Java RMI Registry [150] 

to store the names of objects described as Java RMI components. However, only objects that 

implement theT java.rmi.Remote Tinterface can be added to and retrieved from the RMI 

registry. This mechanism is therefore unsuitable for use in the Chisel named object store 

since it is required that arbitrary application objects can be added to the store. 

Another method would be the use of the Java Naming and Directory Interface (JNDI) [149]. 

JNDI provides a standardised Java language interface for the use of naming and directory 

service implementations. This interface supports the insertion and querying of name to 

object bindings. Currently JNDI provides standardised interfaces for the LDAP [163], DNS 

[103], and Java RMI Registry directory services. In order to provide a naming mechanism 

required for the Chisel named object store, a new backend naming service would still have 

to be implemented. The implementation of the Chisel named object store described above 

could be ported to act as this service provider and so export the standardised JNDI interface. 

This is a topic for further work in the implementation of the Chisel named object store.  

It is also possible to store an object's name in the meta objects associated with the object. 

However, this mechanism has a number of shortfalls. When a metatype is disassociated 

from an object, the metatype's meta objects, and all state in those meta objects are lost. This 

means that once the name storage metatype is disassociated from the object, its name is lost. 

This mechanism also provides no central storage of names that can be searched in order to 

provide a mapping of names to objects. The first version of Iguana [58] supported the 



  

161 

association of a name with individual objects in this manner; however, this mechanism was 

removed in later versions of Iguana. 

5.2.5 Evaluation and discussion 

This implementation of the Chisel named object store is provided to demonstrate the power 

of the metatype model to provide a useful non-functional service, such as extensive profiling 

support and object naming, in a dynamic and unanticipated manner for any arbitrary 

application class or object. This case study was provided mainly to demonstrate completely 

unanticipated dynamic adaptation.  

Neither the individual application objects that are named, nor their classes which have the 

TChiselBaseLogging T metatype associated with them, are prepared in any way to have 

this adaptation applied to them since the location at which this adaptation is applied is 

completely unanticipated.  

What the adaptation does can also be unanticipated until during runtime. At any time, the 

TChiselBaseLogging T metatype can be changed, for example to provide a mechanism to 

log different aspects of the intercepted operations, or redirect the database connection to a 

different database. If recompiled before used in an adaptation policy rule, the 

TChiselBaseLogging T metatype can provide this extended behaviour. Otherwise, a new 

metatype can extend the operation of the TChiselBaseLogging T metatype by extending 

the operation of either the TMetaObjectExecuteBaseLogging T or 

TMetaObjectCreateBaseLogging T meta object classes and create a new metatype 

class that implements an extended behaviour.  

For example, if the user also wishes to log all instantiations of a class to a local data file as 

well as to the Chisel webservice database, a new metatype can be created. There are two 

options available to create this metatype. Firstly, the user can create the new metatype that 

just performs the logging to file behaviour, and then create a third metatype that inherits 

from both this new metatype and the TChiselBaseLogging T metatype, thereby combining 

the behaviour of both metatypes. An alternative is to create a new meta object class that 

inherits from the TMetaObjectCreateBaseLogging T meta object class to incorporate 

the database logging behaviour, and extends it to perform local file logging. A new 

metatype can then be created that uses this new meta object class. Figure 5.2.8 demonstrates 

this second example. 



  

162 

class MetaObjectCreateBaseLoggingEx extends MetaObjectCreateBaseLogging { 
 public Object create(Constructor cons, Object[] args)  …   { 
  … 
  /* let the superclass handle object creation, database logging, reference registration etc */ 
  Object result = super.create (cons, args);  
  FileLog.logCreation(result, cons, args, … );   /* log creation to a local file */ 
  … 
  return result; 
 } 
}; 

Figure 5.2.8 The MetaObjectCreateBaseLoggingEx meta object class 

Here a new meta object class is created, extending the operation of the class 

TMetaObjectCreateBaseLogging T. This class simply defers the operation of the 

Tcreate T method to its superclass, then logs the creation of the object Tresult T using the 

TFileLog T class. A new metatype TChiselBaseLoggingEx T is then defined as shown in 

figure 5.2.9 below, which is then compiled in a separate process using the Iguana/J 

compiler.  

protocol ChiselBaseLoggingEx { 
 reify Creation:MetaObjectCreateBaseLoggingEx(); 
 reify Execution:MetaObjectExecuteBaseLogging(); 
} 

Figure 5.2.9 Definition of the ChiselBaseLoggingEx metatype  

Immediately after the Iguana/J compiler has finished compiling the metatype class, this 

metatype can be used in any policy rule, again perhaps as a proactive rule as seen in figure 

5.2.7 above. The time when this profiling metatype is associated with arbitrary application 

classes is completely dependent on the timing at which the user passes the triggering policy 

rule to the Chisel policy parser, and so is unanticipated until during runtime. As described 

previously in this thesis, these adaptation policy rules can contain arbitrary and 

unanticipated condition blocks to control the association of this profiling metatype, or any 

other metatype. This mechanism is useful to support customised dynamic association and 

disassociation of the profiling metatype, and so dynamically enable and disable the profiling 

operation of the Chisel named object store, thereby allowing the specification of 

unanticipated control logic to manage the application of this adaptation. In summary, this 

mechanism supports the completely unanticipated profiling and naming of any arbitrary 

object in any arbitrary application. 

This case study also demonstrates the mechanism and the usefulness of creating and parsing 

new adaptation policy rules to dynamically adapt the operation of both the target application 

and the Chisel framework as the application runs. Only when the user decides that an object 

should be located and named is it necessary to create the policy rule to enable or disable this 



  

163 

new non-functional behaviour. This policy rule can then be passed into the Chisel policy 

parser whenever the user is ready to enable or disable the behaviour.  

This case study also demonstrates the ability of the user to expose the implementation of 

any application by profiling in detail the operation of individual objects within the 

application. The user need not have any information about the operation of the target 

application, and no access to the application source code. This method does not alter or 

interrupt the execution of the application in any way, nor does it require any preparation of 

the application beforehand. This is primarily achieved by the use of dynamic metatype 

association, which wraps the behaviour of arbitrary application objects and classes, allowing 

the behaviours of those objects and classes to be thoroughly inspected or adapted. 

However, the use of a database to store the profiling data, and so requiring individual 

database accesses for each profiled object creation and execution request, imposes a 

considerable computational overhead and slows down the operation of the application being 

adapted TP

2
PT, as can be seen from table 5.2.10 below. This prototype implementation of the 

Chisel named object store and the Chisel framework in general, was implemented to provide 

flexibility and ease of use, to demonstrate the usefulness of the metatype model for dynamic 

adaptation, and to support the completely unanticipated dynamic adaptation of general-

purpose software, rather than provide a high performance solution.  

Time taken to profile the creation of an object 1.98 ms (std. dev. 0.41) 
Time taken to profile the execution of an method invocation 4.19 ms (std. dev. 0.75) 
Time taken to name an individual object  2.33 ms (std. dev. 0.91) 
Time taken to retrieve an object given its name 3.21 ms (std. dev. 0.62) 

Table 5.2.10: Time taken to access the Chisel named object store 

5.2.6 Wider applicability 

The Chisel named object store case study, as described, forms a fundamental part of the 

Chisel framework and provides support for the adaptation of arbitrary named application 

objects. However, the use of the metatype model to implement an extensive non-functional 

behaviour, and then have this behaviour associated with arbitrary application classes in a 

completely unanticipated manner, demonstrates the power of the Chisel dynamic adaptation 

framework to dynamically adapt any class or object in a flexible and managed manner.  

                                                      

TP

2
PT All timings were taken on a lightly loaded Dell Inspiron 8600 laptop computer, 2 GHz Pentium M 

processor, 1GB RAM, Windows XP SP1. Using JDK version 1.3.1_06. 



  

164 

This case study particularly demonstrates the support provided by the Chisel framework to 

allow the user to arbitrarily decide to adapt a random application class in a manner where 

the adaptation can be applied, and then removed, as the user wishes, all without interrupting 

the application, and without requiring access to the source code of the application.  

5.2.7 Summary  

This case study has both provided an in depth description of the implementation and 

operation of the Chisel named object store, and discussed the usefulness of the Chisel 

dynamic adaptation framework to dynamically inject non-functional behaviours into an 

arbitrary application. This case study also demonstrates the ability to harness the Chisel 

framework to expose the internal operation of black-box application, not only showing how 

the class and its instances operate and interact with other classes and object, but also expose 

the locations where the classes and objects can be adapted or expanded as the user requires. 

5.3 Case Study: Adaptation for mobile computing 

This case study introduces how an application can be adapted in an unanticipated manner to 

enable its use in a mobile computing environment. 

5.3.1 Motivation  

This section describes the difficulties encountered by both applications and middleware in a 

mobile computing environment, and so elaborates on the need for adaptation. 

What is mobile computing? 

Physically mobile computing devices that work in standalone mode can be termed “nomadic 

computing” [102]. “Mobile computing” however can be considered an extension of 

distributed computing, whereby portable devices have access to (possibly remote) 

information services regardless of their movement or physical location [72], thereby making 

use of distributed services while also supporting the notion of nomadic computing. The 

main difficulty with mobile computing is the inherent scarcity and variability of resources 

available for use by mobile computers as they move. The primary resource requirement of a 

mobile device, when it is working as part of a distributed system, is its network connection, 

usually some form of wireless connection, which when used by a device that is physically 

moving, suffers from unanticipated and possibly prolonged disconnections [54]. The reason 

why this issue is such a major problem for mobile computing is that the applications 



  

165 

currently being developed are being built as distributed systems applications, assuming a 

stable interconnection, and do not sufficiently account for these disconnections and 

reconnections [119]. 

Middleware for mobile computing 

"Middleware can be viewed as a reusable, expandable set of services and functions that are 

commonly needed by many applications to function well in a networked environment" [1]. 

Traditional middleware for distributed systems, residing above a network-enabled operating 

system but below the application, provides a homogeneous interface and programming 

model for the application regardless of the uncertain local execution environment. It 

abstracts away the complexities of the underlying environment, communication subsystems 

and distribution mechanisms, thereby providing a single view of the underlying 

environment, and sheltering applications from the underlying environment, communication 

subsystems and distribution mechanisms. Such features are seen in traditional middleware 

systems such as COM+ [100] Java RMI [150] and CORBA [106]. 

On the other hand, a middleware system for mobile computing must be flexible in order to 

provide such a homogeneous and stable interface and programming model to make use of 

possibly erratic execution contexts. A key requirement for middleware for mobile 

computing is the ability to adapt to drastic changes in available resources, especially 

network connection availability [61]. To achieve such a stable execution environment it is 

often necessary that an adaptable middleware for mobile computing be open, to allow the 

application and the user to inspect the execution environment and manipulate the application 

and middleware in a mobile-aware manner, using application-specific and user-specific 

semantic knowledge.  

Difficulties with applications and middleware for mobile computing 

As environment conditions change, to values unknown unforeseen by the application 

designer, the middleware that provides abstractions for these environmental resources must 

dynamically adapt to support the applications that run on top of that middleware. As stated, 

one of the primary services provided by the middleware is the ability to supply network 

communications services as these resources change. The characteristics of the available 

connections can range from an inexpensive, very high-bandwidth, low-latency connection 

such as a high-speed wired LAN connection, to a very expensive, low-bandwidth, high-

latency connection such as a GSM connection, where each communication protocol may 

make use of different communication models and addressing modes.  



  

166 

Mobile computing applications should also be able to handle periods of disconnection, 

supported by the middleware underneath. The difficulties that are associated with such a 

range of connection characteristics are further compounded by the fact that these 

characteristics can change in an unanticipated manner. For example, these disconnections 

occur when the device moves out of range for wireless connections, or an interface device is 

suddenly disconnected, as seen when a user suddenly disconnects the device from a 

synchronisation cradle or removes a networking device currently in use. 

Despite the presence of an adaptable middleware that can function in such a dynamic 

environment, applications running on this middleware must be able the cope with the 

differing levels of service provided. If an application is built without taking account of the 

changeable nature of the execution environment as presented by the middleware, i.e., a 

mobile-transparent application [75], it must adopt the most conservative choices for 

resource availability and connectivity. If an application is written in a mobile-aware manner 

[75], the application can support changes to available resources, but this adaptation support 

must be embedded in the application source code. 

A further issue with such a varied collection of communication technologies that can be 

leveraged for mobile computing is that the user may not wish to fully use the available 

resources in an eager or greedy manner to maintain data connectivity. For example, even if a 

GPRS connection is available, it is generally much more expensive than available wired or 

wireless LAN connections. A further example is the case where although currently 

disconnected, with connections available, the user may be aware that cheaper or more 

convenient connection resources will soon be available, i.e., something that cannot be 

anticipated in a generalised manner by the adaptable middleware platform. For these 

reasons, it is imperative that the added potential of the user's own resources, preferences, 

and intelligence are exploited. This model reinforces the wide-ranging interpretation of 

"context-awareness" taken by the Chisel framework to allow all queryable characteristics of 

the user, the application, and the execution environment to be used as sources of contextual 

information. 

5.3.2 ALICE 

ALICE (Architecture for Location-Independent Computing Environments) [7, 29, 61-63, 

156, 157], developed in Trinity College Dublin, is an architectural framework that supports 

network connectivity in a mobile computing environment by providing a range of 

client/server protocols (see figure 5.3.1). ALICE allows these protocols to provide their own 



  

167 

support for location management, disconnected operation, and connection management. In 

ALICE, Mobile Hosts are mobile devices, which may interact with fixed computers called 

Fixed Hosts. These connections are tunnelled through Mobility Gateways, which are also 

fixed computers. The mobile host can become disconnected from a mobility gateway and 

later become reconnected to a different mobility gateway without interfering with the virtual 

connection to the fixed host. A fixed host can also be made up of a combination of a mobile 

host and mobility gateway. Both the fixed host and the mobile host can act as client or 

server for any protocol. 

ALICE is made up of a series of layers. The Mobility Layer (ML) handles communications 

between devices by overriding socket functions while hiding which communication 

interface is being used for the connection. The ML tracks available connections and picks 

one using a reconfigurable selection algorithm, while providing performance statistics on 

the different available communication interfaces. The ML also manages connections 

between the mobile host and the mobility gateway in a mobile-aware manner using 

application callbacks to inform the layers above that a disconnection or reconnection has 

occurred. Protocol-specific Swizzling Layers reside above the ML and support mobility of 

servers by translating server references and redirecting client connections to more up-to-date 

server locations according to these references. When a disconnection occurs, the ALICE ML 

will synchronously queue unsent data between the mobile host and the mobility gateway 

until a connection is re-established. ALICE has been implemented in C [29, 61-63] and in 

Java [7, 156, 157]. Versions exist for CORBA [29, 61-63] and Java RMI [7, 61]. A version 

supporting SOAP is also planned. 

Mobility Layer

Network Connection

IIOP Java RMI

Application

Logical flow of Network Packets
Actual flow of Network Packets

Mobile Host (MH) Mobility Gateway (MG) Fixed Host (FH)

Network Connection

IIOP Java RMI

Application

M
ob

ile
 N

et
w

or
k

Mobility Layer

Network Connection Fi
xe

d 
N

et
w

or
k

Figure 5.3.1 Overview of the ALICE middleware framework 

At present, ALICE does not provide support to force disconnections in order to enable the 

selection of a different communication connection than the one that is employed at a given 

time. In the current system, a disconnection must occur before a new connection can be 

selected in a resource-aware and context-aware manner using a new reconnection algorithm. 



  

168 

A Disconnected Operation layer can also be specified to handle caching of server object 

replicas in a protocol-specific or application-specific manner. When addressing the 

requirement that the user and the application may wish to drive or constrain the adaptation 

of the middleware, the main issue that is not addressed by ALICE is the relative difficulty to 

control which connection to use and the incorporation of semantic information to make a 

more informed choice about how the ML should reconnect the mobile host and the mobility 

gateway. 

5.3.3 Design  

This need for context-aware unanticipated dynamic adaptation of both mobile computing 

middleware and mobile-aware applications was seen as an ideal case study for the Chisel 

dynamic adaptation framework. The operation of middleware and applications on mobile 

computers should not be interrupted just because the resources or requirements of the user, 

application, or operating environment have changed in an unanticipated manner. Ideally, it 

should be possible to adapt an application for mobile computing in a mobile-aware manner, 

but without requiring direct access to the application source code in order to embed this 

behaviour. 

To demonstrate the use of the Chisel dynamic adaptation framework, an off-the-shelf 

network application, "The JavaP

TM 
PTelnet Application/Applet" [77], was  adapted to operate 

in a mobile computing environment by dynamically adapting it to use the ALICE mobility 

layer. Once adapted, the application can operate freely in a mobile computing environment 

since the ALICE middleware framework presents a socket interface that does not fail when 

a network disconnection occurs. 

5.3.4 Implementation 

For this case study a full Java implementation of the ALICE mobility layer was completed, 

based on the work presented in [156, 157]. It provides a class TMASocket T that contains the 

ALICE connection behaviour, which implements a socket interface similar to the standard 

Java socket class, Tjava.net.Socket T. When the TMASocket T class is used instead of the 

standard Java socket, all messages from a mobile host to a fixed host are redirected via a 

mobility gateway. When the connection between the mobile host and the mobility gateway 

breaks, all network data are cached at the mobile host and the mobility gateway for later 

reconnection. This disconnection and reconnection happens without the application being 

made aware of the disconnection.  



  

169 

This dynamic adaptation of the telnet application was achieved using the Chisel dynamic 

adaptation framework, without stopping the application and without changing the source 

code of the application in any way. Although the source code for this telnet application is 

available, it was not used to adapt the application. The only assumption made about the 

programming of the application was that a standard Java socket, or a subclass of 

Tjava.net.Socket, Tis used to connect the client and the telnet server, a reasonable 

assumption for any network-enabled Java application. 

A metatype, TDoAliceConnection T (figure 5.3.2), was developed to intercept the creation 

of the socket connection to the telnet server and replace the socket in use with an instance of 

the ALICE TMASocket T. This redirection behaviour was embedded in the meta object class 

TMetaObjectCreateALICEConn T as shown in figure 5.3.3.  

protocol DoAliceConnection  { 
 reify Creation: MetaObjectCreateALICEConn (); 
} 

Figure 5.3.2 Definition of the DoAliceConnection metatype (MOP) class  

class MetaObjectCreateALICEConn extends ie.tcd.iguana.MCreate { 
 public Object create(Constructor cons, Object[] args)  …   { 
  … 
  if ( … /* this is not a localhost connection, or a connection used by ALICE */ … ) { 
   // Change the constructor to be called, from a java.net.Socket to a MASocket constructor 
   cons = ….  // find the MASocket constructor 
  } 
  Object result = proceed(cons, args); /* create the socket */ 
  … 
  return result;        /* result is either a normal socket or an MASocket */  
 } 
}; 

Figure 5.3.3 The MetaObjectCreateALICEConn meta object class 

The redirection behaviour is accomplished by first checking that this intercepted creation 

operation is for a socket connection between the client application and a remote computer, 

and that it is not a connection used by ALICE itself. If this object creation operation is a 

valid instantiation that should be redirected to a TMASocket T object creation, the constructor 

for TMASocket T is found using the Java reflective API and passed to the Iguana/J Tproceed T 

operation. This operation passes the intercepted object creation operation to any other meta 

objects that are also intercepting the operation, then finally creates the object.  

This adaptation can be applied to the telnet application in a number of ways. The first is to 

use a proactive adaptation rule to associate the TDoAliceConnection T metatype with the 

Tjava.net.Socket Tclass as seen in the previous case study, in figure 5.2.7. An 

alternative is to perform this adaptation in a context-aware manner, i.e., only perform the 



  

170 

metatype association if the application is being used in a mobile computing environment, 

where the network connection is known to be intermittent. In the adaptation policy rules 

seen in figure 5.3.4 below, the TDoAliceConnection T metatype is only associated with 

the Tjava.net.Socket Tclass if the TUsingDodgyNet T event fires. When the connection 

moves to a stable network connection the TUsingGoodNet T event is fired, thereby re-

enabling the use of standard Java sockets. 

ON  UsingDodgyNet   java.net.Socket.DoAliceConnection 
ON  UsingGoodNet   java.net.Socket.NullProtocol 

Figure 5.3.4 Enabling and disabling the DoAliceConnection metatype in a context-aware manner 

The event TUsingDodgyNet T can be fired automatically by the Chisel event manager using 

an automatic rule definition and trigger rule, or by the Chisel context manager when a 

wireless connection is detected for example, by the user using another event manipulation 

policy rule, etc. Figure 5.3.5 shows how this event is fired from meta-level code. Similarly, 

the TUsingGoodNet T event can be fired when the network connection is deemed stable, by 

another policy rule, some network monitoring code, or by the context manager. Figure 5.3.6 

shows how the user causes the event to be fired explicitly when it is known that the network 

is stable.  

With Java, the only ways to detect that a socket data-link disconnection has occurred is if 

the Twrite T function of the socket's TSocketOutputStream T, or the Tread T function of the 

socket's TSocketInputStream T causes an TIOException T exception, or if Tread T returns 

the error integer value T-1 T. Each of these error conditions is checked in the meta object class 

TCheckNetworkSendAndReceive T shown in figure 5.3.5 below.  

This meta object class, TCheckNetworkSendAndReceive T, is then used in a metatype 

that is associated with the classes Tjava.net.SocketInputStream Tand 

Tjava.net.SocketOutputStream. T An alternative is to associate the metatype directly 

with a particular socket's TInputStream T object and TOutputStream T object as that socket 

object is being created or used. 

 



  

171 

class CheckNetworkSendAndReceive extends ie.tcd.iguana.MExecute { 
 
 public Object execute(Object obj, Object[] args, Method meth )   
     throws  InvocationTargetException { 
 

  Object result; 
  try{ 
   result = proceed(o, args, m); 
  } 
  catch(InvocationTargetException e){ 
   if(e.getTargetException().getClass()==IOException.class) 
    EventManager.FIREevent("UsingDodgyNet"); 
   throw e; 
  } 
  if(m.getName().compareTo("read") == 0) 
   if(((Integer)result).intValue() == -1) 
    EventManager.FIREevent("UsingDodgyNet"); 
 
  return result; 

 } 
}; 

Figure 5.3.5 Detecting a network error by intercepting network operations 

When the user later decides that the available data connections are stable, the user explicitly 

fires the TUsingGoodNet T event as shown in the proactive event manipulation rule in figure 

5.3.6 below. The user could also include a number of more complex context lookups in the 

conditions section of the rule. 

INITIALLY UsingGoodNet.FIRE IF TRUE 

Figure 5.3.6 Explicitly firing the UsingGoodNet event 

To test the operation of this case study implementation, the telnet application was copied 

onto a standard laptopTP

3
PT with the Chisel framework installed. A jar file containing a version 

of the ALICE mobility layer was also available. The application was then started, but no 

telnet connection started. The Chisel policy rules described above were then written and 

parsed by the Chisel adaptation manager. A telnet connection was then made, with the 

connection automatically redirected over an ALICE TMSocket T connection. At a later stage, 

once the connection was operating for some time the laptop was carried to a location where 

a wireless networking signal was unavailable. At this stage the wireless networking card 

was completely shut down and removed. While disconnected all data was cached at the 

mobile host and the mobility gateway. At a later stage, in a location where a different 

wireless networking connection was available, a different wireless networking card with a 

                                                      

TP

3
PT Dell Inspiron 8600, 2 GHz Pentium M processor, 1GB RAM, Windows XP SP1. Two wireless 

networking cards were also available, a Cisco Aironet 350 card and a Compaq WL110 card. 



  

172 

different address was inserted. At this stage the telnet connection relayed and received all 

cached data and continued its normal operation.  

5.3.5 Alternatives 

A number of alternatives to this version of the ALICE mobility layer could have been used. 

A Java version of the ALICE mobility layer is presented in [7] which uses a Java Native 

Interface (JNI) [145] approach to replace the native implementation of the Java socket 

library with a re-implementation based on the original ALICE mobility layer written in the 

C programming language. Using the Chisel adaptation framework, these alternative socket 

classes can be used in place of the standard Java sockets, but since the mobility layer is 

implemented in native code, the Chisel framework cannot be used to adapt or inspect the 

internal operation of this mobility layer implementation; for example, its connection 

strategies or state, or its caching behaviour, etc. A number of other transport layer level 

approaches, such as Mowgli [88, 89] or MSOCKS [96] could have been used despite having 

only limited support for disconnections. However, since these systems are also not 

implemented in Java and so would require a JNI interface, they are unsuitable for this case 

study. Another possible approach is the use of MobileSockets [107, 108], a full Java 

re-implementation of a socket library that supports disconnection and host mobility similar 

to the ALICE mobility layer used above. Again, to use this mechanism, the creation of a 

socket object can be redirected to use MobileSockets instead of standard Java sockets. Since 

MobileSockets are fully implemented using Java, the MobileSocket implementation could 

also be dynamically adapted using the Chisel framework.  

5.3.6 Further adaptations  

Using the Chisel framework further adaptations are made possible, to both the application 

and the ALICE middleware framework.  

When a disconnection occurs between the mobile host and the mobility gateway, the class 

TMGatewayConnection T, which is responsible for maintaining this connection, calls its 

method TreestablishConnection T, which in turn calls the TconnectAttempt T 

method with the host name and port number of the mobility gateway as parameters. If the 

user wishes to connect to a particular mobility gateway, the parameters of this call can be 

changed. If the TreestablishConnection T method is intercepted, an event can be fired 

to indicate to the entire ALICE framework and the application that a disconnection has 

occurred, thereby allowing mobile-aware adaptations of the application. If the user wishes to 



  

173 

maintain a disconnected state, this TreestablishConnection T method can be set to fail, 

thereby forcing the ALICE mobility layer to continue caching the connection data until the 

user re-enables the operation of the method. If the user wishes to force a disconnection, the 

TMGatewayConnection T method ThobbleConnection T can be called at any time to 

close the connection between the Mobile Host and the Mobility Gateway.  

For example the user wishes to switch off the caching of data while the socket is 

disconnected, the user can create a new metatype that intercepts the sending of data on the 

TMASocket's T TOutputStream T object, and if the TMGatewayConnection T shows a 

disconnected state, the data to be sent can be discarded, as shown in figure 5.3.7 below.  

class NoDisconnectedCaching extends ie.tcd.iguana.MExecute { 
 
 public Object execute(Object obj, Object[] args, Method meth ) … { 
    

 if ((obj.getClass()==MOutputStream.class) && (meth.getName().compareTo("write")==0))  
  if (MGatewayConnection.broken == true || MGatewayConnection.sock == null  
   ||  MGatewayConnection.input == null || MGatewayConnection.output == null ) 

   { 
    return null;  
  } 
 } 
 return  proceed(obj, args, meth); 
} 

}; 

Figure 5.3.7 Disabling caching while disconnected 

In this example, TMOutputStream T is the type of the TOutputStream T used by the 

application's TMASocket T to be used when sending data using the mobility layer. 

TMGatewayConnection T maintains a number of fields that can be used to determine the 

state of the underlying connection between the mobile host and the mobility gateway. These 

include: Tbroken T to indicate that the connection is currently broken, Tsock T is the actual 

TSocket T object used for the connection, and Tinput T and Toutput T are the actual 

TSocketInputStream T and TSocketOuputStream T objects used to send and receive 

data over the connection. If any of these indicate an error, the socket connection is 

considered broken. If this connection is broken, the mobility layer is in disconnected mode, 

so any attempt to send the data will result in that data being cached. If that data should be 

discarded, the write method can be disabled. Otherwise, the operation should proceed as 

normal. 

These same mechanisms could also be used to support the context-aware adaptation of the 

application. If the user wishes to adapt the application in a mobile-aware manner, the user 

must first know when the connections being used are connected or disconnected. The rule 



  

174 

definitions in figure 5.3.8 below, define the events TCurrentlyConnected T and 

TCurrentlyDisconnected T one of which will be fired repeatedly depending on the 

current state of the mobility gateway connection. 

NEW CurrentlyConnected         WHEN        ( MGatewayConnection.broken != true)  &&  
  ( MGatewayConnection.sock != null ) &&  ( MGatewayConnection.input != null ) && 
   ( MGatewayConnection.output != null ) 
 
NEW CurrentlyDisconnected     WHEN        ( MGatewayConnection.broken == true ) ||  
  ( MGatewayConnection.sock == null ) || ( MGatewayConnection.input == null ) || 
   ( MGatewayConnection.output == null ) 

Figure 5.3.8 Automatic definition of events for context-aware adaptation 

This mechanism of dynamically redirecting Java socket connections to ALICE TMASocketT 

socket connections could also be used to dynamically adapt the Java RMI middleware 

model similar to the approach discussed in [7, 61], but in an unanticipated manner. This 

possible approach could enable the adaptations described in [7], by intercepting the 

instantiation of both the Tjava.net.Socket Tand Tsun.rmi.server.UnicastRef 

Tclasses. An alternative approach could intercept the operations of the 

Tjava.rmi.server.RMISocketFactory Tinterface when it is requested to create the 

actual sockets used to perform remote object invocations, as described in [156, 157]. 

5.3.7 Evaluation and discussion of the metatype model 

This dynamic adaptation enabled the telnet application to operate as normal while the 

network connection used was repeatedly disconnected and reconnected, using a variety of 

network adapters and services. However, due to the nature of the operation of sockets, a 

connected socket cannot be adapted to use the ALICE mobility layer. To do so would 

require breaking the connection between the client and the server and replacing this 

connection with an ALICE socket. However, this cannot be accomplished without the client 

and the server applications detecting the disconnection, closing their communication 

sessions, and producing an error. Therefore, this particular adaptation can only be applied 

before the connection is made. This requires the user to anticipate the need for adaptation 

before the first connection is made, or else suffer at least one disconnection before applying 

the adaptation.  

In general, it is difficult to adapt an application where object creation is used as the 

interception point to perform an adaptation. Only objects that are created after the adaptation 

is applied will be adapted. This is only appropriate when objects are created throughout the 

operation of the application, as seen here where new socket objects are created for each new 



  

175 

connection created. Adaptations applied at method invocation time, for either classes or 

individual objects come into effect immediately for all instantiated objects once the 

adaptations are applied, and are available at the next method call. For this reason adaptation 

by interception of invocation is a more general-purpose approach and requires less 

anticipation than adaptation at object creation time. 

5.3.8 Evaluation and wider applicability 

This case study is designed to demonstrate the usefulness and usability of the Chisel 

dynamic adaptation framework rather than to quantitatively evaluate the performance of any 

particular adaptation. For this reason this case study is not evaluated by measuring the 

performance of the ALICE mobility layer. For more information on the performance 

characteristics typical of this type of adaptation see related work in [7, 61, 88, 89, 96, 107, 

108, 156, 157]. 

This case study is designed to demonstrate the use of the Chisel dynamic adaptation 

framework to adapt both applications and middleware for use in a mobile computing 

environment. Although a mobile computing scenario was chosen to demonstrate the 

operation of the Chisel dynamic adaptation framework, this case study equally applies to 

any environment or operation mode where unanticipated dynamic adaptation is a 

requirement for satisfactory operation. A mobile computing environment was seen as a 

perfect example since the state, resources, and requirements of the application, the 

environment, and the user can all change to extreme values in an unanticipated manner. 

This case study was also designed to demonstrate the effectiveness of the Chisel dynamic 

adaptation framework to adapt third-party applications, without requiring access to their 

source code. This case study demonstrates how the operation of a complex compiled 

application can be changed dynamically according to the needs of the user and the 

environment. It also demonstrates how applications can be adapted as they run, without any 

requirement to change, interrupt, or restart the application.  

5.4 Performance 

Although not of primary concern for the evaluation of the Chisel framework, support for 

general-purpose completely unanticipated dynamic adaptation does come with a 

performance penalty. However, since the Chisel adaptation manager is designed to operate 

in an asynchronous event-based manner in the background, this performance penalty is 



  

176 

difficult to quantify. To confound this difficulty, the penalty is related to the complexity of 

the policy rules interpreted by the adaptation manager, with almost every rule performing 

differently. This section will focus specifically on the Chisel framework in terms of startup 

time, time to parse a rule, time to interpret a rule once it has been triggered, time to perform 

an event operation, and time to initiate an adaptation via dynamic metatype selectionTP

4
PT. This 

section will not discuss the performance penalty of the adaptation itself since the Chisel 

framework is built in manner to be somewhat independent of the adaptation mechanism 

used, and the performance of the Iguana/J framework has been evaluated in depth in [125].  

Firstly, the time taken to start and initialise the Chisel adaptation manager is given in table 

5.4.1 below. The first row demonstrates just the time taken to initialise the adaptation 

manager, with the second row showing separately the time taken to start the Chisel policy 

viewer (seen in figure 4.8.3) and the Chisel "Eventmaker" dialog (seen in figure 4.2.2). This 

initialisation was performed with an empty rule set and without starting an application for 

adaptation. The time taken to start and initialise the Chisel adaptation is a real delay to 

startup of any target application since the adaptation manager must be fully initialised 

before the target application is started or initialised.  

Time taken to start and initialise Chisel 26.24 ms (std. dev. 2.37) 
Time taken to start the graphical management interfaces  306.64 ms (std. dev. 15.35) 

Table 5.4.1: Time taken to initialise the Chisel adaptation manager 

Secondly the time taken to parse a number of policy directives is given in table 5.4.7 below. 

However, these times should not be considered to be actual delays to the operation of the 

application being adapted since the parsing of any policy directives can be performed in 

parallel to operation of the target application at a configurable priority. In the timing 

examples below, the rules were parsed while the target application was paused to give a 

more reliable time measurement. To differentiate between different types of policy 

directives a number of trivial rule sets were parsed. Figure 5.4.2 contains a policy directive 

to define and register a new event type with the Chisel event manager. The time taken to 

parse this directive is given on the first row of table 5.4.7 below. 

NEW Event1 

Figure 5.4.2: Policy directive to create and register a new event type 

                                                      

TP

4
PT All timings were taken on a lightly loaded Dell Inspiron 8600 laptop computer, 2 GHz Pentium M 

processor, 1GB RAM, Windows XP SP1. Using Iguana/J version 0.36, JDK version 1.3.1_06. 



  

177 

Figure 5.4.3 contains a reactive policy which would cause the TSomeService T class to have 

the TChiselBaseLogging T metatype unconditionally associated with it if an event of type 

TEvent1 T is fired. The time taken to parse this rule is given on the second row of table 5.4.7 

below. 

ON  Event1   SomeService.ChiselBaseLogging 

Figure 5.4.3: An unconditional reactive adaptation policy rule 

Figure 5.4.4 contains a reactive policy which would cause the TSomeService T class to have 

the TChiselBaseLogging T metatype associated with it if an event of type TEvent1 T is 

fired and the condition containing one static field lookup evaluates successfully. The time 

taken to parse this rule is given on the third row of table 5.4.7 below. 

ON  Event1   SomeService.ChiselBaseLogging   IF    ( SomeService.intvalue   ==   5 ) 

Figure 5.4.4: A reactive adaptation policy rule with a single field comparison as a condition 

Figure 5.4.5 contains a similar reactive policy which would cause the TSomeService T class 

to have the TChiselBaseLogging T metatype associated with it if an event of type 

TEvent1 T is fired and the condition containing one trivial static method invocation evaluates 

successfully. The time taken to parse this rule is given on the fourth row of table 5.4.7. 

ON  Event1   SomeService.ChiselBaseLogging   IF    ( SomeService.getInt( )   ==   5 ) 

Figure 5.4.5: A reactive adaptation policy rule with a single method invocation in its condition 

Figure 5.4.6 contains another similar reactive policy which would cause the 

TSomeService T class to have the TChiselBaseLogging T metatype associated with it if an 

event of type TEvent1 T is fired and the condition containing a boolean combination of one 

static field access and one trivial static method invocation evaluates successfully. The time 

taken to parse this rule is given on the fifth row of table 5.4.7. 

ON Event1 SomeService.ChiselBaseLogging IF  
             ( SomeService.intvalue == 5 ) && ( SomeService.getInt( ) == 5 ) 

Figure 5.4.6: A reactive adaptation policy rule with a combination of comparisons as a condition 



  

178 

Time taken to parse a policy directive to create and register a new 
event type 

3.74 ms (std. dev. 0.50) 

Time taken to parse an unconditional reactive adaptation policy rule 7.59 ms (std. dev. 0.47) 
Time taken to parse a reactive adaptation policy rule with a single 
field comparison as a condition 

50.13 ms (std. dev. 1.67) 

Time taken to parse a reactive adaptation policy rule with a single 
method invocation in its condition 

50.96 ms (std. dev. 2.08) 

Time taken to parse a reactive adaptation policy rule with a 
combination of comparisons as a condition 

53.74 ms (std. dev. 2.20) 

Table 5.4.7: Time taken to parse Chisel policy directives 

Finally, in order to measure the times taken to actually evaluate the rules in figures 5.4.3 to 

5.4.6 above, the event TEvent1 T was fired to trigger the rules. In each case the conditions 

evaluate successfully, so the timing data given in table 5.4.8 additionally reflects the time 

taken to perform the metatype association. Unlike the time taken to initialise the Chisel 

adaptation manager, or the time taken to parse policy directives, rule evaluations are always 

performed parallel to the operation of the target application. However, again to accurately 

determine the time taken to perform such evaluations the application was forcefully paused 

while the particular measurements given in table 5.4.8 were performed. The time taken 

required to perform an adapted operation is dependent on the contents of the adaptation and 

is not measured here, however, comparative details on the runtime performance of different 

types of adaptations using the Iguana/J runtime are given in [125]. 

Time taken to evaluate a triggered unconditional reactive adaptation 
policy rule 

29.36 ms (std. dev. 0.83) 

Time taken to evaluate a triggered reactive adaptation policy rule with a 
single field comparison as a condition 

33.72 ms (std. dev. 2.05) 

Time taken to evaluate a triggered reactive adaptation policy rule with a 
single method invocation in its condition 

37.27 ms (std. dev. 2.30) 

Time taken to evaluate a triggered reactive adaptation policy rule with a 
combination of comparisons as a condition 

40.90 ms (std. dev. 1.66) 

Table 5.4.8: Time taken to evaluate triggered reactive adaptation policy rules 

Although the evaluated version of the Chisel adaptation manager was not specifically 

optimised for speed during implementation, the figures above show that the use of Chisel 

dynamic adaptation framework itself is not prohibitive. As with any rule-based or event-

based system, the performance of the Chisel framework implementation will vary with the 

number and complexity of the rules used and the frequency at which events are fired. In 

addition, the number and nature of any adaptations applied will affect the performance of 

the targeted application. The primary evaluation of the Chisel dynamic adaptation 

framework is with respect to its flexibility and usefulness rather than its runtime 

performance penalty. Due to the subjective nature of such an evaluation, and the number of 

necessary additional considerations, it should be determined on a case by case basis if the 



  

179 

Chisel framework should be used to dynamically adapt a piece of software for intermediate 

or long term use, or if that software should be rewritten.  

5.5 General discussion 

The main objective of the Chisel dynamic adaptation framework is to support completely 

unanticipated dynamic adaptation of arbitrary compiled software in a general-purpose 

manner. This is demonstrated by both case studies, where arbitrary application objects can 

be adapted in a completely unanticipated manner, and an arbitrary network application can 

be adapted to operate successfully in a mobile computing environment. In both of these 

cases, where the adaptation was applied, what the applied adaptation did, when it was 

applied, and how its application was controlled, were all unanticipated until after the 

application had started execution.  

The leverage of contextual information to adapt an application was also demonstrated by 

both case studies, but particularly in the mobile computing case study. Here in particular, 

the user's contextual knowledge of how the environmental conditions are likely to change, 

and information from the execution environment as these conditions change, can be used 

with beneficial effects to drive the adaptation process. In the named object store case study, 

the knowledge and intelligence of the user is also leveraged to allow individual objects to be 

identified for later adaptation, or for use in the adaptation control logic. 

The ability to inspect and adapt the operations of third-party applications, without requiring 

access to their source code, is also demonstrated in both case studies. In both cases, arbitrary 

applications are adapted, with absolutely no requirement for either a-priori knowledge of 

these adaptations, or preparation of the application to support these adaptations. In both 

cases the internal operation of the application is exposed, allowing the user to examine the 

roles and behaviours of the internal parts of the application, and apply arbitrary adaptations 

both at the interface to the application software, and in the internals of the application, 

thereby breaking down the black-box design model used to develop the software. 

Both case studies also demonstrate some of the capabilities and limitations of the metatype 

model to perform dynamic adaptations by changing or inserting functional or non-functional 

behaviour. The object naming case study demonstrates the non-invasive nature of non-

functional behavioural changes using the metatype model to perform complex and useful 

adaptations. The mobile computing case study demonstrates the ability to adapt the 

functional behaviour of an application, by either adapting the current behaviour of 



  

180 

individual objects or classes, or replacing that a particular class or object in entirety to 

completely change the resulting behaviour of the application. With respect to the limitations 

of the metatype model, the mobile computing case study in particular, demonstrates the 

limitations of the use of the metatypes to adapt at object creation time. However, this is only 

a limitation with respect to unanticipated dynamic adaptation, this mechanism remains a 

flexible and feasible approach to perform anticipated dynamic adaptation, or even 

unanticipated adaptation where objects are created throughout the lifetime of the adapted 

application.  

These two particular case studies were chosen to be representative of a wide range of 

possible adaptations and so demonstrate the diverse applicability of the framework. The 

Chisel named object store demonstrates both the extensibility of the Chisel framework and 

the general-purpose nature of its usability. If any arbitrary application object can be 

identified, then that object can be arbitrarily inspected or adapted, either by adapting its 

functional or non-functional behaviours, by introducing before- and after- processing of its 

creation, deletion, state accesses, method invocations, etc., or indeed by entirely replacing or 

redirecting these behaviours. The mobile computing example demonstrates the ability to 

adapt the core functionality of individual objects within an application in a context-aware 

manner, and so adapt the entire operation of the application to operate in a required manner.  

Overall, with the use of these two case studies the usefulness of Chisel dynamic adaptation 

framework has been demonstrated according to the evaluation criteria discussed in section 

5.1. The Chisel framework has been seen to support all of the requirements for completely 

unanticipated dynamic adaptation, in a context-aware manner, for general-purpose 

adaptations of arbitrary software. This has also been shown to be possible without requiring 

access to the source code of the adapted applications, and indeed providing mechanisms to 

expose the internal behaviours and operations of these applications if the source code is 

unavailable. This has been achieved primarily by exploiting the useful features of the 

metatype model to support general-purpose dynamic inspection and adaptation. 

However, a serious drawback of the Chisel dynamic adaptation framework is the 

requirement for the adaptations themselves to be programmed as meta object classes. These 

adaptations often require in-depth knowledge of the operation of class or object being 

adapted and require proficiency in programming ability. In this regard, the development of 

new metatypes may not be suitable for arbitrary users, but rather for users with significant 

programming experience. The meta-level programmer must also have some level of 

experience with the rules for using the metatype model, described in Chapter 3, in order to 



  

181 

ensure that the adaptation can be applied without resulting in association errors. It is also 

necessary that meta object classes are carefully written in a manner to allow the separate 

association of other metatypes without interference between them. The application of pre-

written adaptations is however quite easy to accomplish using the Chisel dynamic 

adaptation framework. Again some level of knowledge about the operation of the objects 

and classes being adapted is required, but the difficult implementation of the adaptation is 

already provided. This ease of use is accomplished primarily by the use of the Chisel policy 

language, allowing the user to perform complex adaptations without having to rewrite the 

source code of the application. For this reason the Chisel dynamic adaptation framework is 

primarily focused towards advanced users who require more functionality from pre-written 

software, where existing adaptations can be leveraged. Alternatively, in the case the 

advanced user who is a proficient programmer, the Chisel framework also provides the 

ability to define and apply new adaptations. 

5.6 Chapter summary 

This chapter presented two case studies to demonstrate and evaluate the capabilities of the 

Chisel dynamic adaptation framework. The implementations of the applied adaptations for 

each case study were presented, along with an analysis of how these adaptations 

demonstrate the effectiveness and limitations of the Chisel framework. Each adaptation was 

also discussed in terms of further adaptations that could be applied in a similar manner, to 

demonstrate the general-purpose nature of the Chisel framework. In addition a set of timing 

figures was given to demonstrate the performance penalty of using the Chisel dynamic 

adaptation framework. A general discussion about the practicality of the Chisel framework 

concluded this chapter. 

The next chapter concludes this thesis with a summary of the contributions of the Chisel 

project, along with a discussion of open research questions and suggestions for further work 

in this area.  

 



  

182 

Chapter 6 
CONCLUSIONS 

This chapter concludes this thesis with a summary of the thesis, an overview of the 

contributions presented, and a brief description of a number of open research topics not 

tackled in this thesis. 

6.1 Overview of this thesis  

Chapter 1 opens with a discussion of the aims and objectives of this thesis. The varying 

degrees to which individual software adaptation may be anticipated is discussed, after which 

completely unanticipated dynamic adaptation is introduced. The introduction continues with 

an overview of metatypes and policy-based adaptation management. The Chisel dynamic 

adaptation is briefly presented, followed by a discussion of the contributions of this thesis. 

Chapter 2 provides an overview and discussion of the most relevant current research that 

relates to and influenced the design and operation of the Chisel dynamic adaptation 

framework. These related works were discussed in terms of their support for unanticipated 

dynamic adaptation and their management supports to control this adaptation. This chapter 

demonstrated a lack of generalised support for the managed completely unanticipated 

dynamic adaptation of general-purpose software. 

In Chapter 3, the Chisel dynamic adaptation framework is presented. The Chapter opens 

with an analysis of the requirements that the Chisel framework must fulfil. A detailed 

discussion about the metatype model is then followed by examination of how dynamic 

metatype association can be used to perform dynamic software inspection and adaptation. 

The Chisel event model and the Chisel context model are introduced as a mechanism to 

define and capture context-aware adaptation requirements for in a reactive manner. The 



  

183 

Chisel policy language is then presented, showing how this policy language can be used to 

drive the adaptation mechanism in an unanticipated but controlled proactive or reactive 

context-aware manner.  

Chapter 4 presents an implementation of the Chisel dynamic adaptation framework, with the 

structure and operations of the constituent parts of the framework examined in detail. This 

chapter show how the Chisel framework is enabled, and explains how step-by-step 

completely unanticipated dynamic adaptation is performed. 

Chapter 5 presents two detailed case studies to show the usefulness and limitations of the 

Chisel dynamic adaptation framework. The first case study describes the implementation of 

the Chisel named object store as an adaptation applied using Chisel framework. This non-

functional adaptation also demonstrates in a generalised manner how non-functional 

behavioural adaptations could be applied in an unanticipated and non-invasive manner. The 

second case study describes the use of the Chisel framework to dynamically adapt third-

party network application to operate in a mobile computing environment. This case study 

demonstrates how functional behaviour adaptations can also be applied in an unanticipated 

and context-aware manner in response to rapidly changing requirements and resources, all 

without requiring access to the source code of the compiled application. The benefits and 

limitations of the Chisel framework are then discussed further. 

Chapter 6, this chapter, concludes the thesis with an overview of the contributions of the 

Chisel project and a discussion of open research questions and further work. 

6.2 Contributions of the Chisel Project 

This section briefly summarises the contributions of the Chisel project, as presented in the 

previous chapters.  

This thesis provides an in depth study of unanticipated dynamic adaptation and introduces 

the term "completely unanticipated dynamic adaptation" to refer to the application of 

software adaptations to a running application, where the new behaviour of each adaptation, 

the location where an adaptation will be applied, when the adaptation will be are applied, 

and the control logic that manages the application of the adaptation, can all remain 

unanticipated until after the target application has started executing, and until the 

requirements for those adaptations become apparent. This thesis discussed the requirements 

that an adaptation framework must satisfy to support completely unanticipated dynamic 



  

184 

adaptation, and discusses the current state of the art research with respect to how completely 

unanticipated dynamic adaptation can be achieved.  

This thesis then describes in detail the design and prototype implementation of the Chisel 

dynamic adaptation framework, which makes completely unanticipated dynamic adaptation 

achievable for general-purpose compiled applications. This thesis also discusses the ability 

to exploit changing contextual information to drive unanticipated dynamic software 

adaptation. Here context has been chosen to refer to all state, resources, and requirements of 

the user, application, and execution environment. This deliberately wide-ranging 

interpretation of context is supported by the Chisel adaptation framework by allowing the 

state and operation of any application software to be monitored, by allowing the user to 

interact with the adaptation process using the Chisel policy language, and by the use of the 

Chisel event model to dynamically specify and capture interesting changes in context 

values. In this way the Chisel framework can support the dynamic application of adaptations 

where what the adaptation does, where it is applied, how its application is controlled, and 

when the adaptation is applied, can all remain unanticipated until after the target application 

has started execution and until the need for that adaptation has arisen.  

This thesis also describes how the Chisel framework can be used in an effective and 

practical manner to inspect and profile the internal operation of compiled software as it 

executes, thereby allowing the user to probe, extend, and adapt the functional and non-

functional behaviours of that software module, without requiring access to its source code. 

This use of the Chisel framework challenges the black box model of software engineering 

by allowing the inspection and manipulation of third-party software in an open and general 

purpose manner. Such inspection and manipulation allows the combination, reuse, and 

tailoring of diverse software modules in ways unforeseen by their original designers.  

This thesis also provides an in-depth discussion about the benefits and limitations of the use 

of runtime behavioural reflection to implement dynamic metatype association to perform 

dynamic adaptation. This thesis demonstrates how the dynamic association of metatypes is 

employed in the Chisel framework as a dynamic adaptation mechanism, to change either the 

functional or the non-functional behaviours of arbitrary application objects and classes.  

6.3 Further work 

This section described a number of related research topics and a number of open research 

topics that have not been fully researched as part of the Chisel project.  



  

185 

6.3.1 The stability and security of adapted software 

As stated in Chapter 1, how arbitrarily interfering with or adapting the operation of running 

software affects the stability of that software has not been discussed in this thesis. 

Unanticipated dynamic adaptation usually refers to changing some part of the software that 

was not intended to be changeable. While this change may not adversely affect the operation 

of the adapted software, great care must be taken to ensure that the unintended effects of the 

change are minimised.  

Since software is generally written in a manner that does not take into account the ability to 

perform dynamic inspection and adaptation after the software is released, many software 

modules hide and obscure sensitive data and operations inside the compiled application. 

However, with the ability to inspect, profile, and adapt, even private operations and 

behaviours, these sensitive data and operations can be exposed, intercepted, and changed.  

The Chisel dynamic adaptation framework is designed and built as an enabling technology, 

but it can also be used to disable or damage its target. This thesis places responsibility to use 

the technology carefully onto the user, rather than restrict its operation.  

6.3.2 Tool support 

Further work is required to support a more user-friendly method to allow the user to 

dynamically create adaptation code, and the policy rules that control the application of those 

adaptations. For even proficient programmers, meta-level programming is acknowledged to 

be a difficult task. While reflective frameworks, such as those discussed in Chapter 2, have 

made this task easier by presenting more high-level support for reflective programming, 

further work is required before meta-level programming will be generally accepted. For 

example, some form of graphical viewer could show which metatypes are associated with 

base-level classes and objects at any given time, possibly incorporating tool support for 

metatype association and disassociation. While the Chisel language is designed to be lean 

and as easy to use as possible, tool support to assist in the creation and validation of policy 

rules would be beneficial.  

6.3.3 Metatype conflicts 

Although the problems associated with the combination of possibly conflicting metatypes 

has been discussed in [64], the metatype model can be difficult to use if multiple metatypes 

are to be used at the same time. This is particularly true where objects, classes, and 



  

186 

superclasses may all have different and possibly conflicting metatypes associated with them. 

Ideally, a metatype should be written in a manner independent of any other metatype that it 

may be composed with, and preferably independent of what type of object or class it may be 

associated with. However, in practice, where metatypes are written to perform adaptation of 

functional behaviours, or application-specific adaptation of non-functional behaviour, this 

separation of concerns will break down to some extent.  

Currently in Iguana/J, there is no mechanism to implement advanced metatypes composition 

strategies since this is performed automatically by the Iguana/J runtime component. Future 

versions should address this issue. 

6.3.4 Iguana 

As discussed throughout this thesis, several versions of the Iguana reflective programming 

model have been implemented for different languages and using different techniques. The 

aim of the Iguana reflective model is to provide language independent support for runtime 

reflection. Ongoing work is investigating a possible design and implementation of the 

Iguana reflective programming model for the MicrosoftP

®
P language-independent .NET 

platform [101]. Such work could be used to evaluate how the Chisel dynamic adaptation 

framework could be extended for use by other languages using different programming 

methodologies and paradigms, thereby further demonstrating the general-purpose nature of 

the Chisel framework. 

6.3.5 Policy conflicts 

This thesis has not discussed the possibility of policy rule conflicts. This is an active 

research area, but was seen to be outside the scope of this research. With the Chisel 

framework, it is the responsibility of the user to ensure that policy conflicts do not occur. 

This is minimised to some extent by enforcing a rule ordering mechanism in an attempt to 

reduce the possibility of circular rule references, but this mechanism is by no means 

sufficient to prevent conflicts in a generalised manner. 

6.3.6 Other adaptation mechanisms 

As discussed in section 4.4 in Chapter 4, all use of the metatype model and Iguana/J is 

encapsulated in the Chisel behaviour manager. Much of the functionality of the behaviour 

manager is provided directly by the Iguana/J framework, and so the behaviour manager 

contains only the necessary operations to leverage the Iguana/J dynamic metatype 



  

187 

association mechanism. This behaviour manager can be easily replaced to exploit a different 

dynamic adaptation mechanism. Any mechanism that supports the dynamic application of a 

named adaptation to a named target class or object could be supported. Since this thesis is 

primarily focused on the use of the metatype model, this aspect of the Chisel framework has 

not been discussed. Of particular interest would be the use of a structural reflection 

adaptation framework to add to the introspection capabilities of the framework, since the 

metatype model does not support the inspection or adaptation of prewritten application code 

blocks, only the behavioural invocation, interaction, and redirection of these blocks is 

supported. Such work would assist in determining how the Chisel framework would further 

generalise across different domains, language, programming models, and usage patterns. 

6.3.7 Use in a distributed environment  

The current design and implementation of the Chisel framework is specifically for use on 

one computer and within a single execution context. Further research is required to 

determine how Chisel would generalise across a distributed environment. This opens a 

number of research questions. How can the metatype model be used across a distributed 

environment, and how could it be used to address end to end concerns? Would a more 

complex distributed event service be beneficial, or sufficient, for use in such an 

environment? How would the locality of rule effects be addressed, and in particular, how 

would security and stability of such a mechanism be enforced where remote users could 

adapt the operation of a local application? How would such system scale across a large 

number of nodes? Indeed, would the Chisel framework be useful or feasible in such an 

environment?  

6.4 Conclusions 

This thesis presents the concept of "completely unanticipated dynamic adaptation". The 

thesis first defines a completely unanticipated dynamic adaptation as an individual software 

adaptation that can be dynamically applied even though what the adaptation does, where it 

is applied, when it is applied, the specification of the controlling logic to manage its 

application, can all remain unanticipated and unprepared until after the application to be 

adapted has started executing. This thesis also discusses the requirements that must be met 

to in order to support completely unanticipated dynamic adaptations, and then presents a 

design and prototype implementation of a system that meets these requirements: the Chisel 

dynamic adaptation framework. The Chisel framework is presented in terms of how it 



  

188 

supports the managed applications of general-purpose behavioural adaptations to arbitrary 

compiled software, in a context-aware but completely unanticipated manner, all without 

requiring access to the source code of the application. 

This thesis also discusses the metatype model, but particularly dynamic metatype 

association, and evaluates its benefits and limitations as a mechanism to perform dynamic 

software inspection and adaptation.  

This thesis also challenges the black-box model of software engineering, by enabling 

dynamic inspection and profiling of third-party software without requiring access to its 

source code. Once the internal roles and operations of the constituent part of the software 

have been exposed, they can then be dynamically adapted and extended. 



  

189 

References 
[1] Aiken, R., M. Carey, B. Carpenter, I. Foster, C. Lynch, J. Mambreti, R. Moore, J. 

Strasnner, and B. Teitelbaum. (2000) [online]. Network Policy and Services: A 
Report of a Workshop on Middleware. (RFC 2768) 
(http://www.ietf.org/rfc/rfc2768.txt). 9 September 2004 [date accessed] 

[2] Andersen, A. "OOPP, A Reflective Middleware Platform including Quality of 
Service Management", Dr. Scient. Thesis, in Department of Computer Science, 
University of Tromsø: Tromsø, Norway. 2002. 

[3] AspectWerkz Project. (2004) [online]. AspectWerkz Homepage: 
http://aspectwerkz.codehaus.org/. 14 April 2005 [date accessed] 

[4] BBN Technologies. (2002) [online]. Quality Objects (QuO) website 
(http://quo.bbn.com). 27 August 2004 [date accessed] 

[5] Berbers, Y., "Handling adaptive behavior in real-time systems", in Technologies for 
the Information Society: Developments and Opportunities, J. Roger, B. Stanford-
Smith, and P.T. Kidd, Editors. IOS Press: Amsterdam. 1998. 

[6] Berry, G., "The Foundations of Esterel", in Proof, Language and Interaction: 
Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Editors. 
MIT Press: Cambridge, MA, USA. 2000. 

[7] Biegel, G., V. Cahill, and M. Haahr. "A Dynamic Proxy-Based Architecture to 
Support Distributed Java Objects in Mobile Environments". in Proceedings of the 
International Symposium of Distributed Objects and Applications, (DOA 2002), 
(LNCS 2519). 2002. Irvine, CA. Springer Verlag. 

[8] Bisbal, J., D. Lawless, B. Wu, and J. Grimson, "Legacy Information Systems: Issues 
and Directions", in IEEE Software, 1999. 16(5). 

[9] Blair, G.S., A. Andersen, L. Blair, G. Coulson, and D. Sánchez, "Supporting 
Dynamic QoS Management Functions in a Reflective Middleware Platform", in IEE 
Proceedings - Software, 2000. 147(01). 



  

190 

[10] Blair, G.S., L. Blair, V. Issarny, P. Tuma, and A. Zarras. "The Role of Software 
Architecture in Constraining Adaptation in Component-Based Middleware 
Platforms". in Proceedings of the IFIP/ACM International Conference on 
Distributed Systems Platforms (Middleware 2000) (LNCS 1795). 2000. New York, 
NY, USA. Springer-Verlag. 

[11] Blair, G.S., F.M. Costa, G. Coulson, H.A. Duran, N. Parlavantzas, F. Delpiano, B. 
Dumant, F. Horn, and J.-B. Stefani. "The Design of a Resource-Aware Reflective 
Middleware Architecture". in Proceedings of the Second International Conference 
on Meta-Level Architectures and Reflection (Refelection 1999), (LNCS 1616). 1999. 
St. Malo, France. Springer-Verlag. 

[12] Blair, G.S., G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran, N. 
Parlavantzas, and K. Saikoski. "A principled approach to supporting adaptation in 
distributed mobile environments". in Proceedings of the International Symposium 
on Software Engineering for Parallel and Distributed Systems (PDSE 2000). 2000. 
Limerick, Ireland 

[13] Blair, G.S., G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-
Limon, T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski, 
"The Design and Implementation of Open ORB v2", in IEEE Distributed Systems 
Online, 2001. 2(6). 

[14] Blair, G.S., G. Coulson, P. Robin, and M. Papathomas. "An Architecture for Next 
Generation Middleware". in Proceedings of the IFIP International Conference on 
Distributed Systems Platforms and Open Distributed Processing (Middleware'98). 
1998. Lake District, UK. Springer-Verlag. 

[15] Bonér, J., "AspectWerkz - dynamic AOP for Java. 
(http://www.codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf)". 2003. 

[16] Booch, G., Object-Oriented Design With Applications. 2 ed. Benjamin/Cummings: 
Redwood City, California. 1993. 

[17] Bouraqadi-Saâdani, N., T. Ledoux, and M. Südholt, "A Reflective Infrastructure for 
Coarse-Grained Strong Mobility and its Tool-Based Implementation (Technical 
Report 01-7-INFO)". École des Mines de Nantes: Nantes, France. 2001. 

[18] Buckley, J., T. Mens, M. Zenger, A. Rashid, and G. Kniesel., "Towards a 
Taxonomy of Software Change", in Journal of Software Maintenance and 
Evolution: Research and Practice (Special Issue on USE). To Appear, 2005. 17(5). 

[19] Cahill, V., "The Iguana Reflective Programming Model (Report: C1-98)". DSG, 
Department of Computer Science, Trinity College Dublin. 1998. 

[20] Capra, L. "Reflective Mobile Middleware for Context-Aware Applications", PhD 
Thesis, in Department of Computer Science, University College London, University 
of London. 2003. 

[21] Capra, L., G. Blair, C. Mascolo, W. Emmerich, and P. Grace, "Exploiting 
Reflection in Mobile Computing Middleware", in ACM SIGMOBILE Mobile 
Computing and Communications Review., 2002. 6(4). 



  

191 

[22] Capra, L., W. Emmerich, and C. Mascolo, "A Micro-Economic Approach to 
Conflict Resolution in Mobile Computing (UCL Research Note RN/38/01)". 
University College London: London. 2001. 

[23] Capra, L., W. Emmerich, and C. Mascolo. "Reflective Middleware Solutions for 
Context-Aware Applications". in Proceedings of The Third International 
Conference on Metalevel Architectures and Separation of Crosscutting Concerns 
(REFLECTION 2001) (LNCS 2192 ). 2001. Kyoto, Japan. Springer-Verlag. 

[24] Chiba, S. "Load-time Structural Reflection in Java". in Proceedings of the 14th 
European Conference on Object-Oriented Programming (ECOOP 2000) (LNCS 
1850). 2000. Sophia Antipolis and Cannes, France. Springer-Verlag. 

[25] Chiba, S. (2003) [online]. OpenC++ Home Page 
(http://www.csg.is.titech.ac.jp/~chiba/openc++.html). 14 April 2004 [date accessed] 

[26] Chiba, S. and M. Nishizawa. "An Easy-to-Use Toolkit for Efficient Java Bytecode 
Translators". in Proceedings of the 2nd International Conference on Generative 
Programming and Component Engineering (GPCE '03) (LNCS 2830). 2003. Erfurt, 
Germany. Springer-Verlag. 

[27] Chikofsky, E.J. and J.H. Cross, "Reverse Engineering and Design Recovery: A 
Taxonomy", in IEEE Software, 1990. 7(1). 

[28] Coulson, G., G.S. Blair, M. Clarke, and N. Parlavantzas, "The design of a 
configurable and reconfigurable middleware platform", in ACM Distributed 
Computing Journal, 2002. 15(2). 

[29] Cunningham, R. "Architecture for Location Independent CORBA Environments", 
MSc dissertation, in Department of Computer Science, University of Dublin, Trinity 
College.: Dublin. 1998. 

[30] Czarnecki, K. and U.W. Eisenecker, "Aspect Oriented Programming", in 
Generative programming: methods, tools, and applications. Addison-Wesley. 2000. 

[31] Czarnecki, K. and U.W. Eisenecker, Generative programming: methods, tools, and 
applications. Addison-Wesley. 2000. 

[32] Dahm, M., "Byte Code Engineering with the BCEL API (Technical Report B-17-
98)". Institut fur Informatik, Freie Universitat Berlin: Berlin. 2001. 

[33] Damianou, N. " A Policy Framework for Management of Distributed Systems", 
PhD Thesis, in Department of Computing, Imperial College, University of London: 
London. 2002. 

[34] Damianou, N., N. Dulay, E. Lupu, and M. Sloman, "The Ponder Language 
Specification (Report DoC 2000/1)". Imperial College: London. 2000. 

[35] Damianou, N., N. Dulay, E. Lupu, and M. Sloman. "The Ponder Specification 
Language". in Workshop on Policies for Distributed Systems and Networks (Policy 
2001). 2001. HP Labs, Bristol 



  

192 

[36] David, P.-C. "Une infrastructure pour middleware adaptable", Rapport de DEA 
(Equivalent to MSc), in Institut de Recherche en Informatique de Nantes, Faculté 
des Sciences & Techniques de Nantes, École des Mines de Nantes & Université de 
Nantes. 2001. 

[37] David, P.-C. and T. Ledoux. "Dynamic Adaptation of Non-Functional Concerns". in 
Proceedings of First International Workshop on Unanticipated Software Evolution, 
at ECOOP 2002. 2002. Malaga, Spain 

[38] David, P.-C. and T. Ledoux. "An Infrastructure for Adaptable Middleware". in 
Proceeding of the 2002 International Symposium on Distributed Objects and 
Applications (DOA 2002) (LNCS 2519). 2002. Irvine, California, USA. Springer-
Verlag. 

[39] David, P.-C. and T. Ledoux. "Towards a Framework for Self-Adaptive Component-
Based Applications". in Proceedings of Distributed Applications and Interoperable 
Systems 2003, the 4th IFIP WG6.1 International Conference, (DAIS 2003) (LNCS 
2893). 2003. Paris, France. Springer-Verlag. 

[40] David, P.-C., T. Ledoux, and N.M. Bouraqadi-Saâdani. "Two-step Weaving with 
Reflection using AspectJ". in Proceedings of the Workshop on Advanced Separation 
of Concerns in Object-Oriented Systems, at OOPSLA 2001. 2001. Tampa Bay, USA 

[41] Dias, M. and D. Richardson, "Issues on Software Monitoring". Department of 
Information and Computer Science, University of California, Irvine, CA. 2002. 

[42] Dmitriev, M. "Safe Class and Data Evolution in Large and Long-Lived Java 
Applications", PhD Thesis, in Department of Computing Science, University of 
Glasgow: Glasgow, Scotland. 2001. 

[43] Dmitriev, M. "Towards Flexible and Safe Technology for Runtime Evolution of 
Java Language Applications". in Proceedings of the Workshop on Engineering 
Complex Object-Oriented Systems for Evolution (ECOOSE 2001), in association 
with OOPSLA 2001 International Conference. 2001. Tampa Bay, Florida, USA, 

[44] Dowling, J. and V. Cahill. "Dynamic Software Evolution and the K-Component 
Model". in Workshop on Software Evolution, at OOPSLA 2001. 2001. Tampa Bay, 
Florida, USA 

[45] Dowling, J. and V. Cahill. "The K-Component Architecture Meta-Model for Self-
Adaptive Software". in Proceedings of The Third International Conference on 
Metalevel Architectures and Separation of Crosscutting Concerns (Reflection 
2001), (LNCS 2192). 2001. Kyoto, Japan 

[46] Dowling, J., T. Schaefer, V. Cahill, P. Haraszti, and B. Redmond. "Using Reflection 
to Support Dynamic Adaptation of System Software: A Case Study Driven 
Evaluation". in Workshop on Object-Oriented Reflection and Software Engineering 
at OOPSLA '99. 1999. Denver, Colorado, USA 

[47] Dulay, N., E. Lupu, M. Sloman, and N. Damianou. "A Policy Deployment Model 
for the Ponder Language". in IEEE/IFIP International Symposium on Integrated 
Network Management (IM’2001). 2001. Seattle 



  

193 

[48] Duran-Limon, H.A. "A Resource Management Framework for Reflective 
Multimedia Middleware", Ph.D. Thesis, in Computing Department, University of 
Lancaster. 2001. 

[49] Efstratiou, C., A. Friday, N. Davies, and K. Cheverst. "Utilising the Event Calculus 
for Policy Driven Adaptation on Mobile Systems". in Proceedings of the 3rd IEEE 
International Workshop on Policies for Distributed Systems and Networks (Policy 
2002). 2002. Monterey, CA, USA 

[50] Elrad, T., R.E. Filman, and A. Bader, "Aspect-oriented programming: Introduction", 
in Communications of the ACM, 2001. 44(10). 

[51] Fekete, J.-D. and M. Richard, "Esterel Meets Java: Building Reactive Synchronous 
Programs in Java, (http://www.lri.fr/~fekete/ps/EmeetsJ.pdf)". École des Mines de 
Nantes: Nantes, France. 1998. 

[52] Ferber, J. "Computational reflection in class based object-oriented languages". in 
Proceedings of the Conference on Object Oriented Programming Systems 
Languages and Applications (OOPSLA 1989). 1989. New Orleans, Louisiana, 
United States. ACM Press. 

[53] Filman, R. and D. Friedman. "Aspect-Oriented Programming is Quantification and 
Obliviousness". in Workshop on Advanced Separation of Concerns, OOPSLA 2000. 
2000. Minneapolis 

[54] Forman, G.H. and J. Zahorjan, "The Challenges of Mobile Computing". University 
of Washington. 1994. 

[55] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison Wesley. 1994. 

[56] Golm, M. "Design and Implementation of a Meta Architecture for Java (revised 
version)", Masters Thesis, in Department of Computer Sciences, University of 
Erlangen. 1997. 

[57] Golm, M. and J. Kleinöder. "MetaXa and the Future of Reflection". in Workshop on 
Reflective Programming in C++ and Java (OOPSLA'98). 1998. Vancouver, British 
Columbia, Canada 

[58] Gowing, B. "A Reflective Programming Model and Language for Dynamically 
Modifying Compiled Software", Ph.D. Thesis, in Department of Computer Science, 
Trinity College Dublin: Dublin. 1997. 

[59] Gowing, B. and V. Cahill. "Meta-Object Protocols for C++: The Iguana Approach". 
in Proceedings of Reflection '96. 1996. San Francisco 

[60] Grace, P., G.S. Blair, and S. Samuel. "ReMMoC: A Reflective Middleware to 
Support Mobile Client Interoperability". in Proceedings of International Symposium 
on Distributed Objects and Applications (DOA 2003), (LNCS 2888). 2003. Catania, 
Sicily, Italy. Springer-Verlag. 



  

194 

[61] Haahr, M. "Supporting Mobile Computing in Object-Oriented Middleware 
Architectures", Ph.D. Thesis, in Department of Computer Science, Trinity College 
Dublin: Dublin. 2003. 

[62] Haahr, M., R. Cunningham, and V. Cahill. "Supporting CORBA Applications in a 
Mobile Environment." in Proceedings of the 5th International Conference on 
Mobile Computing and Networking (MobiCom '99). 1999. Seattle 

[63] Haahr, M., R. Cunningham, and V. Cahill. "Towards a Generic Architecture for 
Mobile Object-Oriented Applications". in Workshop on Service Portability (SerP 
2000). 2000. San Francisco 

[64] Haraszti, P. "Towards Automatic and Dynamic Meta-Object Protocol Composition 
in a Compiled, Reflective Programming Language", Ph.D. Thesis, in Department of 
Computer Science, Trinity College Dublin: Dublin. 2003. 

[65] Hilsdale, E. and J. Hugunin. "Advice weaving in AspectJ". in Proceedings of the 
3nd International Conference on Aspect-Oriented Software Development (AOSD 
2004). 2004. Lancaster, UK. ACM Press. 

[66] IBM Research. (2004) [online]. Jikes RVM (Research Virtual Machine) 
(http://www.research.ibm.com/jikes/). 14 April 2005 [date accessed] 

[67] Indulska, J., S.W. Loke, A. Rakotonirainy, and A. Zaslavsky. "Adaptive Enterprise 
Architecture for Mobile Computation". in Workshop on Reflective Middleware, at 
Middleware 2000. 2000 

[68] Indulska, J., S.W. Loke, A. Rakotonirainy, and A. Zaslavsky. "An Open 
Architecture for Pervasive Computing". in Proceedings of IFIP International 
Working Conference on Distributed Applications and Interoperable Systems (DAIS 
01). 2001. Krakow. Kluwer. 

[69] Iona Technologies. (2004) [online]. Orbacus website (www.orbacus.com). 27 
August 2004 [date accessed] 

[70] Itoh, J., R. Lea, and Y. Yokote. "Using meta-objects to support optimization in the 
Apertos operating system". in Proceedings of USENIX Conference on Object 
Oriented Technologies (COOTS 1995). 1995 

[71] Jarir, Z., P.-C. David, and T. Ledoux. "Dynamic Adaptability of Services in 
Enterprise JavaBeans Architecture". in The 7th International Workshop on 
Component-Oriented Programming (WCOP 2002) at ECOOP 2002,. 2002. Malaga, 
Spain 

[72] Jing, J., A.S. Helal, and A. Elmagarmid, "Client-server computing in mobile 
environments", in ACM Computing Surveys, 1999. 31(2). 

[73] Joosen, W., F. Matthijs, J.V. Oeyen, B. Robben, S. Bijnens, and P. Verbaeten, 
"CORRELATE: High-level Support for Travelling Agents” (Technical Report 
CW236). Dept. of Computer Science, Katholieke Universiteit Leuven: Leuven. 
1996. 



  

195 

[74] Jørgensen, B.N., E. Truyen, F. Matthijs, and W. Joosen. "Customization of Object 
Request Brokers by Application Specific Policies". in Proceedings of Middleware 
2000 (LNCS 1795). 2000. New York, USA. Springer Verlag. 

[75] Joseph, A.D., J.A. Tauber, and M.F. Kaashoek, "Mobile Computing with the Rover 
Toolkit", in IEEE Transactions on Computers, 1997. 46(3). 

[76] Joy, B., G. Steele, J. Gosling, and G. Bracha, Java Language Specification. 2 ed. 
Addison-Wesley. 2000. 

[77] Jugel, M.L. and M. Meißner. (2003) [online]. The Java Telnet Application/Applet 
v.2.5 (http://javatelnet.org). 14 April 2005 [date accessed] 

[78] Kagal, L., "Rei: A Policy Language for the Me-Centric Project” (Technical report: 
HPL-2002-270). HP Labs. 2002. 

[79] Kagal, L., T. Finin, and A. Joshi. "A Policy Language for a Pervasive Computing 
Environment". in Proceedings of The Fourth IEEE International Workshop on 
Policies for Distributed Systems and Networks (POLICY 2003). 2003. Lake Como, 
Italy. IEEE Computer Society. 

[80] Kasten, E.P. and P.K. McKinley, "Adaptive Java: Refractive and Transmutative 
Support for Adaptive Software.” (Technical Report MSU-CSE-01-30). Department 
of Computer Science and Engineering, Michigan State University: East Lansing, 
Michigan, USA. 2001. 

[81] Keller, R. and U. Holzle, "Binary Component Adaptation” (TRCS97-20). 
University of California at Santa Barbara: Santa Barbara, CA, USA. 1997. 

[82] Kiczales, G., "Beyond the Black Box: Open Implementation", in IEEE Software, 
1996. 13(1). 

[83] Kiczales, G., J. des Rivieres, and D. Bobrow, The Art of the Metaobject Protocol. 
MIT Press. 1991. 

[84] Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and 
J. Irwin. "Aspect-Oriented Programming". in Proceedings of the 11th European 
Conference on Object-Oriented Programming (ECOOP '97) (LNCS 1241). 1997. 
Jyväskylä, Finland. Springer-Verlag. 

[85] Kniesel, G., P. Costanza, and M. Austermann. "JMangler - A Framework for Load-
Time Transformation of Java Class Files". in IEEE Workshop on Source Code 
Analysis and Manipulation (SCAM 2001). 2001. Florence, Italy. IEEE Computer 
Society Press. 

[86] Kniesel, G., P. Costanza, and M. Austermann, "JMangler - A Powerful Back-End 
for Aspect-Oriented Programming." in Aspect-oriented Software Development (To 
appear), R. Filman, et al., Editors. Prentice Hall. 2004. 

[87] Kniesel, G., J. Noppen, T. Mens, and J. Buckley. "Unanticipated Software 
Evolution". in ECOOP 2002 Workshop Reader (LNCS 2548). 2002. Malaga, Spain. 
Springer-Verlag. 



  

196 

[88] Kojo, M., K. Raatikainen, and T. Alanko, "Connecting Mobile Workstations to the 
Internet over a Digital Cellular Telephone Network", in MOBILE COMPUTING, T. 
Imielinski and H.F. Korth, Editors. Kluwer Academic Publishers. 1996. 

[89] Kojo, M., K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko, "An Efficient 
Transport Service for Slow Wireless Telephone Links", in IEEE Journal on 
Selected Areas in Communications, 1997. 15(7). 

[90] Kon, F. "Automatic Configuration of Component-Based Distributed Systems", PhD 
Thesis, in Department of Computer Science, University of Illinois at Urbana-
Champaign. 2000. 

[91] Kon, F., R. Campbell, M.D. Mickunas, K. Nahrstedt, and F.J. Ballesteros. "2K: A 
Distributed Operating System for Dynamic Heterogeneous Environments". in 
Proceedings of 9th IEEE International Symposium on High Performance 
Distributed Computing. 2001. Pittsburgh 

[92] Kon, F., B. Gill, R.H. Campbell, and M.D. Mickunas. "Secure Dynamic 
Reconfiguration of Scalable CORBA Systems with Mobile Agents". in Proceedings 
of the IEEE Joint Symposium on Agent Systems and Applications / Mobile Agents 
(ASA/MA'2000). 2000. Zurich 

[93] Kon, F., J.R. Marques, T. Yamane, R.H. Campbell, and M.D. Mickunas, "Design, 
Implementation, and Performance of an Automatic Configuration Service for 
Distributed Component Systems", in Software: Practice and Experience. To 
Appear, 2005. 35(7). 

[94] Lafferty, D. and V. Cahill. "Language-independent aspect-oriented programming". 
in Proceedings of the 18th ACM SIGPLAN conference on Object-oriented 
programing, systems, languages, and applications (OOPSLA 2003). 2003. 
Anaheim, California, USA. ACM Press. 

[95] Maes, P. "Computational Reflection (Tecnical Report VUB AI-Lab TR-87-02)", 
PhD Thesis, in Artificial Intelligence Laboratory, Vrije Universiteit: Brussels, 
Belgium. 1987. 

[96] Maltz, D.A. and Pravin Bhagwat. "MSOCKS: An Architecture for Transport Layer 
Mobility". in Proceedings of the 17th Annual Joint Conference of the IEEE 
Computer and Communications Societies (IEEE INFOCOM '98). 1998 

[97] Mansouri-Samani, M. "Monitoring of Distributed Systems", PhD Thesis, in 
Department of Computing, Imperial College, University of London: London. 1995. 

[98] Marriott, D. "Policy Service for Distributed Systems", PhD Thesis, in Department 
of Computing, Imperial College, University of London: London. 1997. 

[99] Mätzel, K. and P. Schnorf, "Dynamic Component Adaptation.” (Ubilab Technical 
Report 97.6.1). Union Bank of Switzerland: Zurich, Switzerland. 1997. 

[100] Microsoft Corporation. (1999) [online]. COM+ (Uhttp://www.microsoft.com/com) U. 
14 April 2005 [date accessed] 



  

197 

[101] Microsoft Corporation. (2005) [online]..NET Framework SDK 
( Uhttp://msdn.microsoft.com/netframework/)U. 14 April 2005 [date accessed] 

[102] Milojicic, D., F. Douglis, and R. Wheeler, eds. Mobility: Processes, Computers, and 
Agents. 1999. ACM Press Series 

[103] Mockapetris, P. (1987) [online]. Domain Names: Concepts and Facilities (STD 13 / 
RFC 1034) (http://www.ietf.org/rfc/std/std13.txt). 9 September 2004 [date accessed] 

[104] Moffett, J. and M. Sloman, "Policy Hierarchies for Distributed Systems 
Management", in IEEE Journal on Selected Areas in Communications, 1993. 11(9). 

[105] Morisio, M., C.B. Seaman, V.R. Basili, A.T. Parra, S.E. Kraft, and S.E. Condon, 
"COTS-Based Software Development: Processes and Open Issues", in Journal of 
Systems and Software, 2002. 61(3). 

[106] Object Management Group, "Common Object Request Broker Architecture: Core 
Specification (OMG Document formal/02-12-06)". 2002. 

[107] Okoshi, T., M. Mochizuki, Y. Tobe, and H. Tokuda. "MobileSocket: Toward 
Continuous Operation for Java Applications". in Proceedings of the 8th 
International Conference on Computer Communications and Networks. 1999. 
Boston, MA, USA. IEEE Communication Society. 

[108] Okoshi, T., M. Mochizuki, Y. Tobe, and H. Tokuda, "MobileSocket: Session Layer 
Continuous Operation Support for Java Applications", in Transactions of the 
Information Processing Society of Japan (IPSJ), 2000. 41(2). 

[109] Oliva, A. "Guaraná: Uma Arquitetura de Software para Reflexão Computacional 
Implementada em Java", Masters Thesis, in Instituto de Computação, Universidade 
Estadual de Campinas, Brazil. 1998. 

[110] Oliva, A. and L.E. Buzato, "Guaraná: A tutorial.” (Technical Report IC-98-31). 
Instituto de Computação, Universidade Estadual de Campinas, Brazil. 1998. 

[111] Oliva, A. and L.E. Buzato. "The Design and Implementation of Guaraná". in 
Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and 
Systems (COOTS '99). 1999. San Diego, California, USA 

[112] Oreizy, P. "Open Architecture Software: A Flexible Approach to Decentralized 
Software Evolution", Ph.D. Thesis, in Information and Computer Science, 
University of California, Irvine: Irvine. 2000. 

[113] Oreizy, P., M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, 
A. Quilici, D.S. Rosenblum, and A.L. Wolf, "An Architecture-Based Approach to 
Self-Adaptive Software", in IEEE Intelligent Systems, 1999. 14(3). 

[114] Ossher, H. and P. Tarr. "Hyper/J: multi-dimensional separation of concerns for 
Java". in Proceedings of the 22nd International Conference on Software 
Engineering (ICSE 2000). 2000. Limerick, Ireland 



  

198 

[115] Parlavantzas, N., G. Coulson, M. Clarke, and G. Blair. "Towards a Reflective 
Component Based Middleware Architecture". in Workshop on Reflection and 
Metalevel Architectures. 2000. Sophia Antipolis and Cannes, France 

[116] Podgurski, A. and L. Pierce, "Retrieving reusable software by sampling behavior", 
in ACM Transactions on Software Engineering and Methodology, 1993. 2(3). 

[117] Popovici, A., G. Alonso, and T. Gross. "Just-in-time aspects: efficient dynamic 
weaving for Java". in Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD 2003). 2003. Boston, Massachusetts. ACM 
Press. 

[118] Popovici, A., T. Gross, and G. Alonso. "Dynamic weaving for aspect oriented 
programming". in Proceedings of the 1st International Conference on Aspect-
Oriented Software Development (AOSD 2002). 2002. Enschede, The Netherlands. 
ACM Press. 

[119] Prakash:, R., "Education: Mobile Computing." in IEEE Distributed Systems Online, 
2001. 2(6). 

[120] Rakotonirainy, A., J. Indulska, S.W. Loke, and A. Zaslavsky. "Middleware for 
Reactive Components: An Integrated Use of Context, Roles and Event Based 
Coordination". in Proceedings of IFIP/ACM International Conference on 
Distributed Systems Platforms, Middleware 2001, (LNCS Vol. 2218). 2001. 
Heidelberg, Germany. Springer Verlag. 

[121] Raverdy, P.-G., R. Le Van Gong, and R. Lea. "DART: A Reflective Middleware for 
Adaptive Applications". in Proceedings of the Workshop on Reflective 
Programming in C++ and Java, at OOPSLA 1998. 1998. Vancouver, Canada 

[122] Raverdy, P.-G. and R. Lea. "DART: A distributed adaptive run-time". in 
Proceedings of IFIP International Conference on Distributed Systems Platforms 
and Open Distributed Processing (Middleware '98) Work in Progress Session. 
1998. The Lake District, England 

[123] Raverdy, P.-G. and R. Lea. "Reflection support for adaptive distributed 
applications". in Proceedings of the 3rd International Enterprise Distributed Object 
Computing Conference (EDOC '99). 1999. Mannheim, Germany. IEEE. 

[124] Redmond, B. (2003) [online]. Iguana/J Home Page (http://www.iguanaj.org/). 14 
April 2005 [date accessed] 

[125] Redmond, B. "Supporting Unanticipated Dynamic Adaptation of Object-Oriented 
Software", Ph.D. Thesis, in Department of Computer Science, Trinity College 
Dublin: Dublin. 2003. 

[126] Redmond, B. and V. Cahill. "Iguana/J: Towards a Dynamic and Efficient Reflective 
Architecture for Java". in Workshop on Reflection and Meta-Level Architectures at 
14th European Conference on Object Oriented Programming (ECOOP 2000). 
2000. Cannes, France 



  

199 

[127] Redmond, B. and V. Cahill. "Supporting Unanticipated Dynamic Adaptation of 
Application Behaviour". in Proceedings of the 16th European Conference on 
Object-Oriented Programming (ECOOP 2002) (LNCS 2374). 2002. Malaga, Spain. 
Springer-Verlag. 

[128] Robben, B. "Language Technology and Metalevel Architectures for Distributed 
Objects." PhD Thesis, in Department of Computer Science, Katholieke Universiteit 
Leuven: Leuven. 1999. 

[129] Robben, B., W. Joosen, F. Matthijs, B. Vanhaute, and PierreVerbaeten. "A 
Metaobject Protocol for Correlate". in Proceedings of ECOOP Workshop on 
Reflective Object-Oriented Programming and Systems (EWROOPS'98), at ECOOP 
'98 (LNCS 1543). 1998. Brussels, Belgium. Springer Verlag. 

[130] Robben, B., W. Joosen, F. Matthijs, B. Vanhaute, and P. Verbaeten, "Building a 
Meta-level architecture for distributed applications (Technical Report CW 265)". 
Department of Computer Science, Katholieke Universiteit Leuven: Leuven. 1998. 

[131] Robben, B., B. Vanhaute, W. Joosen, and P. Verbaeten. "Non-Functional Policies". 
in Proceedings of the 2nd International Conference on Metalevel Architectures and 
Reflection. 1999. Saint-Malo, France. Springer-Verlag. 

[132] Román, M., F. Kon, and R. Campbell. "Design and Implementation of Runtime 
Reflection in Communication Middleware: the dynamicTAO Case". in Proceedings 
of the Workshop on Middleware at 19th International Conference on Distributed 
Computing Systems (ICDCS'99). 1999. Austin, Texas. IEEE Computer Society. 

[133] Sadjadi, S.M. and P.K. McKinley. "ACT: An adaptive CORBA template to support 
unanticipated adaptation." in Proceedings of the 24th IEEE International 
Conference on Distributed Computing Systems (ICDCS'04). 2004. Tokyo, Japan 

[134] Sadjadi, S.M. and P.K. McKinley. "Transparent self-optimization in existing 
CORBA applications". in Proceedings of the International Conference on 
Autonomic Computing (ICAC'04). 2004. New York, NY, USA 

[135] Sadjadi, S.M., P.K. McKinley, R.E.K. Stirewalt, and B.H.C. Cheng, "TRAP: 
Transparent reflective aspect programming.” (Technical Report MSU-CSE-03-31). 
Computer Science and Engineering, Michigan State University: East Lansing, 
Michigan, USA. 2003. 

[136] Sadjadi, S.M., P.K. McKinley, R.E.K. Stirewalt, and B.H.C. Cheng. "Generation of 
Self-Optimizing Wireless Network Applications". in Proceedings of the 
International Conference on Autonomic Computing (ICAC-04). 2004. New York, 
NY, USA. IEEE Computer Society. 

[137] Sandia National Laboratories. (2003) [online]. Jess, the Rule Engine for the Java 
Platform (http://herzberg.ca.sandia.gov/jess/). 14 April 2005 [date accessed] 

[138] Sato, Y., S. Chiba, and M. Tatsubori. "A Selective, Just-in-Time Aspect Weaver". 
in Proceedings of the 2nd International Conference on Generative Programming 
and Component Engineering, (GPCE 2003), (LNCS 2830). 2003. Erfurt, Germany. 
Springer-Verlag. 



  

200 

[139] Schäfer, T. "Supporting Metatypes in a compiled, reflective programming 
language", PhD thesis, in Department of Computing Science, Trinity College 
Dublin: Dublin. 2001. 

[140] Schmidt, D.C. (2002) [online]. Real-time CORBA with TAO (The ACE ORB) 
(http://www.cs.wustl.edu/~schmidt/TAO.html). 14 April 2005 [date accessed] 

[141] Senra, R. (2001) [online]. Guaraná Development Kit Home Page 
(http://www.ic.unicamp.br/~921234/gdk.html). 20 August 2004 [date accessed] 

[142] Silva, F.J.S., M. Endler, and F. Kon. "Developing Adaptive Distributed 
Applications: a Framework Overview and Experimental Results". in Proceedings of 
the International Symposium on Distributed Objects and Applications (DOA 2003) 
(LNCS 2888). 2003. Catania, Sicily, Italy. Springer Verlag. 

[143] Sloman, M., "Policy Driven Management For Distributed Systems", in Journal of 
Network and Systems Management, 1994. 2(4). 

[144] Smith, B.C. "Reflection and Semantics in a Procedural Language (Technical Report 
MIT-LCS-TR-272)", Ph.D. Thesis, in Department of Electrical Engineering and 
Computer Science, MIT: Cambridge, Massachusetts. 1982. 

[145] Sun Microsystems. (2000) [online]. Java Native Interface (JNI) 
(http://java.sun.com/j2se/1.3/docs/guide/jni/index.html). 14 April 2005 [date 
accessed] 

[146] Sun Microsystems. (2001) [online]. Java Platform Debugger Architecture 
Enhancements 
(http://java.sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.html#hotswap). 28 
August 2004 [date accessed] 

[147] Sun Microsystems. (2001) [online]. Java Platform Debugger Architecture: Java 
Virtual Machine Debug Interface Reference 
(http://java.sun.com/products/jpda/doc/jvmdi-spec.html). 28 August 2004 [date 
accessed] 

[148] Sun Microsystems. (2002) [online]. Java 2 Platform, Standard Edition (J2SE) 
(http://java.sun.com/j2se/). 14 April 2005 [date accessed] 

[149] Sun Microsystems. (2002) [online]. Java Naming and Directory Interface 
(http://java.sun.com/products/jndi/). 28 August 2004 [date accessed] 

[150] Sun Microsystems. (2002) [online]. Java Remote Method Invocation Specification 
(http://java.sun.com/products/jdk/rmi/). 14 April 2005 [date accessed] 

[151] Sun Microsystems. (2003) [online]. HotSwap Client Tool: 
(http://developers.sun.com/dev/coolstuff/hotswap). 28 August 2004 [date accessed] 

[152] Tatsubori, M., S. Chiba, M.-O. Killijian, and K. Itano. "OpenJava: A Class-Based 
Macro System for Java". in Proceedings of the 1st OOPSLA Workshop on 
Reflection and Software Engineering (OORaSE 1999) (LNCS 1826). 2000. Denver, 
CO, USA. Springer-Verlag. 



  

201 

[153] Truyen, E., B. Vanhaute, and W. Joosen. "Integrating flexible middleware solutions 
with applications through non-functional policies". in Proceedings of OOPSLA 
Workshop on Reflection and Software Engineering (OORaSE '99). 1999. Denver, 
USA 

[154] Vanhaute, B., E. Truyen, W. Joosen, and P. Verbaeten. "Composing non-orthogonal 
meta-programs". in Proceedings of the 1st Workshop on Multi-Dimensional 
Separation of Concerns in Object-Oriented Systems (at OOPSLA '99). 1999 

[155] Vasseur, A. "Java Dynamic AOP and Runtime Weaving - How does AspectWerkz 
address it?" in Dynamic Aspects Workshop (DAW04). 2004. Lancaster, UK. 

[156] Wall, T. "Mobility and Java RMI", M.Sc. Thesis, in Department of Computing 
Science, Trinity College Dublin: Dublin. 2000. 

[157] Wall, T. and V. Cahill. "Mobile RMI: Supporting Remote Access to Java Server 
Objects on Mobile Hosts". in Proceedings of the 3rd International Symposium on 
Distributed Objects and Applications (DOA'01). 2001. Rome, Italy. IEEE Computer 
Society. 

[158] Welch, I. and R.J. Stroud, "Dalang - A Reflective Extension for Java. (CS-TR: 
672)". Department of Computing Science, University of Newcastle. 2000. 

[159] Welch, I.S. and R.J. Stroud. "Kava - A Reflective Java Based on Bytecode 
Rewriting,". in Proceedings of the 1st OOPSLA Workshop on Reflection and 
Software Engineering (OORaSE 1999), (LNCS 1826). 1999. Denver, CO, USA. 
Springer-Verlag. 

[160] Welch, I.S. and R.J. Stroud. "Using Reflection as a Mechanism for Enforcing 
Security Policies in Mobile Code". in Proceedings of the 6th European Symposium 
on Research in Computer Security (ESORICS 2000), (LNCS 1895). 2000. Toulouse, 
France. Springer-Verlag. 

[161] Welch, I.S. and R.J. Stroud. "Kava - Using Bytecode Rewriting to add Behavioural 
Reflection to Java,". in Proceedings of the 6th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS 2001). 2001. San Antonio, Texas, 
USA. USENIX Association. 

[162] Xerox PARC. (2004) [online]. The AspectJ Project (http://aspectj.org). 17 August 
2004 [date accessed] 

[163] Yeong, W., T. Howes, and S. Kille. (1995) [online]. Lightweight Directory Access 
Protocol (RFC 1777) (http://www.ietf.org/rfc/rfc1777.txt). 9 September 2004 [date 
accessed] 

[164] Yokote, Y. "The Apertos reflective operating system: The concept and its 
implementation". in Proceedings of the Conference on Object-Oriented 
Programming Systems, Languages, and Applications (OOPSLA 1992). 1992. ACM 
Press. 

[165] Yokote, Y. "Kernel Structuring for Object-Oriented Operating Systems: The 
Apertos Approach". in Proceedings of the JSSST International Symposium on 
Object Technologies for Advanced Software (ISOTAS). 1993 



 
"Well, let's away, and say how much is done." 

William Shakespeare (1564 - 1616), Macbeth (III, iii), ~1605 

 


	Completely Unanticipated Dynamic Adaptation of Software
	Declaration
	Permission to Lend and/or Copy
	Acknowledgments
	Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1�INTRODUCTION
	1.1 Aims and objectives
	1.2 Completely unanticipated dynamic software adaptation
	1.2.1 Software adaptation and evolution
	1.2.2 Anticipation of the adaptation's attributes
	Adaptation anticipated at design and production stage
	Adaptation anticipated at compile-time
	Adaptation anticipated at the start of runtime
	Adaptation anticipated at load-time
	Adaptation anticipation during execution
	Summary of anticipation of an adaptation's characteristics

	1.2.3 Completely unanticipated dynamic adaptation
	But completely unanticipated dynamic adaptation must itself 


	1.3 Motivation
	1.4 Dynamic adaptation using metatypes
	1.4.1 What is a metatype

	1.5 Policy-based management of adaptations
	1.6 The Chisel adaptation framework
	1.7 General-purpose dynamic adaptation support
	1.8 Contributions
	1.9 Orthogonal research topic
	1.10 Thesis roadmap

	Chapter 2�RELATED WORK ON�ADAPTABLE SYSTEMS
	2.1 Adaptation using reflective techniques
	2.1.1 Iguana
	Metatypes and Iguana
	Iguana/J
	How metatypes and Iguana influence this research

	2.1.2 Java HotSwap
	2.1.3 Javassist
	2.1.4 DART
	2.1.5 Kava
	2.1.6 Guaraná
	2.1.7 MetaXa
	2.1.8 K-Components

	2.2 Adaptation using AOP techniques
	2.2.1 AspectJ
	2.2.2 JMangler
	2.2.3 AspectWerkz
	2.2.4 PROSE
	2.2.5 Wool
	2.2.6 TRAP/J

	2.3 Adaptable middleware
	2.3.1 DynamicTAO / 2K
	2.3.2 Next Generation Middleware at Lancaster
	2.3.3 ACT

	2.4 Policy or interpreted script driven adaptation
	2.4.1 Ponder
	2.4.2 GEM
	2.4.3 REI
	2.4.4 Correlate
	2.4.5 CARISMA
	2.4.6 RAM
	2.4.7 M3

	2.5 Overview
	2.6 Conclusions

	Chapter 3�THE CHISEL FRAMEWORK,�CONCEPT AND DESIGN
	3.1 Objectives and requirements
	3.1.1 Requirements for completely unanticipated dynamic adap
	Location of an adaptation unanticipated until runtime
	Management and control of an adaptation unanticipated until 
	Timing of the application an adaptation unanticipated until 
	Contents of an adaptation unanticipated until runtime
	Summary of requirements for completely unanticipated dynamic

	3.1.2 The ability to inspect and identify internal parts of 
	3.1.3 Demonstrating metatypes

	3.2 The Chisel adaptation mechanism: dynamic metatype associ
	3.2.1 What are metatypes
	3.2.2 The use of metatypes for behavioural change
	3.2.3 Adaptations using metatypes implemented using Iguana
	3.2.4 Introspection, probing, and profiling using metatypes
	3.2.5 Metatype composition and metatype inheritance
	3.2.6 Alternatives to Iguana and reflection for metatypes
	3.2.7 Why use metatypes in the Chisel framework
	3.2.8 Consequences of the use of metatypes in the Chisel fra
	Consequences of the use of the Java programming language

	3.2.9 Summary of the metatype model for dynamic adaptation

	3.3 The design of the Chisel dynamic adaptation framework
	3.3.1 The Chisel dynamic adaptation manager
	3.3.2 Why event-based adaptation management?
	3.3.3 Why have a policy based management approach?
	3.3.4 How to find the object or class to adapt?
	3.3.5 How is the new behaviour applied?
	3.3.6 Summary of the design and operation of the Chisel dyna

	3.4 The Chisel event model
	3.5 The Chisel context model
	3.6 Policy-based management in Chisel
	3.6.1 Why use the Chisel policy language
	3.6.2 Alternatives to policy-based management of unanticipat
	3.6.3 The Chisel policy language
	Specification of new events
	Specifying rule conditions
	Specification of new reactive rules
	Specification of proactive rules
	Passing parameters to metatypes

	3.6.4 Summary of policy-based management in the Chisel archi

	3.7 How context-aware general-purpose completely unanticipat
	3.7.1 Unanticipated adaptation contents achieved
	3.7.2 Unanticipated adaptation locations achieved
	3.7.3 Unanticipated adaptation control logic achieved
	3.7.4 Unanticipated adaptation timings achieved
	3.7.5 General-purpose dynamic software inspection and adapta
	3.7.6 Context-aware dynamic adaptation achieved

	3.8 Conclusion

	Chapter 4�CHISEL FRAMEWORK IMPLEMENTATION
	4.1 Overview
	4.2 Event manager
	4.3 Rule manager
	4.4 Behaviour manager
	4.5 Service manager
	4.6 Named object store
	4.7 Context manager
	4.8 Policy parser / policy manager
	4.9 Summary of the operation of the Chisel framework
	4.10 The programmatic interface and the policy-based interfa
	4.11 Attaching the adaptation manager
	4.11.1 In the application source code
	4.11.2 As a custom application launcher
	4.11.3 As a statically assigned metatype

	4.12 Summary

	Chapter 5�USING THE CHISEL FRAMEWORK:�CASE STUDIES AND EVALU
	5.1 Evaluation criteria
	5.2 Case Study: The Chisel named object store
	5.2.1 Motivation
	5.2.2 Design
	5.2.3 Implementation
	5.2.4 Alternatives
	5.2.5 Evaluation and discussion
	5.2.6 Wider applicability
	5.2.7 Summary

	5.3 Case Study: Adaptation for mobile computing
	5.3.1 Motivation
	What is mobile computing?
	Middleware for mobile computing
	Difficulties with applications and middleware for mobile com

	5.3.2 ALICE
	5.3.3 Design
	5.3.4 Implementation
	5.3.5 Alternatives
	5.3.6 Further adaptations
	5.3.7 Evaluation and discussion of the metatype model
	5.3.8 Evaluation and wider applicability

	5.4 Performance
	5.5 General discussion
	5.6 Chapter summary

	Chapter 6�CONCLUSIONS
	6.1 Overview of this thesis
	6.2 Contributions of the Chisel Project
	6.3 Further work
	6.3.1 The stability and security of adapted software
	6.3.2 Tool support
	6.3.3 Metatype conflicts
	6.3.4 Iguana
	6.3.5 Policy conflicts
	6.3.6 Other adaptation mechanisms
	6.3.7 Use in a distributed environment

	6.4 Conclusions

	References

