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Abstract - Size effects  in two-phase Boolean 
magnets composed of an aligned hard phase and a 
s o f t  p h a s e  w i t h  h i g h  magnet i za t ion  a r e  
investigated. In 'overcritical' magnets, where the 
size of the soft regions I s  larger than the Bloch- 
wall width 6h of the hard phase, the energy product 
is reduced  compared t o  the corresponding 
'undercritical' magnets with small soft regions, 
where theoretical energy products as high as  1 
M J / m 3  have been predicted. Nevertheless, the 
theoretical energy product only gradually drops 
with increasing size of the soft regions, and it  may 
still exceed the theoretical energy product 516 
kJlm3 of Nd~Fe14B.  

I. I N T R O D U C T I O N  

The energy product (BH),ax, which gives the 
maximum magnetostatic energy available from a magnet, is a 
key figure of merit for permanent magnetic materials. The 
energy product increases with the coercivity but never exceeds 
its theoretical value kMo2/4. The theoretical energy product 
of bcc iron is poMo2/4 = 920 kJ/m3, but in fact pure iron 
exhibits nearly no coercivity so the large theoretical energy 
product is far from being realized in practice. In modem 
permanent magnetic alloys such as Nd2Fel4B [l]  and 
Sm2Fe17N3 [2], the saturation magnetization does not reach 
the high value poMo = 2.15 T of iron but the high uniaxial 
anisotropy makes them useful permanent magnets, At 
present, energy products as high as 405 kJ/m3 are obtained in 
laboratory-scale Nd2Fela magnets [ 11. 

The outlook for discovering new ternary phases with 
significantly higher magnetization than those available at 
present is poor [3], but as it has been shown recently [4], 
exchange coupling in nanostructured aligned two phase 
magnets consisting of alloys available at present yields 
theoretical energy products exceeding that of Nd2Fe14B 
('giant energy product'). The nucleation field, which 
determines the energy-product in nucleation-controlled 
magnets, is calculated from the magnetic free energy integral 
151 - @I 

where A(r) is the exchange stiffness, the Mi(r) with IM(r)l = 
MO denote the components of the local magnetization, and 
Kl(r) the first anisotropy constant. Hi = q i H ,  denotes the 
external magnetic field, ni is the unit vector of the easy-axis 
direction, and the nonlocal kernel Kij(r-r') describes the 
magnetostatic dipole interaction. 
The basic assumptions made in [41 are: 

The size of the soft regions is smaller than or 
comparable to the domain-wall width of the hard phase. This 
leads to an exchange coupling between hard and soft regions 
which is comparable to the well-known remanence 
enhancement in isotropic two-phase magnets (cf. [4] , [91). 

The hard regions are aligned (ni = ezi) so the 
exchange coupling leads to an effective increase in remanence 
magnetization and energy product. 

(iii) The first order anisotropy constant Kh of the 
hard phase is much larger than magnetostatic energy density 
of the soft phase. 

The upper limit of the theoretical energy product is [41 

(i) 

(ii) 

where M, and Mh denote the magnetizations of the soft and 
hard phases, respectively [41, and (MO) = fsMs + fhMh the 
average magnetization of the magnet. For instance, Eq. (2) 
predicts an energy product as high as 1090 H/m3 for the 
system Sm2Fel7/Fe65CO35, with a volume fraction of the 
hard phase fh of only 11 vol.%. 

However, the production of magnets structured on a 
scale smaller than the Bloch-wall width &h of the hard phase 
is a difficult problem, and in practice it might be suitable to 
resort to magnets where the soft regions are larger than til-,. It 
is well known that there is no closed general solution for the 
corresponding micromagnetic problem [5] - [8], and only for a 
few configurations, such as homogeneous ellipsoids, the 
nucleation problem can be solved analytically [7]. Here we 
investigate the effect of exchange-stiffness and anisotropy 
inhomogenities, and random magnetic stray fields to predict 
the behaviour of magnets structured on a overcritical scale. 

11. R E S U L T S  A N D  DISCUSSION 

Random stray fields 

- . f.I lKij(r-r')Mi(r)Mj(~') drdr' (1) From the theoretical point of view, the magnetostatic 
interaction is the most difficult in (1) to deal with. This is 
due to the non-local kemel 

LJ= 
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Fig. 1. Boolean model describing the structure of disordered two- 
phase magnets. The position of the spheres (hard regions) is 
random, but many geometrical properties, such as the typical 

distance x to the next sphere, are given analytically [15]. 

(3) 

which describes the long-range dipole interaction between 
different magnetic regions. A simple but nevertheless non- 
mvial approximation is to replace HZ in (1) by HZ - D(M& 
where D is the macroscopic demagnetization factor of the 
ellipsoid. 

In disordered aligned two-phase magnets (cf. Fig. 1) 
there are random stray fields which are incompatible with the 
assumption of a homogeneous demagnetizing field. These 
stray-field inhomogenities are harmful to coercivity if they 
cover a volume larger than about 6h3. Smaller stray-field 
inhomogenities are ineffective: exchange coupling prevents 
regions smaller than 6h from being switched even if they are 
subject to a strong demagnetizing field. 

The local stray fields are given by 

(4) 

where the integration includes all points inside a sufficiently 
large sphere. Note that the angular integration sin0 do yields 
zero for all contributions spherical around r.  In particular, 
HiL(,) = (HiL(r)) = 0 for Mi@) = (Mi@)), where (...) denotes 
the volume average. 

Situation changes if the variation of HiL(r) is 
considered. To calculate ( [HiL(r)]2 ) = (6H@ + 2 (6H1)2, 
we have to know the correlation function (Mo(r)Mo(r')) 
which will vary from sample to sample. A reasonable, since 
largely uncorrelated, ansatz is 

describing inhomogenities whose size (correlation length) is 
of order VolB. Calculation yields 

For the Sm2Fe17/Fe65Co-j~ system we predict pO6Hli = 
0.07 T. This means that random stray fields in typical 
aligned two-phase magnets hardly exceed a few tenth of a 
Tesla, and a small compensating increase of the volume 
fraction fh of the hard phase will be sufficient to re-establish 
the necessary coercivity. 

Exchange stiffness and Inhomogeneous Anisotropy 

We now neglect random stray fields in (1) and expand 
the free energy with respect to the small transverse 
components m, = Mx/Mo N 1 and my = My/% << 1: 

F = Fo +j[A(r) (Vmi)2 + K l ( r )  mi2 - 

Next we have to calculate the free-energy minimum and to 
look whether the equilibrium is stable or not. To minimize F 
= q dr we use the formula 

(9) 

where 6F/6mi(r) denotes the functional derivative (see e.g. 
[ 101) and obtain the eigenvalue problem 

1 - V[A(r) Vm;] + Kl(r) mi = 5 b M o H ~  mi (10) 

with the nucleation field HN. Note that the two components 
mi are decoupled in demagnetizing-field approximation. 

The VA(r)-contribution in (10) is due the fact that the 
magnetization in magnets with large exchange stiffness tends 
to be more homogeneous than in those with a lower exchange 
stiffness. However, A is of order 10 - l1  J/m in both phases 
so the VA(r)-term, though included in [4], does not change 
the qualitative behaviour of the system. In particular, it does 
not affect the energy product in overcritical two-phase 
magnets. 

The Kl(r) term in (10) describes the effect of a soft 
phase, where Kl(r) = Ks = 0, on the nucleation field HN = - 
HZ. To calculate the nucleation field, we use the similiarity 
between Eq. (10) with VA(r) = 0 and SchrMinger's equation 
for a particle moving in a three-dimensional potentia1 U(r) = 
Kl(r) (cf. [4]). Up to second order perturbation theory 

where the k summation includes all plane waves exp(ikr). It 
can be shown that this assumption is reasonable for macros- 

- 
1 . ., 
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copically large magnets, where modes such as curling are 
curling are negligible (see e.g. I31 and I51 - [81). 

The linear term in (1 1) corresponds to the introduction 
of a volume-averaged anistropy constant K&r) = (Kl(r)) and 
reproduces the energy product in (2). As can be shown by 
using the quantum-mechanical analogy, the quadratic term in 
(11) always reduces HN, so this equation may serve as a 
simple illustration of Brown's paradox. As opposed to the 
first-order correcture, which does not depend explicilly on the 
geometrical form of the soft and hard regions, the second order 
contribution involves the correlation function (Kl(t)K1(0)). 
This correlation function strongly depends on the real 
structure of the magnet, and it is not possible any longer to 
obtain closed expressions such as (2). 

Equation (11) gives the first two terms of a 
perturbation series. The small parameter of this expansion is 
s2/6h2, where s is the correlation length of the 
inhomogenities, i.e. roughly speaking the size of the hard and 
soft regions. For small s a 'plateau' behaviour [4] is obtained, 
whereas the series (11) breaks down for large correlation 
lengths (for other approaches see e.g. [ 111 - [ 141). 

Compared to random stray fields and exchange-stiffness 
inhomogenities, large soft regions are much more harmful to 
coercivity and energy product. To discuss this effect we use a 
Boolean model [ 151 where overlapping randomly distributed 
spheres with radius R serve to model the hard regions Fig. 1. 
For this model the probability p(x > L) that the distance x 
between a typical soft-phase point and the closest hard-phase 
point is larger than L I151 

To remain in the plateau region we have to choose L = ah/;! = 
1.5 nm. On the other hand, the size of the hard regions cannot 
be smaller than about 1 nm [4], so we obtain with the typical 
value fh = 11  % the probability p(x > 1.5 nm) = 0.06 %. 
This means that less than one out of 1000 soft-phase atoms 
are in a too-large region, which makes the production of 
macroscop-ically large magnets with totally random 
distribution of the hard phase unrealistic. However, a small 
increase of the fraction of the hard phase strongly improves 
the prospects for making a reliable magnet: taking fh = 20 % 
instead of f h =  10 % reduces the energy product of the 
Sm2Fei7/Fe system by only 6 %, while p(x > 1.5 nm) = 7.8 
10 - 5 %. A similiar effect is achieved by leaving the plateau 

region, which must be compensated by increasing fh, and 
structuring the magnet on a somewhat larger scale. Note that 
these difficulties do not occur if the hard regions a more 
regularly dispersed. 

111. CONCLUSIONS 

Disordered two-phase magnets with a common c axis 
throughout the hard regions structured on an 'overcritical' 
scale are subject to random stray fields which reduce the 
coercivity by a few tenth of a Tesla. More harmful to 
coercivity are fluctuations of the size of the soft regions, 
which occur in particular in totally random structures. Using 
a Boolean model we have calculated nucleation probabilities 
which show that increasing the amount of the hard phase 
strongly improves the skeleton performance of the hard phase 

in 'overcritical' magnets. This stabilization is paid by a slight 
decrease in saturation magnetization, so the ultimate energy 
product 1090 kJ/m3 can be approached but not reaches in 
'overcritical' magnets. 
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