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Magnetoresistance of Chromium Dioxide Powder Compacts
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Cold-pressed powders of the half-metallic ferromagnet,CGi@ dielectric granular metals. Hysteretic
magnetoresistance with maxima at the coercive field arises from interparticle contacts. Dilution with
insulating antiferromagnetic @D; powder reduces the conductivity by 3 orders of magnitude, but
enhances the magnetoresistance ratio which reaches 50% at 5K. The negative magnetoresistance is
due to tunneling between contiguous ferromagnetic particles along a critical path with a spin-dependent
Coulomb gap. [S0031-9007(98)05996-1]

PACS numbers: 72.15.Gd, 73.40.Gk, 75.50.Cc, 81.20.Ev

Negative magnetoresistance has been widely invegeresistance effect(1/uop)dp/dH =~1%/T at room
tigated in ferromagnetic metals and heterostructuresemperature.
Effects intrinsic to a material are distinguished from Our samples were made from a commercial £pOw-
extrinsic effects which depend on the direction of magneder used for magnetic recording. The powder is composed
tization in adjacent ferromagnetic regions. Examples obf acicular single-domain particles with an average length
the former include the anisotropic magnetoresistance aff 300 nm and an aspect ratio of about 8:1. Coerciv-
permalloy [1] or the colossal magnetoresistance of nonstoity is 59 mT (590 G) at room temperature, rising up to
chiometric EuO [2] and mixed-valence manganites [3].99 mT at 5 K. Disks with a diameter of 9 mm and thick-
Examples of the latter are the giant magnetoresistance ofess of=0.8 mm were cold pressed at 0.4 GPa. Typical
multilayers [4] and granular metals [5,6] or the behaviordensities are 45%, but values of up to 57% were achieved
of spin-dependent tunnel junctions [7], where resistivity isby additional compaction. No preferred orientation of the
greatest at the coercive or switching field and decreases atongated particles was evident in scanning electron micro-
the sample reaches technical saturation. Recent expegraphs. Besides the single-component samples, we also
ments on epitaxial manganite films with a single grainprepared a series of composites where a weight fraction
boundary have allowed the high-field, colossal magnex of the CrQ powder was mixed with a factiofl — x)
toresistance to be separated from the low-field effect duef antiferromagnetic insulating @0; powder of the same
to heterogeneous magnetization distribution in adjacenparticle size, prepared by reducing the Gidder vacuum
grains [8,9]. A characteristic but unexplained feature ofat 500°C.
the low-field magnetoresistance in manganite ceramics
[10], polycrystalline films [11,12], and tunnel junctions
[13,14] is its rapid decay with increasing temperature.

Here we report a new type of extrinsic magnetoresis- ok
tance. Itis studied in pressed powders of gr®here it ~—
arises from contacts between particles. Chromium dioxide ~ '*’ e
is an ideal material for spin-polarized electron tunneling, _ 10" b
as it is a half-metallic ferromagnet where complete spin é‘ 102
polarization of the conduction electrons is maintained up z . —
to the surface [15]. There are twaal electrons in spin- ER:
split 1, subbands, one localized and the other in a half- 2 107 ¢
filled band [16]. The two electrons are strongly coupled by 107 ¢ e
the on-site exchange interactigp =~ 1 eV. The intrinsic 10° L - -2
metallic nature of the oxide is illustrated by the resistivity . — ¢
of an oriented film grown on TiQ shown in Fig. 14). :
It follows Matthiessen’s rule with a residual resistivity 0 50 100 150 200
of 0.1 uQm (10 Q) cm) and a room-temperature value Temperature (K)

about 30 times greater. The slogp/dT remains posi- FIG. 1. Temperature dependence of the resistivity &fdn

tive above the Curie temperatul@c = 396 K) [17].  epitaxial CrQ film, (b) cold-pressed CrOpowder, €) a cold-
The films exhibit only a small linear intrinsic magne- pressed composite @5%CrO, and75%Cr,0;.
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Electrical resistance was measured by a 4-electrode, = 0.23. The dilute composites show much greater re-
method. Data for a CrOcompact shown in Fig. bf  sistivity and greater magnetoresistance ratios. A sample
are typical of a granular metal [18]. The thousandfoldwith x = 0.25 is very near the percolation threshold; its
increase over the intrinsic resistivity is attributed to theroom-temperature resistivity & {0 m, a thousand times
resistance of the interparticle contacts. From the particlegjreater than for undiluted CrOpowder, yetAR/R, at
dimensions, the average interparticle contact resistance K is 50%. The resistivity is shown in Fig. d( with
(R;j) is estimated as=60 k{), considerably greater than parameterg.. = 2.09 2 m andA = 6.0 K, it can be fit-
the quantum limitRy = h/2e¢?. Nevertheless, a very ted to the expression for granular metals in the dielectric
broad distribution of contact resistance is to be expectedegime [19].

Conduction through such an array of metallic particles _ 1/2

with a random distribution oR;; will be along percolation p = p=&XHA/T), @
paths encompassing the lowest resistance contacts. ThegBereA is proportional toE.. The conductivity extrapo-
critical paths include weak conductance links where dates to zero al' = 0 (Fig. 5), and the magnetoresistance
single contact connects two larger clusters [19]. The CrOratio extrapolates to 56% (Fig. 3).

particles are sufficiently small and the contact resistance is The voltage dependence of the resistance can be mea-
sufficiently high for single-particle charging to influence sured in the dilute, high-resistance composites without any
the conductivity. The charging enerdy. =~ ¢2/2C [18]  significant heating of the sample. The magnetoresistance
where C, the capacitance of a particle, reper,,.  ratio of 25%Cr0,/75%Cr, 03 at 5 K is halved when the
Taking r,y = 125 nm and an effective dielectric constant potential drop across a sample reaches 4 V (Fig. 3). From
e = 5 gives a charging energy of 1.2 meV (13 K). the electrode separatigs1 mm) it is estimated that there

The magnetoresistance of the Gr@owder compact is  Will be roughly 10* particles along a conduction path,
shown in Fig. 2. Magnetization and resistance were meddut most of the voltage is expected to be dropped across
sured simultaneously in fields up to 5.5 T in a SQUID mag-some fraction, perhaps 10%, of these which have high-
netometer. There is a “butterfly” curve, with a reversibleresistance contacts, giving an interparticle potential differ-
high-field slope. The zero field resistarRgis defined by ~ence of a few mV. The number of particles involved is
extrapolating this linear portion to zero field, and the mag-€valuated by comparing the voltage and temperature de-
netoresistance ratitR /R, is defined a$Rmax — Ro)/Ro. pendence oAR/Ry,. We assume that magnetoresistance
This type of hysteretic magnetoresistance is associatedf finite temperature is controlled by energy mismatch
with alignment of the magnetization of the GrQarticles  across the barriers or intermediate states that produce spin-
since the maximum resistance practically coincides witHlip scattering. In a broad distribution of particles, these
the coercivity. The magnetoresistance ratio is 29% at 5 Kpoth will be uniformly distributed in energy. Scaling the
and it varies as eXp-T /T ), WhereT,,, = 46 K (Fig. 3).  energy associated with temperatkg 7)) and bias volt-

At room temperaturdR /Ry < 0.1%. age across a single tunnel juncti@¥,) then allows the
Results on the composites are even more remarkemperature and voltage variation &R /R, in Fig. 3 to
able. Fitting the resistivity of cold-pressa€rO,/(1 —  be reconciled by settingV = 25 K, which indicates that

x)Cr,O; powders to the percolation theory expressiorde/25kp =~ 1900 of these contacts are involved in the
[20] p = (x — x,) 2 gives the percolation concentration
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magnetotransport process. In a second sample with sistance of granular nickel. Fitting the 5 K data to their
shorter distance between electrodes, this procedure givexpression for fully spin-polarized electrons
~700 contacts.

In order to appreciate how the high contact resis- o = oxexf=(Ec + En)/eV]. ()
tance of pressed powders leads to high magnetoresistaneghereE,, = 0 in the saturated state givés = 0.34 mV
we consider a weak conductance link in the percolatior{3.9 K), whereas in the coercive statg. + E, =
path (Fig. 4). Links in the critical path where a particle 0.81 mV. HenceE,, = 0.47 mV (5.5 K). The 2 K data
has only two neighbors and at least one relatively highgive E. = 0.29 mV and E,, = 0.31 mV. The magnetic
resistance contact are expected to contribute most to trenergy may be identified as the difference in exchange
measured resistivity. The current through a weak link issnergy of contiguous, magnetically misaligned particles
controlled by the relative orientatiah; of the magnetiza- with n andn’ electrons, and the same two particles with
tion of the half-metallic particles. The resistance is n — 1 andn’ + 1 electrons; it is=J/2, whereJ is the

. interatomic exchange coupling mediated by the conduc-
R = Ry2/f(612) + R23/f(623), @ tion electron. BottE,. andE,, are temperature dependent
where R;; depends on the barrier height, junction areabecause tunneling at lower temperatures is “longer
and thickness [21] angi(¢;;) is the relative probability of range” involving thicker (or higher) barriers but lower
electron transfer into the adjacent particle. Provided nanismatches [23]. PMR depends on temperature partly
spin depolarization occurs in the barrigit0) = 1, and because of the exchange contribution to the Coulomb
the general expression is [22] gap. The temperature dependence of the conductivity in
_ > the disordered and saturated states is included in Fig. 5,
f(0) = cos(6/2) +25/(28 + 1)’sir(6/2), (3 together with the curves expected from Eq. (1) setting
which averages tg; if the orientation of the particles’ A equal to the 5 K values of. and (E. + E,). The
magnetization is random and the core spin> 1. A  apparent exponential variation &R /R, is therefore a
100% magnetoresistance ratio is predicted in that caseombination of this low-temperature behavior together
For Cr0, S = % which gives(f(9)) = % for random  With spin-flip scattering processes effective at higher
orientations, hence the predictelR/R, is 60%, in temperature. Improved magnetoresistance ratios at higher
agreement with the zero-temperature value for the dilute
sample (56%).

The drastic temperature dependence of the powder mag-
netoresistance (PMR) is comparable to that of the low-
field magnetoresistance in manganite polycrystals [10] and 0.15
heterostructures [13]. In our case, the similarity of the de-
pendence on temperature and voltage suggests a connec- 0 102
tion with the Coulomb gap. In Fig. 5 we shawV curves UL
measured at 5 K at the resistance peak (0.1 T) and at fer- 4
romagnetic saturation (2 T), as well as the corresponding 0.05&
conductance, which doubles when the voltage per contact
reaches about 1 meV. The voltage dependence of the con-
ductance at 2 and 5 K is characteristic of a Coulomb gap,
although the curves do not start at zero because the tem-
perature is comparable to the gap energy. Furthermore,
the data clearly indicate a larger gap in the misaligned, co-
ercive state than in the aligned, saturated state. Helman
and Abeles [23] first proposed an extra gap or mismatch
energyE,, of magnetic origin to explain the magnetore- 0.05
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