
I

Towards Generic Support for Distributed Information Systems

Vinny Cahill, Chris Horn and Gradimir Starovic

Distributed Systems Group, Dept. of Computer Science, Trinity College, Dublin, Ireland.

Abstract
W e are concerned wi th providing support for a

range of object oriented programming langauges t o be
used in mult i -user , mult i -machine, heterogeneous en-
v ironments requiring associative access, as well as con-
currency and storage management . I n order t o operate
in this environment the implementat ions of current ob-
ject oriented languages m u s t however be extended. Our
goal is t o provide a generic runt ime support sys tem
open t o a range of programming language implemen-
tat ions and requiring n o (or only m i n o r) alterations
to each supported language.

1 Introduction
In considering strategies for building distributed

applications, object oriented languages appear attrac-
tive. Design of distributed applications is concerned
with clear identification of encapuslated resources.
Further, naming of encapsulated resources, transmis-
sion of such names, and transparent access to remote
resources based on their names, are all essential. Ob-
ject oriented languages can, in principle, address all of
these concerns.

Object oriented languages also appear attractive for
many information system applications. The ability
of object systems t o model some complex real world
da t a is clearly an advantage over more classical tech-
niques based solely, for example, on the flat relational
model. Object oriented languages can provide a basis
for such applications, if they can be extended to op-
erate in persistent environments and so provide mod-
elling and query facilities, as well as concurrency and
storage management.

Although apparently attractive for distributed and
persistent applications, the implementations of cur-
rent object oriented languages must nevertheless be
extended if they are t o be used in multi-user, multi-
machine and heterogeneous environments. A fun-
damental challenge in adapting object oriented lan-
guages for distributed and persistent environments is
how to do so without imposing entirely new program-
ming language models and constructs on the base lan-
guage.

In adapting a specific language, decisions must be
made as whether it is necessary to restrict the use of
certain language constructs, or to change the seman-
tics of certain constructs, as well as perhaps adding
new constructs to the language. The correct answer
in each case should depend on the semantics, com-
plexity and ethos of the language in question, and not

necessarily on the underlying runtime support envi-
ronment. Thus any such multi-language support envi-
ronment must provide a range of mechanisms, suitable
for different languages - in effect it must be open to
different tradeoffs for key issues.

To support such an environment while maintain-
ing our overall goal of no (or just minor) alterations
to each supported language, we need to identify the
functionality required of a support system generic to a
range of programming languages. Thus our overall ar-
chitecture consists of three fundamental levels: alter-
native language environments (i.e. compiled code and
language runtime systems); an underlying “generic”
support environment; and finally the host operating
system. The generic support system requires a clear
separation of concerns from the runtimes and com-
piled code for each language [ll]. Nevertheless the
generic support system must be able to interact with
each language system - for example to dispatch incom-
ing remote invocations. Thus the question of where to
place the interface to the support layer arises. What
functionality should be left t o the language? What
functionality should be available to the language de-
signer from the support layer, and what functionality
can be expected from the host operating system so as
to support this? In this paper we explore the level of
functionality that should be provided to the language
designer.

2 Our experiences
Within our research group, our first prototype im-

plementation of a distributed and persistent support
environment was Oisin[4 . Its chief characteristic was
that it supported a sing i e programming language a
version of Modula-2 extended with object construct&.
Object pointers were larger than virtual addresses and
were interpreted on each dereference into a local mem-
ory address or a (transparent) request to the support
system to either fault-in the target object, or per-
form a remote invocation[8]. We also implemented dis-
tributed parallel computations. We made limited at-
tempts to retrofit other languages above the same sup-
port environment, including Budd’s Little Smalltalk[3]
but it was clear that our approach was insufficiently
general. We also made considerable efforts to optimise
1 / 0 times, includin use of clustering and a tailored
1 /0 disk subsystemfl6].

Given this experience, we have designed a new sys-
tem - Amadeus - so as to meet the goals outlined in
section 1 above in supporting multiple languages and

0-8186-2265-2i91 $1.00 0 1991 IEEE

1

104

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

I

object formats. The Amadeus generic runtime func-
tions (e.g. object fault resolution, migration, garbage
collection, dynamic linking, etc) are common for dif-
ferent languages and object models.
2.1 Units of distribution and storage

In principle the unit of distribution could range
from a byte (or page) as in DSM systems such as Ivy
[9],.to an object as in Amber [2], to a cluster as in
Oisin [4] or an entire address space [IO In general

tations, because they do not seem to scale well to a
multi-user heterogeneous environment. Nevertheless
we do acknowledge that DSM can provide full distri-
bution transparency and not impose restrictions on
programming languages. It seems clear that a generic
system must support not the finest granularity possi-
ble, but instead provide a range of mechanisms suit-
able for different ganularities, appropriate to different
environments.

In language based object systems, objects can vary
widely in their size. Clearly this influences the mecha-
nisms required for object storage. Since objects can be
small, it is usually important to group together a set of
objects which are in some way mutually related. Such
groups can then form units of i/o to and from storage,
and possibly also of distribution and migration.

One trivial strategy is not to group objects a t all.
An alternative is to let the runtime system apply some
reasonable criterion for grouping objects 151. While

seem reasonable t.0 allow semantic information avail-
able within a compiler, or provided by the program-
mer, to be used to improve the effectiveness of the
clustering [I].

Thus distribution in our system is done a t the ob-
ject level but it is the responsibility of the language
level to identify suitable objects for distribution. Such
object are known as global objects. For increased ef-
ficiency of i/o, global objects can be grouped into
clusters’. Whenever an object is mapped into mem-
ory, or unmapped from memory, the whole cluster to
which the object belongs is mapped/unmapped. Clus-
ters need not be visible a t the language level. More-
over, objects can be independently migrated between
nodes as a result of load balancing.
2.2 Object naming

One possible approach to object namipg is to in-
sist that the language adopt the system wide object
naming mechanism [5, 41. This approach clearly has
disadvantages, of which the most important is likely
to be the performance penalty incurred in mapping a
global name to the objects address, in the common
case of colocated objects. Moreover, this approach
will undoubtly require extensive compiler modifica-
tions [14], or unnatural use of library pointers (e.g.
the “permPtrs” of [6]’). The alternative is to allow
the language to continue to use its original naming

we are uncomfortable with current DS IL implemen-

this relieves the programmer of the tas I, , it would

‘In the current implementation a cluster is mapped to a Unix
file.

We recognise that the “smart” pointers of C++ can address
the issue, but unfortunately this is a language specific solution.

scheme between colocated objects and to provide sup-
port for translation to the system wide format a t ap-
propriate boundaries as necessary[l]. This approach
incurs extra cost on object mapping and unmapping
and on remote access and requires that the language
also provide the necessary information t o the system
to locate and translate names to the language spe-
cific format [13]. This in fact has been the basis of
our approach to supporting a range of naming formats
above a generic layer. There is also work in progress
on avoiding the mandatory pointer swizzling during
mapping/unmapping of objects in order t o accelerate
mapping and unmapping for database type applica-
tions [14].

In the current system, it is also possible to bind a
Unix file name to a global object name. This makes
cooperation between different applications more con-
venient. However, global objects’ names saved in files
must be taken into account during garbage collection3.
2.3 Object faults and resolution

In distributed and persistent systems, detecting
and resolving faults due to attempted accesses to
remote objects, or to objects which are currently
not mapped from storage, are critical. Since these
mechanisms relate to extensions to the usual non-
distributed, single address space model adopted by
most programming languages, a t first sight it might
appear that the mechanisms should belong to the sup-
port environment. Parpdoxically, the object fault de-
tection must actually be tied into the language system.
Thus the granularity of remote and persistent objects
must be guided a t the language level, and not soley
by the support system.

The choice of which mechanism for fault detection
and resolution to use depends on (at least) the ex-
pected granularity of objects, the level of encapsula-
tion afforded by the language, the language’s nam-
ing scheme and support afforded by the hosting ker-
nel and/or hardware. One approach is not to make
any language extensions, and to rely on explicit pro-
grammer code to test for, load and save objects. In
a language such as C++, this also requires the pro-
grammer to identify the representation of each per-
sistent object[7]. Inserting runtime locality tests into
the dereferencing code, as in [2], is another possibility.
I t has the obvious overhead when accessing local ob-
jects, as well as the requirement for compiler support.
Yet a further possibility is the use of local proxies for
absent objects which can intercept remote invocation
requests and forward them as necessary. With this
approach there is no loss of local performance - how-
ever compiler support is required to generate proxies.
Moreover this approach is not appropriate for direct
access to data. Finally, even if DSM is not used, object
faults can be detected as accesses to invalid memory
[9]. .This approach incurs no runtime overhead in ac-
cessing local objects, but is heavily dependent on the
support provided by the underlying host system (e.g.
external pagers). I t is also difficult to make the mecha-

3The current implementation uses a conservative mark and
sweep algorithm.

- 1

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

I

nism independent of any particular programming lan-
guage or compiler.

Currently in Amadeus a proxy mechanism is used
for object fault detection. Language pre-processors
support automatic generation of proxy objects. At the
moment, proxies are basically RPC stubs, and direct
access to global object’s data is not supported. We are
investigating other ways of using the proxy mechanism
however making proxies visible at the language level
results in loss of distribution transparency. Fault res-
olution may be performed either by remote function
call or by fetching the object.
2.4 Associative access

Associative access is important in a general persis-
tent storage scheme for a distributed multi-user envi-
ronment, but creates a number of challenges.

Simple associative collections are relatively simple
to build given a persistent language system. However
efficient retrieval and scanning of large collections of
objects is difficult, even given a persistent store. An
example issue is how to manage updates to objects
for which keyed indexes exist. Keyed indexes can, in
general, be created (and deleted) dynamically and are
not usually fixed a t the time the collection is itself cre-
ated. Further, changing the state of an object within
a collection may require a chan e to one or more of
the collection indexes. Individuaf objects (of the same
class) may or may not persist. Of those which persist,
they need not necessarily all end up in the same per-
sistent storage subsystem. Thus, given a pointer to an
object, it may not be apparent that that object is also
registered in a collection which has keyed indexes.

One proven strategy is to require the programmer
to explicitly indicate that an object has been changed,
and that therefore the system should update any re-
lated indexes. This in fact is the usual mode of opera-
tion of a classical DBMS. However we suggest that this
is overly restrictive, given the kind of persistent envi-
ronment outlined above. One solution to this problem
is to dynamically alter the behaviour of an object by
binding it to a different version of its class code. The
class code can then issue notification changes to the
keyed indexes as required. An alternative might be
to “wrap” the object, so that use of it is moderated
by an intermediary which can issue notifications when
necessary. We are actively exploring both of these ap-
proaches.
2.5 Transactions

A final issue of importance in the assumed environ-
ment is transaction management. The mechanisms
must be available to a range of languages however
they must also be flexible allowing application specific
knowledge and requirements to be exploited. The sys-
tem must support mechanisms to detect accesses to
atomic objects. Such a mechanism is similar to that
for detecting objects faults, however it is constrained
by the fact that the object may be present in the ad-
dress space and may be concurrenty accessed by other
activities. This latter fact effecively rules out tech-
niques based on virtual memory trapping, so that only
explicitly coded checks and methods b a e d on inter-
cepting operations are viable. In our assumed env-

iorment the fact that the same code may be used to
access both atomic and non-atomic objects means that
we favour intercepting attempted access to atomic ob-
jects in order to enforce concurrency control and re-
covery policies.

3 Status
Our current implementation supports application

programming in C++; a specific aim is that existing
(unaltered) C++ code continues to run in our environ-
ment. Persistence and distribution are provided by a
small number of extensions to the language, which are
interpreted by suitable preprocessing. Currently we e
are actively working on support for Eiffel.

Our current implementation is above Unix. We are
also implemening above the Mach 3.0 and CHORUS
microkernels. We are prototyping interfaces to both
an OODBMS and a relational DBMS and are explor-
ing how associative techniques on large object collec-
tions can be applied. The design of the internal in-
terfaces for integrating the Relax transactions layer
has been done[l2]; work on porting it to our proto-
type system is starting. We are naturally keen to gain
further experience with the environment, and in that
regard have made it available to a number of sites for
evaluation.

References
E. Jul et al. Fine grained mobility in the emerald
system. Technical Report 87-02-03, Department of
Computer Science, University of Washington, Febru-
ary 1987.
J.S. Chase et al. The amber system: Parallel pro-
gramming on a network of multiprocessors. Technical
Report 89-04-01, Department of Computer Science,
University of Washington, April 1989.
T . Budd. A Little Smalltalk. Addison-Wesley, 1987.
V. Cahill. OISIN, the design of a distributed object-
oriented kernel for COMANDOS. Master’s thesis,
Department of Computer Science, Trinity College
Dublin, 1988.
D. Decouchant et al. Guide: An Implementation of
the COMANDOS Object Oriented Architecture. In
Proceedings of the EUUG Autumn Conference, Octo-
ber 1988.
SOR group. Programmers manual for SOS prototype
- version 4. Technical Report 103, INRIA, December
1988.
K.E. Gorlen et al. Data Abstraction and Object-
Oriented Programming in C++. John Wiley and
Sons.
A. Kramer. The design and implementation of the
Oisin Runtime support. Master’s thesis, Department
of Computer Science, Trinity College Dublin, Septem-
ber 1989.
K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321-359, November 1989.

106

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

I

[IO] B. Liskov and R. Scheifler. Guardians and actions:
linguistic support for robust distributed programs.
A CM Transactions on Programming Languages and
Systems, 5(3):381-404, July 1983.

[I11 M. Weiser et al. The portable common runtime ap-
proach to interoperability. In 12'h Symposium on Op-
erating Systems Principles, pages 114-122. ACM, De-
cember 1989.

[12] M. Mock and R. Kroeger. Implementing atomic ob-
jects with the Relax transaction layer. In Submitted
to International Workshop on Object- Orientation in
Operating Systems, 1991.

[13] M.P. Atkinson et al. An approach to persistent pro-
gr amming. Computer Journal, 26(4):360-365, 1983.

[14] J.E. Richardson and M.J. Carey. Persistence in the e
language: Issues and implementation. Software Prac-
tice and Experience, 19(12), December 1989.

Static grouping of small objects to
enhance performance of a paged virtual memory.
A C M Transactions on Computer Systems, 2(2):155-
180, May 1984.

The design and implementation of an
object-oriented i/o and storage system for a dis-
tributed kernel. Master's thesis, Department of Com-
puter Science, Trinity College Dublin, September
1989.

[15] J.W. Stamos.

[16] G. Starovic.

107

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 07:42 from IEEE Xplore. Restrictions apply.

