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The Amadeus GRT — Generic Runtime Support for Distributed Persistent

Programming

Vinny Cahill, Sean Baker; Chris Horn and Gradimir Starovic

Distributed Systems Group,
Dept. of Computer Science, Trinity College Dublin, Ireland

Abstract

Many object-oriented programming language im-
plementations have been extended to support per-
sistence, distribution or atomicity by integrating
the necessary additional support with the lan-
guage’s runtime library.

We argue that a better approach is to provide a
Generic Runtime library (the GrT) which imple-
ments that part of the support which is indepen-
dent of any language. The GRT should be designed
to interface to a language’s existing runtime in
such a way that the language’s local object ref-
erence format and invocation mechanism can be
retained. Hence existing compilers do not neces-
sarily have to be modified, and a range of different
object-oriented languages can be supported simul-
taneously.

This approach has significant merits including: the
ease with which a language can be extended; the
sophistication of the underlying support immedi-
ately available to a language implementer; and the
ability to support fine-grained language interwork-
ing.

*email: vinny.cahill@cs.tcd.ie, sean.baker@cs.tcd.ie

1 Introduction

Amadeus [11, 4] is a general purpose, object-
oriented programming environment supporting dis-
tributed and persistent applications in multi-user,
distributed systems. While previous work has typ-
ically concentrated on designing or adapting a sin-
gle language either for distribution [21, 23, 6, 20]
or persistence [1, 7, 2], Amadeus can support a va-
riety of existing object-oriented programming lan-
guages (0oPLs). This is important since any large
distributed system will be diverse not only in its
hardware but also in its language requirements.
Our goal was to support a number of languages
on one distributed platform without unnecessary
duplication of effort, while facilitating language in-
terworking.

In Amadeus, the implementers of an OOPL can
choose between a set of (inter-related) properties,
including persistence, distribution and atomicity
for its objects. A further goal of Amadeus was
to allow a language to be extended without im-
posing entirely new constructs and models on the
base language. That is not to say that a language’s
syntax should not be changed to reflect the pro-
vision of persistent, remotely accessible or atomic
objects, but this choice, and the style of change,
if any, should be made per-language rather than
being imposed by Amadeus.

To date we have concentrated on allowing per-
sistence, distribution and atomicity to be added



to languages whose base versions do not support
these features. Amadeus currently supports ex-
tended versions of both C++ [9] and Eiffel [16]. We
are currently investigating what extensions may
be necessary to Amadeus in order to support lan-
guages designed specifically to support distribution
or persistence.

The goal up to this point has been to allow per-
sistence, distribution and atomicity to be added to
a language without necessarily requiring changes
to its compiler. In particular, Amadeus does not
require changes to a language’s native object refer-
ence format or operation invocation mechanism.

Typically, a language to be supported will already
have its own execution structures implemented by
a compiler or preprocessor and a Language-Specific
Runtime library (LSRT).
Generic Runtime library (the GRT) on top of which

Amadeus provides a

these individual LsrRTs may be supported. The GRT
provides the support for persistence, distribution
and atomicity which is required by a range of lan-
guage implementations but which is independent
of any particular language. Whenever language-
specific information or actions are required, the
GRT makes an upcall to code supplied for the par-
ticular language; in some cases this code will be
specific to the class of object being manipulated.
The GRT has been designed specifically to interface
to a LSRT rather than to provide an API for ap-
plication programmers to use directly. This was
dictated by the goal of supporting the use of high
level languages to program distributed and persis-
tent applications.

To support a language above the GRT only requires
the provision of the necessary upcalls and the pro-
duction of additional code used to intercept ac-
cesses to certain objects. The upcalls can be gener-
ated on a per-class basis by a preprocessor — as in
our C++ implementation — or implemented once in
the LsrT if sufficient type-information is available
— as in our Eiffel implementation. Naturally, some
changes are also required to the LSRT to interface
to the GRT.

The GRT provides the language implementer with
a choice of mechanisms for supporting persistence,
distribution and atomicity. For example, the GRT
supports the use of different mechanisms to de-
tect attempts to access objects which are not cur-
rently collocated with the object accessing them.
As another example, the GrRT will support eager,
lazy or no swizzling of references - the choice of
which to use in a particular language depending
on the intended use of the language. Of course the
GRT cannot support all possible means of providing
some particular functionality. A language imple-
menter may provide additional mechanisms within
the LSRT of a language. Similarly, the GRT may
not support the use of some language constructs.
In this case the language implementer may either
restrict the use of these constructs in the extended
language [6] or provide additional support for them
in the LSRT. In effect, there is a tradeoff between
the amount of work to be done in the LSRT and the
range of mechanisms available to a language imple-
menter. The GRT is intended to provide a range of
alternatives to cater for most requirements.

The GRT is supported by the Amadeus kernel [5].
While the GRT is a purely local component, linked
into the address space(s) of each application, the
kernel is a distributed component providing sec-
ondary storage management, location services, se-
curity mechanisms, transaction management, dis-
tributed processes, and load balancing. In some
sense, the GRT may be seen as the interface be-
tween a LSRT and the underlying kernel. The kernel
is currently implemented above UNIX' as a collec-
tion of trusted servers with an associated library
which is linked with each application.

We believe that our approach has significant ad-
vantages over other approaches. First, adapting a
language is easy. The major effort is in providing
the upcalls and auxiliary code required by the GRT
and in interfacing the LSRT and GRT.

Second, the GRT (together with the underlying
Amadeus kernel) provides all the necessary support

1UNIX is a trademark of UNIX Systems Laboratories, Inc.



for persistence, distribution and atomicity. This
support is immediately available to a language im-
plementer via the GRT and does not have to be
provided anew for each language.

Finally, given a common underlying support sys-
tem, language interworking is facilitated, although
not completely solved — additional mechanisms are
still required at higher levels to, for example, sup-
port inter-language type checking.

1.1 Roadmap

The remainder of this paper is concerned with the
GRT support for persistence and distribution. The
support for atomicity is described elsewhere [17].
We proceed as follows. Section 2 discusses related
work. Section 3 gives an overview of the function-
ality required to support remotely accessible and
persistent objects, and suggests how this can be
divided between the GRT and LSRTS.
describes the functionality provided by the GRT

Section 4

and section 5 describes its current implementation.
Section 6 describes the interface between the GrT
and a LSRT.
of the current GRT and discuss those aspects of it

In section 7 we provide a critique

that will be extended to support a wider range of
options for the language implementer. Finally, sec-
tion 8 concludes the paper with a summary of our
achievements and a description of on-going and fu-
ture work.

2 Related Work

In contrast with other systems, our aim is to pro-
vide a generic layer which can be used to support
persistence and distribution in whatever way a lan-
guage requires.

Many systems support one only approach to per-
sistence and/or distribution and implement this on
top of the basic operating system interface. For

example, although the Gemstone OODBMS [2] sup-
ports two languages, Opal and C++, it in fact only
supports one approach to the implementation of
persistence. Opal is the basic language and C++
is layered on top of it: a C++ class definition is
translated into an Opal type definition.

The Object Management Group’s (0MG) Common
Object Request Broker Architecture (CORBA) [§]
also aims to support the use of different languages
in a distributed system. However, using CORBA
requires that the application programmer writes
an Interface Definition Language (IDL) description
of each type of object to be used by distributed
clients. Clients can then invoke objects of these
types from each supported language, in a manner
defined by CORBA for each language. Currently,
C is the only language considered in [8]. Moreover,
persistence and atomicity are not currently consid-
ered.

Our approach to the provision of a generic layer has
been influenced by the Portable Common Runtime
(PCR) [15] which provides interoperability between
programming languages, to the extent that an ap-
plication can use different languages within a single
address space without having one of the languages
play a dominant role. Those features required for
interoperability are provided in common by PCR:
space allocation and garbage collection, basic 1/0,
threads, and symbol and code binding. We share
the goal of language interoperability, but to this we
add the aims of adding persistence and distribution
to existing and new languages with the minimum
of work required above the generic layer. Points
in common with PCR include the use of upcalls
to the individual language levels in order to locate
references.

Amadeus is the reference implementation of the
Comandos architecture [3]. As such, the goals of
Amadeus are shared by the other implementations
of the Comandos architecture, notably IK [22] and

COOL [13].



3 Requirements

This section addresses the separation of function-
ality between LSRTs and the GrRT. There are im-
portant tradeoffs here: the GRT should provide as
much of the support for persistence, distribution
and atomicity as possible so that it is easy to add
these facilities to an existing language, however,
each language implementer must be able to choose
how best to use this support.

This separation of functionality will be discussed
under the following topics:

e the naming of objects within an address space,
on a remote node or on disk, and the transmis-
sion of object names;

e the layout of objects in memory and on disk;

e the mapping of objects into an address space,
and the management of object references when
this occurs;

e the binding of code to an object when it is
mapped into an address space;

o detection and handling of object faults: that
is, attempts to access absent objects which are
not located in the current address space;

e marshalling and dispatching of invocation re-
quests to absent objects.

Object naming and layout: It is clear that
unless the language implementer is prepared to
substantially re-implement the compilation system
and associated LSRT, it must be possible for the lan-
guage to retain its own naming scheme for objects
within an address space. Most languages use vir-
tual memory addresses to reference objects; other
formats, such as indices into a table, are also pos-
sible. For the same reason, the layout of objects
must continue to be dictated by the compilation
system.

Hence, the GRT should view objects simply as
blocks of storage which can be uniquely identified
by a language and on which local invocations can
be made transparently to the GrT. However, if
an object is to be persistent or remotely accessi-
ble then it must be known to the GrRT and hence
the GRT must be notified of the creation of such
objects.

Since use of language-specific references to name re-
mote or stored objects will not always be sufficient,
the GRT must provide a location independent nam-
ing mechanism suitable for uniquely identifying ev-
ery object in the system. Such references — known
as global references — can be used (directly or in-
directly) by objects which are on disk or are being
transmitted over the network, and when references
are passed as parameters in remote requests.

Mapping objects and reference manage-
ment: The GRT must provide the underlying
means of storing, mapping and unmapping objects.
The fact that objects may use different reference
formats when on disk and when in an address
space, requires that references be swizzled from one
from to the other when an object is mapped in and
unswizzled when it is mapped out. However, since
the LSRT is responsible for the format and manip-
ulation of language level references, and also their
locations within objects, the GRT cannot do this
swizzling and unswizzling without the cooperation
of the LsrRT. At a minimum, the LSRT must pro-
vide information about the location of references.
Additionally, given a global reference, it must be
possible to translate that reference to an appropri-
ate language-specific reference (whether or not the
target object is mapped into the current address
space). This translation involves cooperation be-
tween the GRT and the LSRT.

Swizzling can be performed in two manners (lazy
and eager) for an object and the GRT must not
dictate which is appropriate for a given language
implementation. Lazy swizzling involves swizzling
each individual reference as it is used for the first
time after the object is mapped in; eager swizzling



means swizzling all of the references when the ob-
ject is mapped in or is first used.

In fact, when a language is implemented specifi-
cally to support persistence and/or distribution, it
may use the same reference format when an object
is on disk and when it is mapped in. The GrT will
have to support the two ways in which this can be
achieved. Firstly, global references can be used in
both cases [18]. The disadvantage of this approach
is that references must be looked up in a hash table
on use; its advantage is that objects can be mapped
and unmapped without swizzling and the target of
an object reference can be unmapped from mem-
ory without affecting the object. The alternative to
this mechanism is to use virtual memory addresses
as global references within the system [12]. This
raises difficulties for the global allocation of refer-
ences, and also when supporting stores which are
larger than the size of virtual memory.

Binding code to objects: Code must be asso-
ciated with each object. Languages differ consid-
erably in how they make this association: for ex-
ample, many implementations of C++ store one
or more virtual addresses in each object to point
to the object’s virtual function table(s); some im-
plementations of Eiffel use the object’s type code
to index into a code table. Therefore, the bind-
ing of code to a recently mapped object must be
performed by the LSRT when the GRT maps in an
object.

Object fault detection: There are several possi-
ble mechanisms to detect attempts to access absent
objects and hence the GRT must support a range
of these mechanisms which can then be used at the
language level.

Example mechanisms include the use of proxy ob-
jects which are local representatives of absent ob-
jects. A proxy knows the identity of the object that
it represents and can inform the GRT of attempts
to invoke that object. The GRT may then use the
services of the kernel to locate the object and for-
ward the invocation request to it; or, the target ob-
ject can be mapped into the caller’s address space,

replacing the proxy. This mechanism provides a
high degree of transparency to the language level
— it need only provide the code for the proxy and
then all language level operation calls can be local.
However, it does not allow local access to public
member data within the absent object. An alter-
native mechanism which does allow this is to ensure
that use of a language-specific reference for an ab-
sent object causes a virtual memory fault. This
can be caught and the absent object mapped into
the address space.

These GRT level mechanisms can be supplemented
by other mechanisms implemented entirely at the
language level, such as presence tests (the explicit
testing of whether the target object is present be-
fore using a reference), and the use of GRT mecha-
nisms to map in the object or forward the invoca-
tion to it if it is absent.

Object location and remote invocations: The
GRT must also provide an interface to the kernel’s
facilities for locating objects and transferring re-
mote access requests to the target objects. The
formatting of a request must however be carried
out at the language level. The GRT should provide
routines to marshal object references and values of
basic types (that is, to allow construction of a con-
tiguous message from the parameters to a request).
In the case of object references, the translation of
the reference to the appropriate global form can be
carried out by the GrRT, but this requires coopera-
tion with the language level. Similar comments ap-
ply to migration of objects. On the remote side, the
language must be prepared to accept incoming re-
quests from the GRT, to unpack the parameters, to
dispatch the request in the language-specific man-
ner and, once the request has been completed, to
format the reply message. The dispatching of the
request involves choosing the correct method to
call. This must be carried out by the LSRT since
only it understands the operation invocation mech-
anism to be used.

Finally, the GRT can also perform local garbage col-
lection, but it must use the LSRT to determine the
references each object holds.



In general, it can be seen that the GRT is respon-
sible for providing the underlying mechanisms, for
example the mapping and unmapping of objects,
but it must cooperate with the LSRT to carry out
some actions. This cooperation takes the form of

e upcalls from the GRT to the LSRT when the
GRT requires the LSRT to perform some action
or provide some information that is language
implementation specific,

o downcalls from the LSRT to the GRT when the
LSRT needs to use the GRT’s mechanisms.

4 Functionality of the GRT

In summary, the GRT provides support for:
e object creation and naming;
o detection of object faults;
e mapping and unmapping of objects;

e marshalling, unmarshalling and dispatching of
invocation requests;

o clustering of objects; and
o local garbage collection.

Each of these aspects is briefly described in the
following sections. The GRT also provides support
for the use of atomic objects and for object access
control, as well as providing the interface to the
facilities provided by the underlying kernel includ-
ing processes,” atomic transactions, extents,® and
containers.? These aspects are not, however, con-
sidered in this paper.

It should be noted that the fundamental unit of
distribution and storage supported by the under-
lying kernel is a cluster of (related) objects rather

2activities which are distributed threads of control and
jobs which are collections of activities.

Jcollections of protected objects.

*secondary storage partitions

than a single object. Clusters are the units of map-
ping and unmapping into and out of an address
space and every object is associated with exactly
one cluster. Objects may, of course, migrate be-
tween clusters during their lifetime.

4.1 Objects

Fundamentally, the GRT is concerned with the man-
agement of objects that are remotely accessible
(known as global objects) and/or persistent. From
the GRT’s point of view, such an object is an opaque
element of storage which can be uniquely identi-
fied and to which code implementing the interface
to the object can be bound dynamically. The GRT
does not know anything a priori about the inter-
nal structure of a particular object nor about the
semantics implemented by that object. Such in-
formation can be acquired by the GRT by making
upcalls to the language level.

A global or persistent language object — such as,
for example, an individual C++ object — must be
mapped, in a way specific to its programming lan-
guage, onto a GRT object. The most natural map-
ping is a single GRT object for each heap allocated
language object. Other mappings are possible. For
example, in C4++, a language object may be em-
bedded within another language object which is,
in turn, mapped onto a single GRT object. In the
remainder of this paper the term object is used as
an abbreviation for GRT object, and programming
language objects are always qualified as language
objects.

New global or persistent objects are created by ex-
plicitly calling the GRT. The GRT allocates space
for the object (including space for a GRT header for
the object) in the heap of the current process and
returns the address of the object to the language
level.

When initially created by the GRT, an object is
immature. Immature objects exist and are known
only within the address space in which they were



created. Objects may become known outside of the
address space in which they were created (either
because a reference to the object has been passed
out of the address space, or because the object it-
self has migrated out of the address space). If this
happens, the object is promoted to be a mature ob-
ject and is given a global reference - its pid - which
is sufficient to identify the object anywhere in the
system.

An object’s GRT header stores information used by
the GRT to manage the object and to link the ob-
ject to the code implementing the language-specific
upcall operations required by the GRT. In normal
operation an object’s GRT header is transparent to
the language level.

4.2 Object References and Object Fault
Detection

On disk, a persistent object is stored with its GrT
header followed immediately by the object’s data
(possibly containing references to other objects)
which is followed by a set of indicators for the ob-
jects that it references.

An indicator is an object reference which holds
enough information not only to identify and locate
the referenced object (i.e. its pid) but also to create
a proxy for the object if required.

The layout of an object’s data is controlled by the
language level and, in general, the space allocated
by the language for a language-specific reference
— an lIsref — is too small to store a full indica-
tor. Hence, when on disk each reference within
an object’s data is stored as an offset either to the
referenced object, if it is stored in the same clus-
ter, or, in the case of an inter-cluster reference, to
an indicator for the referenced object. This allows
the layout of the object’s data to be the same as
it would be for a “normal” version of the object.
Such an offset is known as a pplr.

When two objects are collocated in the same ad-
dress space, the format of references (lsrefs) be-
tween them is determined by their programming

language. For example, two collocated C++ lan-
guage objects can use virtual addresses between
them for the duration of their coresidence. The
GRT, with the aid of language-specific support, is
responsible for swizzling pptrs to Isrefs and vice
versa as necessary.

When an object is fetched into an address space,
each of its indicators is located, by upcalling to the
language level, and examined in turn. If an indi-
cator refers to an object which is located in the
same address space, the corresponding ppir will be
replaced by a Isref for that object.® Subsequent
dereferencing of (and invocation via) that object
reference can then use the native language mech-
anism. For example, two collocated C++4 objects
will use the usual C++ invocation mechanism, and
under these conditions will not use the services of
the GRT.

If, on the contrary, an indicator refers to an ob-
ject which is not (currently) located in the same
address space, some mechanism must exist to trap
attempts to access the absent object. Two mecha-
nisms for this are currently supported by the GRT:
O prozies and C prozies. Other mechanisms can
be implemented at the language level.

An O prozy for an absent object is essentially a
GRT object which contains no data but is the same
size as the object it represents. The code bound
to the prozy, which must be provided by the lan-
guage level, must implement the same interface as
the absent object and, when invoked, is responsi-
ble for calling the GRT to resolve the object fault
having first marshaled the parameters to the invo-
cation. O prozies are dynamically created by the
GRT as required. Such prozies need never be stored,
and they are invisible to application programmers.

®Note that the GRT employs lazy swizzling in so far as
the references within an object are not swizzled when the
object’s cluster is mapped, rather this is delayed until such
time as the object is actually accessed. However, eager swiz-
zling is used within an object, because all of its references
are swizzled at that time.



Further, an invocation via that reference will pro-
ceed as indicated above using the language mecha-
nism. The prozy is responsible for reacting to the
attempted invocation by calling the GRT to han-
dle the object fault. If the object represented by
a proxy is subsequently mapped into the same ad-
dress space, the proxy can be overlaid by the GRT
with the real object —in this way, any [srefs to the
object or to its internal parts from elsewhere in the
address space remain valid. The GRT then forwards
the invocation to the real object.

A C prozy represents an absent cluster, a refer-
ence to one of whose objects has been swizzled.
A C prozy is a protected area of virtual memory
large enough to hold the absent cluster should it
be mapped into the address space. A swizzled ref-
erence to an absent object belonging to the cluster
points at the location in memory where the object
will be loaded when the cluster is mapped. An
attempt to access the object will be caught by the
GRT as a protection violation and it will attempt to
map the cluster. When the cluster is mapped, the
access can then be allowed to proceed as normal.

O prozies may be used to trap accesses to an absent
object if the object can only be accessed through
its operations. If client objects are allowed direct
access to the instance data of an object, then ad-
ditional mechanisms must be provided at the lan-
guage level, an example being a locality test before
accessing the object. In addition, this mechanism
depends on the language level to provide the prozy
code responsible for reporting the attempted access
to the GrRT. C prozies may be used to trap accesses
to objects whether or not they are accessed directly
or only through their operations. The main disad-
vantage is that having detected the object fault it
is not usually possible for the GRT, in a language
independent manner, to determine the cause of the
object fault nor to marshall the parameters to the
invocation (if any). Therefore such object faults are
normally resolved by mapping the required cluster
and restarting the access locally.

For these reasons, the GRT currently creates O
prozies whenever swizzling a reference to an absent

global (persistent or non-persistent) object, and a
C prozy for the target object’s cluster whenever
swizzling a reference to an absent (non-global) per-
sistent object.®

4.3 Dispatching and Marshalling

Dispatching of invocations is performed in a
language-specific way. In the case of two collocated
objects compiled by the same compiler, invocations
need not use the services of the GRT and so can
proceed directly as explained previously. For re-
mote invocations, each (global) object must be pre-
pared to receive an invocation request in a canon-
ical (GRr-defined) format and dispatch it in the
appropriate language-specific way to the requested
operation. Likewise, the outcome, including ab-
normal or exceptional conditions (if any), must be
returned to the GRT in a canonical format.

Marshalling of invocation frames is a responsibil-
ity of both O prozies (on the sending side) and of
the dispatching mechanism (on the receiving side).
The GrT provides a suite of marshalling routines
which can be used by the prozxy code to marshal
the parameters and results of an invocation into
standard message formats expected by the kernel
including encoding and decoding of individual mar-
shalled values into the canonical format used for
transmission between heterogeneous nodes.

A side effect of marshalling a reference to an imma-
ture object is to cause that object to be promoted
to being globally visible. This is handled within the
appropriate marshalling routine and is transparent
to the O prozy.

4.4 Cluster Management

In practice, many applications do not choose to
explicitly manage clusters, but rather employ the

In the remainder of this paper the term persistent object
is used to mean a persistent but non-global object.



default mechanisms of the GrRr. By default, the
GRT creates new clusters using a simple heuristic,
and places each new object into the most recently
created cluster. As well as the default mechanism,
the GRT provides primitives to explicitly create a
new cluster (into which subsequent new objects will

be placed).

4.5 Garbage Collection and Cluster Un-
mapping

In Amadeus, garbage collection can be tackled at
two levels. Mature objects may be known through-
out the system, and thus distributed and secondary
storage garbage collection is the responsibility of
the kernel.
within a single address space, and can therefore
be garbage collected locally by the GRT.

Immature objects are known only

The GrrT
incremental mark and sweep garbage collector for

currently includes a simple mnon-

immature objects. The roots for the collection are
all the mature objects, and the stacks and machine
registers of all the threads executing within the ad-
dress space. All threads present in the address
space are temporarily suspended during garbage

collection.

A cluster is naturally unmapped from an address
space when that address space is no longer re-
quired. Moreover, it is clear that in general, a clus-
ter cannot be unmapped prior to the termination
of the address space, unless there are no [srefs ref-
erencing any of the objects within that cluster. To
determine if there are [srefs for an object, the GRT
must scan the objects in the cluster, and the stacks
of all activities executing in the address space. This
is expensive, and so is coupled with the garbage
collection of immature objects.

However, the GRT also provides a primitive to ex-
plicitly unmap a cluster from an address space. It
is the responsibility of the caller to ensure that this
primitive is used with care, since there may be out-
standing invocation frames on the stacks of various
threads in the address space which contain refer-
ences to the cluster.

5 GRT Internals

This section gives an overview of the internals of
the GRT and describes, in detail, the steps involved
in mapping, unmapping and dispatching an invo-
cation to a clustered object.

5.1 Address Space Layout

Each address space contains the following regions:

o A text area which contains a set of classes
which have been statically linked with the
mainline of some application and the GRT.

e A heap consisting of two distinct parts:

— An area containing mapped clusters and
C prozies. Clusters (and hence C proz-
ies) always consist of an integral number
of pages. The pages representing C proz-
ies are protected.

— An area containing (i) newly created ob-
jects, (i) O prozies and (ili) objects
which have been mapped as part of a
cluster but have been copied out of the
cluster to overlay an O prozy.

o A set of stacks for threads running in the ad-
dress space.

5.2 Object and Cluster Layout

Each GRT object consists of a GRT header which is
managed by the GRT, a data area which may be
used to contain language objects, and a set of in-
dicators for objects referenced from the data area.

The GRT header contains the following fields:

e uc: a pointer to the upcall function table for
the object;

e magic: a magic number — a value to search for
when looking for an object header;



e indicator: an indicator for the object itself
containing the following fields:

— state: encodes the state of the object;
— size: of the object’s data area;

— loffset: used in indicators referencing em-
bedded objects and in the header of a
global object which has overlaid its O
prozxy;

— pid: the unique identifier of the object;

— cluid: the cluster in which the object is
contained;

— cloffset: the offset to the start of the ob-
ject in its cluster;

— clsize: the size of the target object’s clus-
ter;

— lid: identifier of the language in which
the object is programmed;

— 4id: identifier of the interface (i.e. ab-
stract type) implemented by the object;

e cid: the identifier for the object’s class;

e vid: the position of the object’s entry in the
GRT’s Object Table;

e link: a pointer to the next object in the same
cluster.

The uc field points to the upcall function table for
the object and will differ depending on whether the
header belongs to a real object or an O prozy.

The state field specifies the kind of object (i.e.
global or persistent) and its state (one of dormant,
reg, inactive or active, as described in section 5.4).
This field is also used to distinguish real objects
from O prozies.

An indicator for an embedded object is the same
as that for its enclosing object except that the loff-
set field is used to give the offset of the embedded
object within its enclosing object. In the case of a
global object that has overlaid its prozy, the loffset

field is used to store the original virtual memory
address of the object in its cluster.

Only mature objects have pids. pids are allocated
by the kernel and used (together with the object’s
cluid) to locate the object when required.

Note that the GrRT distinguishes between the type
of an object as defined by its iid and its class as
defined by its cid. Any type can be implemented
by several different classes. In particular, the #id
for an object and for an O prozy for the object are
the same, while the cids are different.

Within each address space, every object (whether
immature or mature) has an entry in the local Ob-
ject Table (see section 5.3) managed by the GRT.
An object’s vid gives the position of the object’s
entry in the OT.

When stored in the storage system the state, vid
and uc fields of an object’s header are not used
and [srefs in its data area are converted to pptrs.

The layout of objects and clusters in virtual mem-
Note that
some objects may be copied out of their cluster to

ory and on disk is shown in Fig. 1.

overlay their O prozies in the same address space.

5.3 GRT Data Structures

Each address space also contains a number of tables
that are used by the GRT to keep track of the clus-
ters and objects which are mapped in the address
space:

e The Object Table (0T) is used to keep track of
the objects that are mapped into the address
space. Each oT entry contains a pointer to the
start of the corresponding object’s GRT header.

o The Cluster Register (CIR) which lists the
clusters which are mapped into the address
space.

e The Cluster Map (CIM) which lists the clus-
ters for which C prozies exist in the address
space. Given a pointer to any address within
a C prozy, the CIM is used to identify the cor-
responding cluster.
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Figure 1: The structure of a cluster

5.4 Mapping an Object

When stored in the storage system, every object is
in the dormant state.

A cluster is normally mapped into an address space
when an attempt is made to access one of its ob-
jects. On being mapped into an address space, all
global objects in the cluster will be registered in
the 0T as being present in the address space. Some
of these objects may already be represented by O
proxies in the address space and others not. Any
objects for which an O prozy does not already exist
in the address space will enter the reg state. In this
state, no code is linked with the object.

If a pptr that references a global object in the reg
state is swizzled, then that object is converted to
the inactive state. To do this, code which is capable
of responding to invocations on the object must
be associated with the object; for example, in the
case of a C++ object, any virtual function table
pointer(s) must be set up. Note that this code need
not be the real code for the object’s class. When
the object is first invoked it must be converted to
the active state — with the associated binding of
the real code for its class to the object and the
swizzling of its pptrs to Isrefs.

The inactive state was introduced so that a global
object can be made actlive without making the



global objects that it references active. So doing
would require more and more objects to be made
active when a large and complex structure was ac-
cessed. One way to avoid this would be to test
whether the target object is aclive or not when
dereferencing a Isref. Requiring this would not al-
low the operation invocation mechanisms of con-
ventional languages to be retained. Hence, the in-
active state was introduced.

The code associated with an inactive global ob-
ject must be able to trap the first invocation and
make the object active. This can be done either
by associating special code with the object in the
tnactive state, and changing this to the active code
when the object is made active. Alternatively, code
shared by both states could have a test at the start
of each operation, using the state field in the ob-
ject’s header to determine whether it is already ac-
tive or not. Obviously the latter approach, not only
incurs an overhead on each invocation, but also im-
plies that the language’s invocation mechanism is
changed.

When an object is made active, its references are
swizzled. Some of its ppirs may reference (through
their indicators) objects not currently mapped into
the address space. In this case, either an O or C
proxy for each such object is created, unless one
already exists. In the case of an O prozy, code must
be bound to the prozy to respond to attempts to
invoke the real object. The information required
to construct the O or C prozy can be found from
the indicator referenced by the pptr being swizzled.
The swizzled pptr becomes an [sref to the prozy.

When an O prozy is invoked for the first time, its
code passes the invocation to the GRT (the pid, etc,
of the required object can be extracted from the
prozy’s header). The GRT can decide either to make
a remote invocation or to map the invoked object’s
cluster into the caller’s address space. In the former
case, the GRT makes the invocation and returns the
result to the proxy. In the latter case, the GRT will
map the cluster in, overlay the proxy, make the ob-
ject active and pass the invocation to it. The prozy

is overlaid so that the [srefs already referencing it
will remain valid. Each of the other global objects
in the cluster either overlay their prozies and are
made inactive, or if no prozy exists, are converted
to the reg state. Note that a global object cannot
be mapped into an address space and have a prozy
in it.

The first access to a C prozy results in a protection
violation which is trapped by the GrT. The GRT
can then obtain the identifier of the target cluster
by looking up the faulting address in the CIM. In
this case the GRT will request the kernel to map
the required cluster into the space allocated to it
in the current address space, thus overlaying the C
proxy. Fach persistent object in the cluster then
enters the active state immediately. The protection
on the pages making up the cluster is then changed
and the attempted access restarted.”

5.5 Unmapping Objects

To unmap a cluster, all of its objects must first be
transformed into the dormant state. A number of
steps may be required to convert an object from the
reg, proxy, inactive or active states to the dormant
state.

An active global object that has no outstanding
invocations, and is not referenced by any object
that has, can be converted to the inactive state.
Outstanding invocations can be detected by look-
ing at the stacks and machine registers of all of the
threads in the address space. If the stacks and ma-
chine registers are viewed as being roots, then an
actlive object that is not directly referenced from
these roots can be made inactive. Further, any ob-
jects not directly or indirectly referenced by swiz-
zled pointers from these roots can be converted to
the reg state. If all objects in a cluster are in the
reg state then they can be converted to the dormant

"Note that it is not necessary for all objects within the
cluster to be made active but only those objects sharing the
same page (or pages) as the object being accessed.



state, and the cluster unmapped (asynchronously).
To increase efficiency, the GRT maintains a per-
cluster count of the number of objects in the active
or inactive states, as well as the total number of
objects in each cluster.

In principle, a cluster containing only persistent ob-
jects can be unmapped at any time by changing the
protection on the pages occupied by the cluster so
that further accesses to the cluster will be trapped,
that is, by effectively replacing the cluster with a
C prozy. Each object in the cluster could then be
transformed to the dormant state by the GRT in
the background. In practice, such objects will not
be unmapped until there are no swizzled references
to the cluster anywhere in the address space. Since
this in general requires a scan of the entire address
space, it is combined with local garbage collection.

On transforming an object from the active state
to one of the inactive, reg or dormant states, the
references in the object must be unswizzled. This
is done by using language-specific code to locate
the Isrefs it holds. Where lsrefs are not virtual
addresses, the address of the object (or prozy) ref-
erenced by each Isref must be determined. Each
[sref needs to be unswizzled to a pptr with the
GRT filling in the indicator allocated to the refer-
ence. The indicator’s information can be found
by locating the target object’s (or prozy’s) GRT
header, but because of the idiosyncrasies of differ-
ent languages, the address found by translating an
Isref may not point to a fixed offset from its target
object’s GRT header. Therefore, the GRT searches
backwards for the magic pattern, locates the ob-
ject’s vid, and checks if this is valid using the oT.
If the magic pattern appears by coincidence in the
data of an object, then the OT entry correspond-
ing to the value taken to be the vid will show that
the GRT header has not yet been found (because
the current search location will not equal the con-
tents of the oT entry), and the backward search
will continue.

The loffset field of the indicator is set to the dif-
ference between the address corresponding to the

Isref and the address of the GRT header. When the
reference is swizzled later, the loffset is added to
the address of the GRT header to give the address
from which the language constructs its Isref.

5.6 Code Management by the GRT

Each global object has one of three different normal
code blocks associated with it at any time:

e the real or active code for the object,
e the inactive code, or

e the prozy code,

and three different upcall code blocks (managed and
called by the GRT):

e the active upcall code,
e the inactive upcall code, or

e the prozy upcall code.

Each global object in the active, inactive and prozy
states has the corresponding normal and upcall
code bound to it. The normal code is bound in a
language-specific manner; the upcall code is bound
by the GRT — using a pointer in an object’s GRT
header (much like a C++ virtual function table
pointer).?

Only the active code performs the object’s proper
actions. The prozy code reports attempts to invoke
the object to the GRT, and the inactive code merely
waits for the first invocation on the object so that
it can cause the object to be made active.

Three normal and three upcalls code blocks are
not normally needed. In fact, it is possible to
have only one normal code and one upcall block
per-implementation, since a single version of these
could use the object’s state to determine their ac-
tions. However, the normal active code will usually

be separate, so that operations can run without

81n fact, the GRT is implemented in C++ and it views
object headers as C++ objects with virtual functions which
implement the upcalls.



testing the object’s state (see section 5.4). Simi-
larly, the active upcall code will be separate. The
normal inactive and prozy code will usually be the
same code block. The inactive and prozy upcall
code will normally be the same also. For persistent
objects, only the active code and active upcall code
are required.

The combination of a normal code block and its
associated upcall code block defines a class. Each
class is identified by its cid and is described by a
GRT data structure known as a class descriptor.
The set of all class descriptors for all known classes
is maintained in the Class Register in the storage
system. The GRT provides an interface to allow a
class descriptor for each newly defined class to be
registered by the LSRT.

Each class descriptor contains the (string) name of
the class, its cid, and the size of instances of the
class, as well as a reference to the upcall function
table for the class.

The GRT maintains a cache of class descriptors in
each address space. In memory, each class descrip-
tor is stored in the data of a GRT object which is
referenced by the Class Register Table — a hash
table indexed on cid. If a class descriptor is not
present in the Class Register Table then the GRT
must search the Class Register using the lid and

cid.

The primary use of the class descriptor is to lo-
cate the upcall code for an O prozy or object. For
example, when creating a new object, the class de-
scriptor of the normal class is used to locate the
upcalls for the object; likewise when creating an O
proxy, the proxy class descriptor is used.

6 The GRT Interface

The downcalls provided by the GRT fall into three
main categories:

e downcalls for the management of objects, in-
cluding object creation, trapping of object
faults and marshalling of parameter frames;

e downcalls concerned with cluster manage-
ment;

e and downcalls related to the abstractions im-
plemented by the underlying kernel which are
accessed via the GRT.

In the following, only the downcalls concerned with
management of persistent and global objects are

described:

create is used by a language to create new persis-
tent and/or global objects. This call requires
as parameters the size of the object and its lid,
1id and cid. The cid can be used to find the
upcall code for the object and hence to bind
the normal code to the object in a language-
specific manner.

resolve is typically called by the prozy code to
check if the associated object is in the prozy
or inactive states and, in the latter case, to
cause the object to be made active;

tblock is called to open a buffer into which the pa-
rameters to a remote invocation can be mar-
shalled. This call takes as parameters the size
of the parameter frame and the number of ref-
erences in the frame. This routine is typically
used by a proxy routine.

push is called to marshall a parameter into a
buffer opened with tblock or a result into a
buffer received in a remote request. In fact,
push is an overloaded operation — different ver-
sions exist for basic types and for references.
Pushing a reference will result in an indicator
being produced from the reference and being
marshalled and may result in the correspond-
ing object being promoted. Note however that
only a reference to a global object can be mar-
shalled in this way. All versions of push take
care of formatting the value for transmission
to heterogeneous nodes.

pop (also an overloaded operation) is used to re-
trieve a parameter or result from a received
parameter frame. Popping an object reference



may result in an O prozy for the object being
created if necessary.

rpc calls the GRT with a parameter frame describ-
ing an attempted invocation and asks the GrT
to handle the implied object fault. This may
result in a remote invocation or in the map-
ping of the target object. rpcis typically called
from a prozy routine.

For each object, an upcall may be class-specific or
it may be generic if there is enough runtime type
information available for the class in the LsrRT. The
upcalls, and comments on how they may be imple-
mented, are as follows:

onuse requests the object to perform language-
specific binding of its code. The upcall code
has to hold the identity of the code to be
bound; this must be built into it at compile
time or link time. In our C++ implementa-
tion, onuse sets up the virtual function table
pointers. The Eiffel runtime binds code to a
class by using a class identifier (which is known
as the Dynamic Type of the class and is stored
in the Eiffel-level object header) to index into
a table of pointers to per-class function tables.
In our Eiffel implementation, onuse changes
the dynamic type of the object (e.g., from that
for the inactive /proxzy code to that for the ac-
tive code).

activate is called when an object is being trans-
formed from the inactive or proxy state to the
active state. It can, and will normally, change
the cid field in the object’s header to indicate
that the object in the active state should run
different code. This is normally its only action;
however, a language may allow user written
code to be executed as well.

deactivate is called when an object is being trans-
formed from the active to the inactive state.
It can, and will normally, change the cid field
in the object’s header to indicate that the ob-
ject in the inactive state should run different

code. This is normally its only action; how-
ever, a language may allow user written code
to be executed as well.

nextptr is called so that the GRT can find the lo-
cations of references within the object, so that
they can be swizzled (going from inactive or
prozy to active), or unswizzled (going from ac-
tive to inactive). It is also called by the GRrT
garbage collector. In our C++ implementa-
tion, nextptr is generated from the class defi-
nitions. In our Eiffel implementation, nexiptr
is not class-specific: the implementation ac-
cesses the type information maintained by the
Eiffel runtime.

remote_dispatch is called when the GRT receives

a remote invocation for one of the object’s op-
The GRT cannot directly call the
operation because it does not understand the

erations.

calling mechanism, so it calls remote_dispatch,
which calls the operation. remote_dispatch
must understand the format of the parameters
passed from the proxy sending it the invoca-
tion. In our C++ and Eiffel implementations,
class-specific remote_dispatch routines are gen-
erated; each uses a case statement with an op-
eration identifier as the selector. Each arm of
the case statement makes a language-level op-
eration call.

The binding of upcall code is managed by the GRrT,
and is invisible at the language level. The binding
of normal code to the object is language dependent;
the GRT is not concerned about how this is done,
but it informs the LSRT, via the onuse upcall, when
to do the binding.

7 Critique

In this section we review some possible improve-
ments to the current GRT design and implementa-
tion. We begin by discussing improvements aimed
at better support for conventional languages and
then consider improvements aimed at supporting
a wider range of languages - particularly those al-
ready implemented for persistence or distribution.



7.1 Conventional Languages

The current version of the GRT was designed pri-
marily to aid the introduction of persistence, dis-
tribution and atomicity into languages whose base
versions do not support these facilities. While we
believe that our goals in this respect have been
largely achieved, as testified by the addition of per-
sistence, distribution and atomicity to C++ and
Eiffel, we are aware of a number of possible im-
provements to the current design.

Firstly, indicalors are large — thus increasing the
size of objects and therefore the cost of mapping
and unmapping them. Their size arises in part be-
cause indicators simultaneously support two dif-
ferent approaches to object fault detection: use of
O and C prozies. Both mechanisms require the
pid and cluid fields in indicators. O prozies also
require the uid field because O prozies are type-
specific; the size field because they can be overlaid
by real objects; and the lid field because iids are
unique only within a language. C prozies require
the clsize and cloffset fields. Naturally, the easiest
improvement is to overlay mutually exclusive fields.
Other improvements in this area will be discussed
in section 7.2 below.

Secondly, the oT will have to be extended to al-
low for languages whose Isrefs are not memory ad-
dresses or GRT pids, for example languages which
use indices into an object table as Isrefs. This
is straightforward because the GRT only needs to
store these Isrefs — it does not need to use them.

Thirdly, the nextptr upcall needs to be changed to
more efficiently handle sequences of references.

The C prozy mechanism for object faulting can be
used to allow direct access by client objects to the
data of an object, however a resulting object fault
is handled by trying to map the cluster into the
client’s address space or by raising an exception if
this cannot be done immediately. In future ver-
sions, the lock manager will be used to delay con-
flicting (legal) requests. A further step would be

to allow a cluster to be mapped into multiple ad-
dress spaces using DSM techniques [14] to maintain
consistency of the distinct copies.

Finally, the interface between the LSRT and GRT
may be extended so that the LSRT provides more
type information to the GRT for each object, either
through a standard interface or by extending class
descriptors to describe the layout of instances of
each class. Some languages, Eiffel for example, al-
ready maintain this information. Some of the class-
specific upcalls can then be replaced with generic
code which interprets an object’s type-information.
The neztptr upcall is the obvious example. This
will make it easier to port a language to the GRT.
Since more work will be done by the GrT, the lan-
guage implementer will only have to provide class-
specific type information which, as noted, is al-
ready available for several languages. There are
also other advantages in having such information
available, for example, to allow low-level language-
independent class browsers to be written.

7.2 Persistent or Distributed Languages

The initial aim of supporting the addition of per-
sistence and distribution to languages whose native
versions do not support these properties has had a
number of effects on the design of the GRT, not least
that it supports eager swizzling within an object,
which ensures that pointers are swizzled into [srefs
before the active code of the object is run. The
GRT currently cannot support lazy swizzling or no
swizzling. In fact, the changes required to support
these are not major; for example, when being ac-
tivated the nextptr upcall could indicate that an
object has no references, and then the LSRT could
choose whether or not to swizzle its references as
it uses them. Nevertheless, this would require a
number of small changes to the GrT: for exam-
ple, distinguishing between the different occasions
when nexiptr is called so that an object which does
lazy swizzling can still make its references visible
to the garbage collector.



There is also a need for increased flexibility in the
forms of references allowed in non-active objects.
Languages that use O prozies and lazy swizzling
will not need the size field in indicators. Also, the
use of offsets (pptrs) to indicators will not always
be appropriate; hence in-line references will be sup-
ported for objects on disk.

In addition, for applications that access large vol-
umes of data, it is desirable to allow clusters to
be unmapped without requiring an address space
scan. This is possible if a language’s operation in-
vocation mechanism tests for the presence of an
object before invoking on it, and if active invoca-
tions on an object are easily detected. For example,
if no swizzling is performed and if calls to pin and
unpin routines [19] surround each invocation (or
sequence of invocations) on the objects in a clus-
ter, then that cluster can be unmapped when its
pin-count is zero. We refer to such clusters as non-
anchored clusters. The GRT will be extended to al-
low a cluster to be marked as being non-anchored
as it is mapped into an address space.

The object references in some persistent and dis-
tributed languages [12, 6] are always virtual mem-
ory addresses, those avoiding the need to do any
swizzling. The GRT does not fully support this
mechanism. One component of this is already in
place, that is the allocation of virtual memory
space to absent objects and the handling of re-
sulting protection faults. However, this will need
to be extended with global allocation of memory
addresses as object identifiers, and issues such se-
curity and heterogeneity support will have to be
examined again.

8 Conclusions

In this paper we have described the motivations
and requirements for providing a Generic Runtime
library which facilitates the simultaneous exten-
sion of multiple conventional 0OPLs with support
for persistence, distribution and atomicity without

duplication of effort. We showed that such a GRT
has been implemented which allows an 0OPL’s ex-
isting (local) object reference format and invoca-
tion mechanism to be retained so that its exist-
ing compiler need not be modified. The GRT does
not impose any language syntax changes but leaves
the need for, and the style of, any such changes as
matters for the language designer. We have shown
that, using this GRT, extending a language for use
in a multi-user, heterogeneous distributed system
only requires the provision of certain well-defined
pieces of code. We claim that the use of a common
GRT also facilitates language interworking.

The GRT has been used to add persistence, dis-
tribution and atomicity to C++ and Eiffel — to
give Cx* and FEiffel**. The formats of Isrefs and
the operation invocation mechanisms remain un-
changed in both languages. C#* introduces new
keywords to allow programmers to control which
classes should have persistent, global or atomic in-
stances; in Eiffel** no syntax changes were intro-
duced. These languages, together with the under-
lying support system, are being used to provide
sophisticated distributed applications including an
implementation of the DASSY CAD tool interface
[10] supporting a collection of interworking CAD
tools and programmed in C#** and an interopera-
tor for heterogeneous database systems.

Our current work is concerned with designing and
implementing the improvements described in sec-
tion 7. We are working on supporting a version of
the E persistent programming language — a vari-
ant of C++ — and extending it for distribution. In
doing so we will retain E’s invocation mechanism
which has been changed from that of C++.

Future work includes support for inter-language
working (via iprozies which accept operation in-
vocations in one language and forward them to an-
other) and the provision of debugging tools.
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