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Abstract 

 
This paper describes an architecture that provides 

support for quality of service (QoS) specification and 
enforcement in heterogeneous distributed computing 
systems. The Quartz QoS architecture has been designed 
to overcome various limitations of previous QoS 
architectures that have constrained their use in 
heterogeneous systems. These limitations include 
dependencies on specific platforms and the fact that their 
functionality is often limited by design to one particular 
area of application. Quartz is able to accommodate 
differences among diverse computing platforms and areas 
of application by adopting a flexible and extensible 
platform-independent design, which allows its internal 
components to be rearranged dynamically in order to 
adapt the architecture to the surrounding environment. 
Further significant problems found in other QoS 
architectures, such as the lack of flexibility and 
expressiveness in the specification of QoS requirements 
and limited support for resource adaptation, are also 
addressed by Quartz. This paper describes the 
motivations for and design of Quartz in detail, presents a 
prototype implementation of Quartz and an analysis of its 
design based on experience with a number of applications 
that use this prototype. 

 
 

1. Introduction 
 
 Despite the evolution of computing platforms, 

computational resources such as network bandwidth, 
processing time and memory are still scarce due to the 
increasing complexity of computer applications. 
Moreover, there is a category of application that cannot 
tolerate uncertainty concerning access to computational 
resources, demanding that the availability of resources be 
predictable. These applications can have different levels 
of dependence on the resources provided by the system, 
ranging from the strong resource availability guarantees 
required by real-time embedded control systems to the 
best-effort nature of non-critical Internet-based 
multimedia applications. The requirements imposed on 
the behaviour of the services being provided to an 

application by the system support are known as quality of 
service, or QoS for short. 

The main problem faced by applications with QoS 
requirements is to guarantee that system services will be 
performed while respecting all of the QoS requirements 
imposed by the application. A myriad of resources may 
have to be provided by the underlying system to perform 
a service, ranging from local resources such as memory 
and CPU to network bandwidth and other remotely 
located resources. Modern networks and operating 
systems (OSs) provide predictable behaviour through the 
use of resource reservation mechanisms. However, most 
applications do not benefit from these mechanisms 
because distributed computing middleware is still being 
adapted to make use of them. 

Many different types of hardware, OS and network 
infrastructures and protocols coexist, and multiple 
resource reservation protocols populate this complex 
environment. Nevertheless, applications with QoS 
constraints expect similar behaviour from the underlying 
system support independently of the particular 
characteristics of the hardware, OS and network support 
present in the underlying platform.  

QoS architectures describe middleware that provides 
applications with mechanisms for QoS specification and 
enforcement. These architectures organise the resources 
provided by the system with the intent of fulfilling the 
QoS requirements imposed by their client. Consequently, 
allowing applications to reserve resources via a 
middleware layer implies that the differences between 
resource reservation protocols have to be masked by the 
middleware itself. Substantial work on QoS architectures 
can be found in the literature (see [1] for a survey). 
However, the architectures proposed so far consider only 
part of the overall problem of QoS specification and 
enforcement [2].  

Our focus in the study of QoS architectures is on the 
provision of QoS-constrained services in heterogeneous 
distributed computing systems. The QoS architectures 
proposed so far typically have a strong dependency on a 
particular computing platform. Real-time operating 
systems combined with ATM are the most popular 
platforms for the development of QoS architectures 
because of their suitability for the implementation of QoS 
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mechanisms for resource reservation. Examples of such 
architectures are QoS-A [3] and Xbind [4]. This tight 
dependency on a specific platform constrains their 
application in open environments, where heterogeneity is 
an intrinsic characteristic. Some architectures are also 
targeted at particular application areas, with distributed 
multimedia being the one where the technology is most 
mature because of several research projects that have 
explored this topic (see [5] for a review of QoS in 
distributed multimedia systems).   

In addition, other important problems can be identified 
in the QoS architectures presented in the literature. Some 
architectures constrain the expressiveness of the user in 
the specification of QoS requirements and lack 
transparency from the lower level, forcing the user to deal 
with a notion of QoS that is not familiar for him. In some 
cases, due to the tight integration of the architecture with 
the lower-level platform, the user must know the 
characteristics of the available reservation mechanisms in 
order to make use of the architecture, while a higher level 
of transparency would be more appropriate for the user. 
Furthermore, in most architectures support for resource 
adaptation is very limited, if not completely absent.  

In this paper we present Quartz [6], a generic QoS 
architecture that addresses the limitations of previous 
proposals in this area. This is achieved by adopting a 
highly flexible, extensible, component-based platform-
independent design, which supports user transparency 
from the underlying system and at the same time is 
suitable for heterogeneous distributed computing systems. 

The remainder of this paper is organised as follows. 
Section 2 surveys this area of research. Section 3 explains 
in detail the proposed QoS architecture. Section 4 
presents a prototype implementation, describes a number 
of applications that were built on top of this prototype, 
and analyses the obtained results. Finally, section 5 
presents some conclusions and plans for future work. 

 
 

2. Quality of service 
 
In this section we present the main concepts in the area 

of quality of service, including resource reservation 
mechanisms and QoS architectures.  

 
2.1. Concepts 

 
‘Quality of Service’, or QoS for short, is the keyword 

used to represent the set of requirements imposed by a 
user (human being or software component) on the 
behaviour of the services being provided to an application 
by the underlying system support.  

QoS is defined by the ISO OSI/ODP group as ‘a set of 
qualities related to the collective behaviour of one or 
more objects’ [7]. Other authors try to clarify this 

definition. For example, Vogel et al. [5] state that QoS 
‘represents the set of quantitative and qualitative 
characteristics of a distributed multimedia system 
necessary to achieve the required functionality of an 
application’. We adopt a very similar definition, except 
that we do not constrain the application of QoS to 
distributed multimedia systems, but also extend the 
application of QoS to any system with constraints related 
to response time, performance, and/or output quality. This 
includes, besides distributed multimedia, other areas such 
as real-time systems, cooperative work and high capacity 
storage servers. 

ISO, along with the concept of QoS, defines a 
complete terminology for dealing with QoS. Their 
concern is mainly with the application of QoS to the 
specification of communication services at network level. 
We prefer to adopt their terminology slightly modified to 
encompass diverse areas of application.  

 
2.2. Resource reservation 

 
The concept of resource reservation provides the 

predictable system behaviour necessary for applications 
with QoS constraints. Reservation mechanisms have to 
keep track of the use of the limited set of resources 
provided by the system, and receive requests from new 
users interested in using these resources. New requests are 
subject to admission tests based on current resource usage 
and the guarantee levels requested by the user. 
Reservations are then accepted, if enough resources are 
available, or rejected if not. The problem of allocating 
limited resources becomes even more complex if we 
consider that current computational systems are basically 
heterogeneous, subject to mobility and constant 
reconfiguration, but still have to provide a dependable and 
accurate service in a limited response time. 

Mechanisms for resource reservation are being 
incorporated into networks and OSs in order to guarantee 
the availability of resources for applications. In the area of 
computer networks, the development of ATM [8] 
represented a significant advance towards the provision of 
QoS-constrained communication services. Aiming to 
provide similar behaviour, but working at the logical 
network level, the IETF is adding reservation capabilities 
to its suite of protocols, including the resource reservation 
protocol (RSVP) [9], which handles QoS at the network 
level, and the real-time transport protocol (RTP), which 
works at the transport level. At the OS level, some work 
has been done to extend OSs to provide more predictable 
behaviour suitable for applications with QoS constraints. 
Real-time OSs, such as QNX [10] and Chorus [11], have 
mechanisms that provide time-constrained services. 
Following the same direction, desktop OSs such as Linux 
[12] and Windows NT [13] are being adapted to provide 
behaviour suitable for applications with QoS constraints.  
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Despite providing an important contribution towards 
the provision of QoS for applications, resource 
reservation protocols are situated at a low level of 
abstraction, which is not suitable for the application 
programmer to deal with. 

 
2.3. QoS architectures 

 
QoS architectures are responsible for integrating QoS 

mechanisms in computational systems in order to 
organise the resources provided by the system in a 
consistent manner with the intent of fulfilling the QoS 
requirements imposed by the user. In other words, QoS 
architectures aim to fill the gap between resource 
reservation protocols, situated at a low level of 
abstraction, and the application level. 

To allow the utilisation of the mechanisms provided by 
networks and operating systems with resource reservation 
capabilities at user level, several QoS architectures have 
been defined in the literature [1]. However, most of these 
architectures have limitations in the way they allow QoS 
to be specified, or related to the way they enforce QoS 
using the resources provided by the underlying system 
support. These architectures typically target only a 
specific configuration of processing and communication 
hardware, constraining their utilisation in open, 
heterogeneous systems. Furthermore, support for dynamic 
resource adaptation is typically limited or completely 
absent. These drawbacks, and the strategies adopted by us 
with the aim of solving them, are discussed in more detail 
in the next section. 

 
 

3. The Quartz architecture 
 
We have designed and implemented a QoS architecture 

with the intent of addressing the limitations of previous 
proposals in the area. The Quartz architecture is based on 
a highly flexible, extensible, and platform-independent 
design that allows it to be used in different application 
areas and in conjunction with a variety of different 
resource reservation protocols. The development of an 
architecture with these characteristics represents an 
important challenge in this area of research. 

 
3.1. Handling heterogeneity 

 
The main goal considered in the development of 

Quartz was to provide support for heterogeneous systems. 
This implies that the architecture should be able to handle 
the different protocols and hardware that can coexist in an 
open, distributed and heterogeneous platform. Similarly, 
the architecture is expected to provide support for very 
diverse applications, which may have different ways to 
express and handle QoS requirements.  

Internet Real-Time OS ATM LinkDesktop OS

Video App.

Quartz QoS Architecture

CSCW App. Real-Time App. Data Pkt. App.

 

Figure 1. Quartz in a heterogeneous environment 

Figure 1 illustrates the use of the Quartz QoS 
architecture in a heterogeneous environment. Applications 
requiring QoS enforcement use the mechanisms provided 
by Quartz to specify their requirements. In order to 
enforce the required QoS, Quartz employs the resource 
reservation protocols available in the target network and 
operating system. 

In order to handle heterogeneity, Quartz must not only 
be capable of being ported to different platforms, but it 
also has to be capable of handling QoS for an application 
when the lower-level resource reservation protocol 
changes without requiring recompilation. For example, if 
the application is able to transfer data using both ATM 
and TCP/IP, the QoS architecture has to be able to 
perform QoS reservations for both protocols by adapting 
itself internally instead of requiring a new port of the 
architecture to be linked to the application. This level of 
flexibility is achieved by Quartz by adopting an 
architectural design based on interchangeable 
components, in which components able to handle QoS for 
different reservation mechanisms can be plugged into the 
architecture dynamically. In addition, support for new 
reservation protocols can be added to the architecture 
without the necessity of porting the whole infrastructure. 
Instead, a new component that interacts with the new 
reservation protocol can be written by the programmer.  

 
3.2. QoS specification and translation 

 
QoS parameters have to be translated between different 

levels of abstraction to be meaningful for the mechanisms 
present at a particular level. Two main levels of 
abstraction can be identified: the application level and the 
system level. Requirements specified at different levels 
are related, but differ strongly in their interpretation. An 
application parameter is generally related to an idea 
present only at this level, for example the number of 
frames of video shown per second in a video broadcast 
application. At system level this corresponds to 
requirements on the network bandwidth needed to transfer 
data, the processing time needed to compress and 
decompress the information, the amount of memory used 
by the application, etc.  

For the user it is easier to abstract from the system 
level and concentrate on his own view of quality. 
However, many QoS architectures do not provide 
mechanisms for mapping QoS requirements between 
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different levels of abstraction, forcing the user to deal 
with a system-level notion of quality that may not be clear 
for him. Furthermore, the application area in which a QoS 
architecture can be employed varies enormously. For 
example, a QoS parameter such as ‘frequency range’ for 
an audio application would be completely meaningless for 
an application based on data transfer. Therefore, a balance 
must be achieved between the needs of different 
application fields regarding the manner in which QoS 
requirements are expressed and the generalisation 
necessary for the architecture to be deployed over 
heterogeneous platforms. Any attempt to define a 
common set of QoS parameters to be employed by the 
application to specify its QoS requirements would 
constrain its expressiveness. Consequently, the 
mechanisms for QoS specification provided by Quartz 
must be flexible enough to accept different formats of 
QoS parameters and must be extensible in order to 
recognise a potentially infinite set of QoS parameters. 

The QoS parameters specified by the application must 
be interpreted appropriately by Quartz in order to perform 
the reservation of resources at the lower level. This 
implies translating the parameters from their original 
format into parameters that are understood internally by 
Quartz. In order to translate parameters, a mapping must 
be established between parameters at different levels. 
Mappings are not usually one-to-one between parameters, 
but may be one-to-many, many-to-one or many-to-many. 
This implies that resources might be interchangeable, and 
that balancing requirements and resources is another task 
that has to be performed by the architecture. Although the 
whole mapping may be complex, the process of 
translation typically consists in simple arithmetic 
operations over a limited set of variables. For the 
particular case in which several different application areas 
and reservation protocols must be supported, the 
translation process has to deal with different sets of 
parameters appropriate for the environment into which it 
is inserted. The creation of direct (one-step) translators for 
X application fields deployed on top of Y reservation 
protocols would need the definition of X * Y translators.  

In order to avoid having a translator for each 
combination of application field and reservation protocol, 
Quartz adopts a three-step translation process. 
Applications specify their application-specific 
parameters, which are first translated into a set of generic 
application-level parameters defined by Quartz. These 
parameters are further translated into a set of generic 
system-level parameters and balanced between the 
network and the operating system. Finally, generic 
system-level parameters are translated into the system-
specific parameters understood by each of the reservation 
protocols present in the underlying system.  

The sets of generic application-level and generic 
system-level parameters recognised by Quartz during the 

translation process are listed in Table 1 and Table 2 
respectively. Parameter names are suffixed by a tag that 
identifies the corresponding abstraction level. Threshold 
values can be specified by suffixing parameter names 
with ‘Max’ for specifying maximum values and ‘Min ’ for 
minimum values.  

These sets of generic parameters have been chosen 
based on the generic notion of QoS present at the 
corresponding abstraction level. Despite the 
generalisation necessary for the architecture to be able to 
handle these parameters, the power of expression of the 
application is not affected because requirements are 
expressed by using application-specific parameters. Since 
the generic parameters are close to the notion of QoS 
present at each level of abstraction, it is easy to establish 
an efficient mapping and perform a low-complexity 
translation process between the generic parameters and 
the application and system-specific sets of parameters.  

Table 1. Generic application-level QoS parameters 

Parameter Name Description 
App::DataUnitSize Size of data units  
App::DataUnitRate Rate of data units  
App::EndToEndDelay Total delay 
App::ErrorRatio Acceptable error 

App::Guarantee 
Level of service guarantee 
(deterministic, best-effort, ...) 

App::Cost Financial cost 
App::SecurityLevel Security mechanism 

Table 2. Generic system-level QoS parameters 

Parameter Name Description 
Net::Bandwidth Network Bandwidth 
Net::PacketSize Size of data packets  
Net::Delay  & OS::Delay Network and OS delays 
Net::ErrorRatio Acceptable transmission error 
Sys::Guarantee Levels of service guarantee  
Net::Cost  & OS::Cost Financial cost  
Sys::SecurityLevel Security mechanism  

Table 3. Example of parameter translation   

Application Parameter ÆÆ System Parameters 
Audio::Quality  = AUDIO_CD (44KHz, 16 bits/sample) 
App::DataUnitSize  = 2 bytes;  
App::DataUnitRate  = 44k/s 
Net::Bandwidth  = 88 Kb/s 
RSVP::TokenRate  = 88Kb/s;  
RSVP::BucketSize  = 88Kb; … 

Table 4. Example of parameter balancing 

Generic App. Parameter ÆÆ Gen. System Parameters 
App::EndToEndDelay  = 500 ms 
Net::Delay  = 300 ms; OS::Delay  = 200 ms 
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In order to illustrate the translation process, Table 3 
shows the transformation undergone by a parameter at 
different levels of abstraction (in this case, audio quality 
is translated into a set of RSVP parameters). Table 4 
illustrates the case of a parameter (in this example, the 
overall delay) that must be balanced between the network 
and the operating system. 

Quartz is also required to allow dynamic changes in 
the distribution of resources to be performed by the 
system. This must occur without causing loss of service 
consistency at application level. Any change in the 
reservation of resources at lower-level must be reported to 
the application by using QoS parameters that are 
understood at high level. This implies that the QoS 
architecture has to perform a reverse translation of 
parameters before informing the application that QoS has 
changed.  

 
3.3. QoS enforcement and resource reservation 

 
Quartz must provide transparency of QoS and 

reservation mechanisms from the application’s point of 
view. This implies that the interaction with the reservation 
protocols present in the underlying system, which is 
necessary to guarantee the QoS to be provided to the 
application, must be performed by Quartz. However, 
different resource reservation protocols may be present in 
an open environment, and each of the existing reservation 
protocols has its own interface and its own mechanisms 
for resources allocation.  

Quartz is able to interact with different reservation 
protocols by defining, for each reservation protocol, a 
component that encapsulates all the mechanisms 
necessary for interacting with it. By adopting this 
strategy, we hide from the application the differences 
between the way different protocols allow resources to be 
reserved. This has the important effect of increasing the 
portability of applications across different platforms, and 
makes it easier to extend the architecture in order to 
support new resource reservation protocols.  

The components defined by the Quartz architecture 
will be described in detail in section 3.5. 

 
3.4. QoS adaptation 

 
One important trend in the area of resource reservation 

protocols is the provision of support for resource 
adaptation [14]. Initial studies in this area defended the 
provision of deterministic guarantees in the allocation of 
resources, which would be valid for the entire lifetime of 
the application that requested the resource reservation. 
However, several drawbacks appear in efforts to provide 
completely guaranteed resource reservation due to the 
impossibility of guaranteeing the availability of resources 
in computer systems subject to hardware reconfiguration 

or failure. Aiming to overcome this problem, another 
school of thought proposed the development of adaptive 
applications to deal with the changes in resource 
availability during the provision of service. However, 
pure adaptation does not solve the problems faced by 
applications with strong QoS requirements, which are not 
satisfied by the best-effort systems currently available.  

A third idea based on resource adaptation, which mixes 
both approaches mentioned previously, has been 
considered as a viable and necessary alternative to both. 
Resource reservation combined with adaptation yields a 
more flexible approach for providing QoS to applications. 
In this approach, resources are seen by applications as 
guaranteed during some time, but their availability can 
vary over long periods. This technique allows resources to 
become unavailable due to reasons such as hardware 
failure, system reconfiguration, or because they are 
required by an application with higher priority. 
Applications are responsible for estimating their initial 
resource requirements and for specifying them by 
interacting with the reservation protocol. In addition, 
applications have to be able to adapt their behaviour at 
run time based on feedback received from the protocol.  

Quartz provides support for QoS adaptation at both 
system and application levels. In the Quartz architecture, 
some QoS requirements such as cost and delay are 
defined by the sum of resources provided by both the 
operating system and the network. Consequently, losing 
resources from one source may be compensated by 
requesting more resources from another source. When this 
is possible, the adaptation occurs only at the system level, 
completely transparent from the application’s point of 
view, and the quality seen by the application is not 
affected. If adaptation at system level fails, Quartz 
notifies the application, which has to adapt its 
requirements in order to decrease the consumption of 
resources. This can be done for example by reducing the 
quality of a video stream or changing the compression 
method used for data transfer.  

The notification message sent by Quartz to the 
application carries QoS parameters understood at 
application level, which reflect the changes in resources 
reserved at system level. During this process, a set of 
system-level QoS parameters is translated into 
application-level QoS parameters by using the reverse 
translation path provided by the translation components.  

 
3.5. Architectural components 

 
Each component defined by Quartz encapsulates a 

particular task in the overall problem of QoS specification 
and enforcement in an open, heterogeneous environment. 
These components can be easily replaced by different 
ones in order to adapt the architecture to a new target 
environment. 
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Figure 2. Detailed structure of the QoS agent 

The QoS agent, the central component of the Quartz 
architecture, is responsible for implementing the QoS 
mechanisms necessary for the provision of services with 
the quality requested by the user. This involves two main 
tasks: the translation of QoS parameters between different 
levels of abstraction, and the interaction with the 
underlying reservation mechanisms provided by the 
resource reservation protocols present in the system.  

The QoS agent, as illustrated by Figure 2, is composed 
of a translation unit and multiple system agents 
associated with the reservation protocols responsible for 
administering the use of the available resources.  

The translation unit contains a QoS interpreter and 
QoS filters. QoS filters can be subdivided into application 
and system filters, which are responsible for translating 
their respective sets of QoS parameters to and from the 
generic set of parameters at the same abstraction level. 
The QoS interpreter establishes the mapping between the 
two sets of generic parameters defined by Quartz. During 
this process, the balancing agent, which is basically a 
resource trader encapsulated by the interpreter, balances 
the usage of resources between the network and the 
operating system. When either the operating system or 
network reduces the resources allocated to the application 
due to resource adaptation, the balancing agent tries to 
compensate for the loss of resources on one side by 
requesting more resources from the other. If this process 
succeeds, nothing changes from the application point of 
view, but when it fails, the application must be notified 
and asked to adapt its requirements.  

Finally, the system agents use the values of the QoS 
parameters provided by the translation unit to perform the 

necessary reservation of resources using the 
corresponding reservation protocol. Each system agent is 
familiar with the public interface of the corresponding 
reservation protocol, being able not only to request 
reservations but also to monitor the usage of the resources 
allocated to it and to receive notifications from the 
protocol informing it of the occurrence of resource 
adaptation. 

 
 

4. Validation and evaluation 
 
We have developed a functional prototype of the 

Quartz architecture in order to analyse its behaviour when 
supporting applications with QoS requirements. In this 
section we present this prototype and a number of 
applications built on top of it for validation purposes. 
Finally, we evaluate Quartz in face of the requirements 
imposed on it.  

 
4.1. The Quartz prototype 

 
The prototype is composed of a set of fixed 

components that form the common core of the 
architecture and a series of replaceable components that 
can be plugged into this core whenever necessary.  

The Quartz prototype has system agents and filters for 
the RSVP protocol, for ATM networks, and for the real-
time mechanisms provided by Windows NT©.  

The parameters recognised by the RSVP filter and 
agent are listed and described by Table 5. The parameters 
defined for RSVP use a token bucket to model the data 
traffic. In addition to the network support provided by the 
operating system, we use the implementation of RSVP 
developed by Intel, called PC-RSVP, for implementing 
the RSVP agent.  

A system agent and filter for ATM networks have also 
been implemented. ForeRunner LE PC cards and a Fore 
Systems ASX 100 switch have been used for this purpose. 
We also rely on the WinSock2 service provider that is 
supplied by Fore Systems together with the hardware. The 
parameters defined for the ATM sub-system are listed and 
described by Table 6.  These parameters correspond to the 

Table 5. RSVP QoS parameters 

Parameter Name Description 
RSVP::TokenRate Rate in which tokens are produced 
RSVP::BucketSize Size of the token bucket 
RSVP::PeakRate Maximum data rate 
RSVP::MinPoliced Amount of data subject to policy 
RSVP::MaxPktSize Maximum packet size 
RSVP::Rate Rate (only for deterministic service) 
RSVP::SlackTerm Slack (only for deterministic service) 
RSVP::FlowType Type of data flow 
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Table 6. ATM QoS parameters 

Parameter Name Description 
ATM::PeakCellRate Max. rate of cell production 
ATM:: SustCellRate Long-term sustainable cell rate 
ATM::MaxBurstSize Maximum cell burst 
ATM::QoSClass  Type of data flow (CBR,VBR, …) 
ATM::Tagging Tag non-compliant cells to discard 

 
fields of the data structure used for performing resource 
reservations. Consequently, the ATM Agent just has to 
collect this information, fill in a data structure and call the 
appropriate routine provided by WinSock2 in order to 
perform a reservation. 

At the operating system level we have adopted 
Windows NT as the platform for the deployment of this 
prototype of Quartz. As a result, a system agent and a 
filter have been developed for this operating system.  

The provision of QoS in Windows NT is limited. We 
make use of the real-time priority class and of 
mechanisms for memory locking to provide a more 
predictable service, which is still non-deterministic.  

Only two QoS parameters are defined for Windows 
NT. They are: 
• WinNT::PriorityLevel : defines the priority level of a 

process; used by the operating system to schedule 
access to the processor. 

• WinNT::MemoryPaging : determines if the memory 
allocated by the process will be subject to paging 
operations, which introduce unpredictable delays and 
may degrade performance. 

In the future, we intend to extend the range of systems 
supported by Quartz by providing system filters and 
agents for other resource reservation protocols. 

 
4.2. The RCP application 

 
A remote copy daemon and client, equivalent to the 

UNIX ‘ rcp ’ daemon and command, have been 
implemented using the Quartz prototype. This application 
is able to use either TCP, UDP (including multicast) or 
ATM for data transfer, and a graphical interface allows 
the user to select the required protocol and the desired 
QoS parameters. Quartz was used as a means of reserving 
resources for the multiple network supports without 
adding complexity to the application. According to the 
network reservation protocol being used, a suitable pair of 
system agent and filter is plugged into the QoS agent. The 
RSVP agent and filter are used for TCP and UDP, while 
ATM requires its own filter and agent.  

In order to handle the notion of QoS understood at 
application level, we have implemented a data packet 
application filter, which interprets QoS as understood by 
applications transmitting data packets. The QoS 
parameters  understood  by  this  filter  are   described   by 

Table 7. Data packet QoS parameters 

Parameter Name Description 
DPkt::PacketSize  Size of packets 
DPkt::DelayBwPackets  Delay between two packets 
DPkt::EndToEndDelay  Total delay for packet delivery 
DPkt::ErrorRatio  Acceptable error ratio 
DPkt::Guarantee  Guarantee level 
DPkt::SecurityLevel  Security level 

 
Table 7. A clear mapping may be noticed between these 
parameters and the generic application-level parameters 
presented in Table 1. This mapping is implemented by the 
data packet application filter. 

The remote copy application allows the user to specify 
QoS requirements by providing values for packet size and 
packet rate as well as service guarantee (i.e. best-effort, 
unloaded or deterministic) through a graphical interface. 
These values are interpreted by the translation unit and 
then the system agents reserve the corresponding 
resources by interacting with the reservation protocols 
supported by the network and the operating system. 

 
4.3. Evaluation and analysis  

 
Important conclusions can be reached based on the 

observation of the remote copy example and on the results 
of performance measurements executed with it.  

The remote copy example shows that the resource 
provider can be changed without interfering with the 
application code. Independently from the reservation 
protocol used at the network level – i.e. RSVP or ATM – 
equivalent behaviour was observed from the application’s 
point of view in regard to the provision of QoS. This 
shows that, by using Quartz, the reservation mechanism 
became transparent for the application despite the 
different characteristics of the lower-level reservation 
protocols. Consequently, applications using Quartz are 
highly portable, since the code necessary for requesting 
QoS behaviour is kept unchanged independently of the 
underlying system that is providing resources for the 
application. The use of different system agents and filters 
shows that Quartz can be used in different platforms, and 
that the filters can be combined freely in order to reflect 
the characteristics of the underlying system.  

Performance tests have shown that the overhead added 
by Quartz to the application is very small. Table 8 shows 
typical values of the overhead imposed by Quartz for the 
remote copy application. This data was obtained on a 
Pentium Pro 200 MHz by using the profiling tools that 
accompany Microsoft Visual C++ 5.0.  

The total overhead caused by Quartz in a single request 
(i.e. the time taken to specify, translate and interact with 
the resource reservation protocols) is of about 1.2 
millisecond  for  both  ATM  and  RSVP.   This   value  is 
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Table 8. Overhead imposed by Quartz 

 ATM RSVP 
Initialisation of Reserv. Protocols N/A 24.86 ms 
Initialisation of Quartz 346 µs 9.272 ms 
Total Overhead per Reservation 1.177 ms 1.220 ms 
composed of:  QoS Specification 93 µs 113 µs 
 QoS Translation 759 µs 991µs 
 QoS Reservation  325 µs 116 µs 

 
considerably less that it takes to open a socket (about 10 
ms) or to obtain the host name (which in our testbed 
varied from 5 to 40 ms). The initialisation of Quartz is 
also considerably fast even for RSVP, which takes 
relatively long to initialise; since in ATM the reservation 
mechanism is integrated with the transport, no extra time 
is taken to initialise it. The overhead caused by the 
initialisation of Quartz occurs only once, while the 
overhead per reservation occurs every time the 
application requests a new set of QoS requirements to be 
enforced. There is no overhead imposed on the 
transmission of data, which depends only on the 
networking infrastructure and on the resources reserved 
for the communication channel. 

In addition to being used in heterogeneous 
environments, Quartz can be used in different application 
areas. Besides the use of Quartz for data transfer 
applications, other applications have been implemented 
on top of Quartz in the areas of distributed multimedia 
(the Quartz/CORBA Framework and the Distributed Music 
Rehearsal Studio) and real-time systems (a telephone 
switch application and a pattern recognition mechanism).  

The application examples built on top of Quartz show 
the adequacy of the mechanisms for specification of QoS 
provided by Quartz and its suitability for enforcement of 
QoS in open systems. In each of the examples, the QoS 
parameters seen by the application, either when it 
specifies its QoS requirements or when it receives a QoS 
notification, are in the form of application-specific 
parameters suitable for the particular application area. The 
resulting parameters at system level allow the reservation 
of resources to be performed by using the reservation 
protocols available in the underlying system.  

 
 

5. Conclusions and future work 
 
In this paper we have introduced a QoS architecture 

that deals with QoS constraints present in distributed 
applications. Quartz makes the lower-level aspects of 
resource reservation transparent for the application, 
although allowing the necessary control through 
notification in the case of resource adaptation.  

Quartz was designed to allow its use in open systems, 
enabling its easy extension to support new classes of 

applications and new reservation protocols by adding 
components written by the application programmer.  

We have developed a prototype of the Quartz 
architecture that has been used to provide mechanisms for 
QoS specification and enforcement. Applications built on 
top of this prototype show that Quartz handles 
heterogeneity at both system and application level 
efficiently, without incurring severe performance 
penalties. In the future, we intend to extend the platform 
coverage of the architecture by implementing new 
components that would provide support for a wide range 
of underlying systems.  
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