
Quartz: A QoS Architecture for Open Systems

Frank Siqueira and Vinny Cahill
Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

E-Mail: Frank.Siqueira@cs.tcd.ie, Vinny.Cahill@cs.tcd.ie

Abstract

This paper describes an architecture that provides

support for quality of service (QoS) specification and
enforcement in heterogeneous distributed computing
systems. The Quartz QoS architecture has been designed
to overcome various limitations of previous QoS
architectures that have constrained their use in
heterogeneous systems. These limitations include
dependencies on specific platforms and the fact that their
functionality is often limited by design to one particular
area of application. Quartz is able to accommodate
differences among diverse computing platforms and areas
of application by adopting a flexible and extensible
platform-independent design, which allows its internal
components to be rearranged dynamically in order to
adapt the architecture to the surrounding environment.
Further significant problems found in other QoS
architectures, such as the lack of flexibility and
expressiveness in the specification of QoS requirements
and limited support for resource adaptation, are also
addressed by Quartz. This paper describes the
motivations for and design of Quartz in detail, presents a
prototype implementation of Quartz and an analysis of its
design based on experience with a number of applications
that use this prototype.

1. Introduction

 Despite the evolution of computing platforms,

computational resources such as network bandwidth,
processing time and memory are still scarce due to the
increasing complexity of computer applications.
Moreover, there is a category of application that cannot
tolerate uncertainty concerning access to computational
resources, demanding that the availability of resources be
predictable. These applications can have different levels
of dependence on the resources provided by the system,
ranging from the strong resource availability guarantees
required by real-time embedded control systems to the
best-effort nature of non-critical Internet-based
multimedia applications. The requirements imposed on
the behaviour of the services being provided to an

application by the system support are known as quality of
service, or QoS for short.

The main problem faced by applications with QoS
requirements is to guarantee that system services will be
performed while respecting all of the QoS requirements
imposed by the application. A myriad of resources may
have to be provided by the underlying system to perform
a service, ranging from local resources such as memory
and CPU to network bandwidth and other remotely
located resources. Modern networks and operating
systems (OSs) provide predictable behaviour through the
use of resource reservation mechanisms. However, most
applications do not benefit from these mechanisms
because distributed computing middleware is still being
adapted to make use of them.

Many different types of hardware, OS and network
infrastructures and protocols coexist, and multiple
resource reservation protocols populate this complex
environment. Nevertheless, applications with QoS
constraints expect similar behaviour from the underlying
system support independently of the particular
characteristics of the hardware, OS and network support
present in the underlying platform.

QoS architectures describe middleware that provides
applications with mechanisms for QoS specification and
enforcement. These architectures organise the resources
provided by the system with the intent of fulfilling the
QoS requirements imposed by their client. Consequently,
allowing applications to reserve resources via a
middleware layer implies that the differences between
resource reservation protocols have to be masked by the
middleware itself. Substantial work on QoS architectures
can be found in the literature (see [1] for a survey).
However, the architectures proposed so far consider only
part of the overall problem of QoS specification and
enforcement [2].

Our focus in the study of QoS architectures is on the
provision of QoS-constrained services in heterogeneous
distributed computing systems. The QoS architectures
proposed so far typically have a strong dependency on a
particular computing platform. Real-time operating
systems combined with ATM are the most popular
platforms for the development of QoS architectures
because of their suitability for the implementation of QoS

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

mechanisms for resource reservation. Examples of such
architectures are QoS-A [3] and Xbind [4]. This tight
dependency on a specific platform constrains their
application in open environments, where heterogeneity is
an intrinsic characteristic. Some architectures are also
targeted at particular application areas, with distributed
multimedia being the one where the technology is most
mature because of several research projects that have
explored this topic (see [5] for a review of QoS in
distributed multimedia systems).

In addition, other important problems can be identified
in the QoS architectures presented in the literature. Some
architectures constrain the expressiveness of the user in
the specification of QoS requirements and lack
transparency from the lower level, forcing the user to deal
with a notion of QoS that is not familiar for him. In some
cases, due to the tight integration of the architecture with
the lower-level platform, the user must know the
characteristics of the available reservation mechanisms in
order to make use of the architecture, while a higher level
of transparency would be more appropriate for the user.
Furthermore, in most architectures support for resource
adaptation is very limited, if not completely absent.

In this paper we present Quartz [6], a generic QoS
architecture that addresses the limitations of previous
proposals in this area. This is achieved by adopting a
highly flexible, extensible, component-based platform-
independent design, which supports user transparency
from the underlying system and at the same time is
suitable for heterogeneous distributed computing systems.

The remainder of this paper is organised as follows.
Section 2 surveys this area of research. Section 3 explains
in detail the proposed QoS architecture. Section 4
presents a prototype implementation, describes a number
of applications that were built on top of this prototype,
and analyses the obtained results. Finally, section 5
presents some conclusions and plans for future work.

2. Quality of service

In this section we present the main concepts in the area

of quality of service, including resource reservation
mechanisms and QoS architectures.

2.1. Concepts

‘Quality of Service’, or QoS for short, is the keyword

used to represent the set of requirements imposed by a
user (human being or software component) on the
behaviour of the services being provided to an application
by the underlying system support.

QoS is defined by the ISO OSI/ODP group as ‘a set of
qualities related to the collective behaviour of one or
more objects’ [7]. Other authors try to clarify this

definition. For example, Vogel et al. [5] state that QoS
‘represents the set of quantitative and qualitative
characteristics of a distributed multimedia system
necessary to achieve the required functionality of an
application’. We adopt a very similar definition, except
that we do not constrain the application of QoS to
distributed multimedia systems, but also extend the
application of QoS to any system with constraints related
to response time, performance, and/or output quality. This
includes, besides distributed multimedia, other areas such
as real-time systems, cooperative work and high capacity
storage servers.

ISO, along with the concept of QoS, defines a
complete terminology for dealing with QoS. Their
concern is mainly with the application of QoS to the
specification of communication services at network level.
We prefer to adopt their terminology slightly modified to
encompass diverse areas of application.

2.2. Resource reservation

The concept of resource reservation provides the

predictable system behaviour necessary for applications
with QoS constraints. Reservation mechanisms have to
keep track of the use of the limited set of resources
provided by the system, and receive requests from new
users interested in using these resources. New requests are
subject to admission tests based on current resource usage
and the guarantee levels requested by the user.
Reservations are then accepted, if enough resources are
available, or rejected if not. The problem of allocating
limited resources becomes even more complex if we
consider that current computational systems are basically
heterogeneous, subject to mobility and constant
reconfiguration, but still have to provide a dependable and
accurate service in a limited response time.

Mechanisms for resource reservation are being
incorporated into networks and OSs in order to guarantee
the availability of resources for applications. In the area of
computer networks, the development of ATM [8]
represented a significant advance towards the provision of
QoS-constrained communication services. Aiming to
provide similar behaviour, but working at the logical
network level, the IETF is adding reservation capabilities
to its suite of protocols, including the resource reservation
protocol (RSVP) [9], which handles QoS at the network
level, and the real-time transport protocol (RTP), which
works at the transport level. At the OS level, some work
has been done to extend OSs to provide more predictable
behaviour suitable for applications with QoS constraints.
Real-time OSs, such as QNX [10] and Chorus [11], have
mechanisms that provide time-constrained services.
Following the same direction, desktop OSs such as Linux
[12] and Windows NT [13] are being adapted to provide
behaviour suitable for applications with QoS constraints.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

Despite providing an important contribution towards
the provision of QoS for applications, resource
reservation protocols are situated at a low level of
abstraction, which is not suitable for the application
programmer to deal with.

2.3. QoS architectures

QoS architectures are responsible for integrating QoS

mechanisms in computational systems in order to
organise the resources provided by the system in a
consistent manner with the intent of fulfilling the QoS
requirements imposed by the user. In other words, QoS
architectures aim to fill the gap between resource
reservation protocols, situated at a low level of
abstraction, and the application level.

To allow the utilisation of the mechanisms provided by
networks and operating systems with resource reservation
capabilities at user level, several QoS architectures have
been defined in the literature [1]. However, most of these
architectures have limitations in the way they allow QoS
to be specified, or related to the way they enforce QoS
using the resources provided by the underlying system
support. These architectures typically target only a
specific configuration of processing and communication
hardware, constraining their utilisation in open,
heterogeneous systems. Furthermore, support for dynamic
resource adaptation is typically limited or completely
absent. These drawbacks, and the strategies adopted by us
with the aim of solving them, are discussed in more detail
in the next section.

3. The Quartz architecture

We have designed and implemented a QoS architecture

with the intent of addressing the limitations of previous
proposals in the area. The Quartz architecture is based on
a highly flexible, extensible, and platform-independent
design that allows it to be used in different application
areas and in conjunction with a variety of different
resource reservation protocols. The development of an
architecture with these characteristics represents an
important challenge in this area of research.

3.1. Handling heterogeneity

The main goal considered in the development of

Quartz was to provide support for heterogeneous systems.
This implies that the architecture should be able to handle
the different protocols and hardware that can coexist in an
open, distributed and heterogeneous platform. Similarly,
the architecture is expected to provide support for very
diverse applications, which may have different ways to
express and handle QoS requirements.

Internet Real-Time OS ATM LinkDesktop OS

Video App.

Quartz QoS Architecture

CSCW App. Real-Time App. Data Pkt. App.

Figure 1. Quartz in a heterogeneous environment

Figure 1 illustrates the use of the Quartz QoS
architecture in a heterogeneous environment. Applications
requiring QoS enforcement use the mechanisms provided
by Quartz to specify their requirements. In order to
enforce the required QoS, Quartz employs the resource
reservation protocols available in the target network and
operating system.

In order to handle heterogeneity, Quartz must not only
be capable of being ported to different platforms, but it
also has to be capable of handling QoS for an application
when the lower-level resource reservation protocol
changes without requiring recompilation. For example, if
the application is able to transfer data using both ATM
and TCP/IP, the QoS architecture has to be able to
perform QoS reservations for both protocols by adapting
itself internally instead of requiring a new port of the
architecture to be linked to the application. This level of
flexibility is achieved by Quartz by adopting an
architectural design based on interchangeable
components, in which components able to handle QoS for
different reservation mechanisms can be plugged into the
architecture dynamically. In addition, support for new
reservation protocols can be added to the architecture
without the necessity of porting the whole infrastructure.
Instead, a new component that interacts with the new
reservation protocol can be written by the programmer.

3.2. QoS specification and translation

QoS parameters have to be translated between different

levels of abstraction to be meaningful for the mechanisms
present at a particular level. Two main levels of
abstraction can be identified: the application level and the
system level. Requirements specified at different levels
are related, but differ strongly in their interpretation. An
application parameter is generally related to an idea
present only at this level, for example the number of
frames of video shown per second in a video broadcast
application. At system level this corresponds to
requirements on the network bandwidth needed to transfer
data, the processing time needed to compress and
decompress the information, the amount of memory used
by the application, etc.

For the user it is easier to abstract from the system
level and concentrate on his own view of quality.
However, many QoS architectures do not provide
mechanisms for mapping QoS requirements between

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

different levels of abstraction, forcing the user to deal
with a system-level notion of quality that may not be clear
for him. Furthermore, the application area in which a QoS
architecture can be employed varies enormously. For
example, a QoS parameter such as ‘frequency range’ for
an audio application would be completely meaningless for
an application based on data transfer. Therefore, a balance
must be achieved between the needs of different
application fields regarding the manner in which QoS
requirements are expressed and the generalisation
necessary for the architecture to be deployed over
heterogeneous platforms. Any attempt to define a
common set of QoS parameters to be employed by the
application to specify its QoS requirements would
constrain its expressiveness. Consequently, the
mechanisms for QoS specification provided by Quartz
must be flexible enough to accept different formats of
QoS parameters and must be extensible in order to
recognise a potentially infinite set of QoS parameters.

The QoS parameters specified by the application must
be interpreted appropriately by Quartz in order to perform
the reservation of resources at the lower level. This
implies translating the parameters from their original
format into parameters that are understood internally by
Quartz. In order to translate parameters, a mapping must
be established between parameters at different levels.
Mappings are not usually one-to-one between parameters,
but may be one-to-many, many-to-one or many-to-many.
This implies that resources might be interchangeable, and
that balancing requirements and resources is another task
that has to be performed by the architecture. Although the
whole mapping may be complex, the process of
translation typically consists in simple arithmetic
operations over a limited set of variables. For the
particular case in which several different application areas
and reservation protocols must be supported, the
translation process has to deal with different sets of
parameters appropriate for the environment into which it
is inserted. The creation of direct (one-step) translators for
X application fields deployed on top of Y reservation
protocols would need the definition of X * Y translators.

In order to avoid having a translator for each
combination of application field and reservation protocol,
Quartz adopts a three-step translation process.
Applications specify their application-specific
parameters, which are first translated into a set of generic
application-level parameters defined by Quartz. These
parameters are further translated into a set of generic
system-level parameters and balanced between the
network and the operating system. Finally, generic
system-level parameters are translated into the system-
specific parameters understood by each of the reservation
protocols present in the underlying system.

The sets of generic application-level and generic
system-level parameters recognised by Quartz during the

translation process are listed in Table 1 and Table 2
respectively. Parameter names are suffixed by a tag that
identifies the corresponding abstraction level. Threshold
values can be specified by suffixing parameter names
with ‘Max’ for specifying maximum values and ‘Min ’ for
minimum values.

These sets of generic parameters have been chosen
based on the generic notion of QoS present at the
corresponding abstraction level. Despite the
generalisation necessary for the architecture to be able to
handle these parameters, the power of expression of the
application is not affected because requirements are
expressed by using application-specific parameters. Since
the generic parameters are close to the notion of QoS
present at each level of abstraction, it is easy to establish
an efficient mapping and perform a low-complexity
translation process between the generic parameters and
the application and system-specific sets of parameters.

Table 1. Generic application-level QoS parameters

Parameter Name Description
App::DataUnitSize Size of data units
App::DataUnitRate Rate of data units
App::EndToEndDelay Total delay
App::ErrorRatio Acceptable error

App::Guarantee
Level of service guarantee
(deterministic, best-effort, ...)

App::Cost Financial cost
App::SecurityLevel Security mechanism

Table 2. Generic system-level QoS parameters

Parameter Name Description
Net::Bandwidth Network Bandwidth
Net::PacketSize Size of data packets
Net::Delay & OS::Delay Network and OS delays
Net::ErrorRatio Acceptable transmission error
Sys::Guarantee Levels of service guarantee
Net::Cost & OS::Cost Financial cost
Sys::SecurityLevel Security mechanism

Table 3. Example of parameter translation

Application Parameter ÆÆ System Parameters
Audio::Quality = AUDIO_CD (44KHz, 16 bits/sample)
App::DataUnitSize = 2 bytes;
App::DataUnitRate = 44k/s
Net::Bandwidth = 88 Kb/s
RSVP::TokenRate = 88Kb/s;
RSVP::BucketSize = 88Kb; …

Table 4. Example of parameter balancing

Generic App. Parameter ÆÆ Gen. System Parameters
App::EndToEndDelay = 500 ms
Net::Delay = 300 ms; OS::Delay = 200 ms

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

In order to illustrate the translation process, Table 3
shows the transformation undergone by a parameter at
different levels of abstraction (in this case, audio quality
is translated into a set of RSVP parameters). Table 4
illustrates the case of a parameter (in this example, the
overall delay) that must be balanced between the network
and the operating system.

Quartz is also required to allow dynamic changes in
the distribution of resources to be performed by the
system. This must occur without causing loss of service
consistency at application level. Any change in the
reservation of resources at lower-level must be reported to
the application by using QoS parameters that are
understood at high level. This implies that the QoS
architecture has to perform a reverse translation of
parameters before informing the application that QoS has
changed.

3.3. QoS enforcement and resource reservation

Quartz must provide transparency of QoS and

reservation mechanisms from the application’s point of
view. This implies that the interaction with the reservation
protocols present in the underlying system, which is
necessary to guarantee the QoS to be provided to the
application, must be performed by Quartz. However,
different resource reservation protocols may be present in
an open environment, and each of the existing reservation
protocols has its own interface and its own mechanisms
for resources allocation.

Quartz is able to interact with different reservation
protocols by defining, for each reservation protocol, a
component that encapsulates all the mechanisms
necessary for interacting with it. By adopting this
strategy, we hide from the application the differences
between the way different protocols allow resources to be
reserved. This has the important effect of increasing the
portability of applications across different platforms, and
makes it easier to extend the architecture in order to
support new resource reservation protocols.

The components defined by the Quartz architecture
will be described in detail in section 3.5.

3.4. QoS adaptation

One important trend in the area of resource reservation

protocols is the provision of support for resource
adaptation [14]. Initial studies in this area defended the
provision of deterministic guarantees in the allocation of
resources, which would be valid for the entire lifetime of
the application that requested the resource reservation.
However, several drawbacks appear in efforts to provide
completely guaranteed resource reservation due to the
impossibility of guaranteeing the availability of resources
in computer systems subject to hardware reconfiguration

or failure. Aiming to overcome this problem, another
school of thought proposed the development of adaptive
applications to deal with the changes in resource
availability during the provision of service. However,
pure adaptation does not solve the problems faced by
applications with strong QoS requirements, which are not
satisfied by the best-effort systems currently available.

A third idea based on resource adaptation, which mixes
both approaches mentioned previously, has been
considered as a viable and necessary alternative to both.
Resource reservation combined with adaptation yields a
more flexible approach for providing QoS to applications.
In this approach, resources are seen by applications as
guaranteed during some time, but their availability can
vary over long periods. This technique allows resources to
become unavailable due to reasons such as hardware
failure, system reconfiguration, or because they are
required by an application with higher priority.
Applications are responsible for estimating their initial
resource requirements and for specifying them by
interacting with the reservation protocol. In addition,
applications have to be able to adapt their behaviour at
run time based on feedback received from the protocol.

Quartz provides support for QoS adaptation at both
system and application levels. In the Quartz architecture,
some QoS requirements such as cost and delay are
defined by the sum of resources provided by both the
operating system and the network. Consequently, losing
resources from one source may be compensated by
requesting more resources from another source. When this
is possible, the adaptation occurs only at the system level,
completely transparent from the application’s point of
view, and the quality seen by the application is not
affected. If adaptation at system level fails, Quartz
notifies the application, which has to adapt its
requirements in order to decrease the consumption of
resources. This can be done for example by reducing the
quality of a video stream or changing the compression
method used for data transfer.

The notification message sent by Quartz to the
application carries QoS parameters understood at
application level, which reflect the changes in resources
reserved at system level. During this process, a set of
system-level QoS parameters is translated into
application-level QoS parameters by using the reverse
translation path provided by the translation components.

3.5. Architectural components

Each component defined by Quartz encapsulates a

particular task in the overall problem of QoS specification
and enforcement in an open, heterogeneous environment.
These components can be easily replaced by different
ones in order to adapt the architecture to a new target
environment.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

 Quartz QoS Agent

 Network OS

Quartz Application

 Translation Unit
Application Filter

QoS Interpreter

Application-Specific QoS Parameters

Generic Application-Level QoS Parameters

System Filter System Filter

Generic System-Level QoS Parameters

System Agent System Agent

Reservation
Protocol

Reservation
Protocol

System-Specific QoS Parameters

Figure 2. Detailed structure of the QoS agent

The QoS agent, the central component of the Quartz
architecture, is responsible for implementing the QoS
mechanisms necessary for the provision of services with
the quality requested by the user. This involves two main
tasks: the translation of QoS parameters between different
levels of abstraction, and the interaction with the
underlying reservation mechanisms provided by the
resource reservation protocols present in the system.

The QoS agent, as illustrated by Figure 2, is composed
of a translation unit and multiple system agents
associated with the reservation protocols responsible for
administering the use of the available resources.

The translation unit contains a QoS interpreter and
QoS filters. QoS filters can be subdivided into application
and system filters, which are responsible for translating
their respective sets of QoS parameters to and from the
generic set of parameters at the same abstraction level.
The QoS interpreter establishes the mapping between the
two sets of generic parameters defined by Quartz. During
this process, the balancing agent, which is basically a
resource trader encapsulated by the interpreter, balances
the usage of resources between the network and the
operating system. When either the operating system or
network reduces the resources allocated to the application
due to resource adaptation, the balancing agent tries to
compensate for the loss of resources on one side by
requesting more resources from the other. If this process
succeeds, nothing changes from the application point of
view, but when it fails, the application must be notified
and asked to adapt its requirements.

Finally, the system agents use the values of the QoS
parameters provided by the translation unit to perform the

necessary reservation of resources using the
corresponding reservation protocol. Each system agent is
familiar with the public interface of the corresponding
reservation protocol, being able not only to request
reservations but also to monitor the usage of the resources
allocated to it and to receive notifications from the
protocol informing it of the occurrence of resource
adaptation.

4. Validation and evaluation

We have developed a functional prototype of the

Quartz architecture in order to analyse its behaviour when
supporting applications with QoS requirements. In this
section we present this prototype and a number of
applications built on top of it for validation purposes.
Finally, we evaluate Quartz in face of the requirements
imposed on it.

4.1. The Quartz prototype

The prototype is composed of a set of fixed

components that form the common core of the
architecture and a series of replaceable components that
can be plugged into this core whenever necessary.

The Quartz prototype has system agents and filters for
the RSVP protocol, for ATM networks, and for the real-
time mechanisms provided by Windows NT©.

The parameters recognised by the RSVP filter and
agent are listed and described by Table 5. The parameters
defined for RSVP use a token bucket to model the data
traffic. In addition to the network support provided by the
operating system, we use the implementation of RSVP
developed by Intel, called PC-RSVP, for implementing
the RSVP agent.

A system agent and filter for ATM networks have also
been implemented. ForeRunner LE PC cards and a Fore
Systems ASX 100 switch have been used for this purpose.
We also rely on the WinSock2 service provider that is
supplied by Fore Systems together with the hardware. The
parameters defined for the ATM sub-system are listed and
described by Table 6. These parameters correspond to the

Table 5. RSVP QoS parameters

Parameter Name Description
RSVP::TokenRate Rate in which tokens are produced
RSVP::BucketSize Size of the token bucket
RSVP::PeakRate Maximum data rate
RSVP::MinPoliced Amount of data subject to policy
RSVP::MaxPktSize Maximum packet size
RSVP::Rate Rate (only for deterministic service)
RSVP::SlackTerm Slack (only for deterministic service)
RSVP::FlowType Type of data flow

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

Table 6. ATM QoS parameters

Parameter Name Description
ATM::PeakCellRate Max. rate of cell production
ATM:: SustCellRate Long-term sustainable cell rate
ATM::MaxBurstSize Maximum cell burst
ATM::QoSClass Type of data flow (CBR,VBR, …)
ATM::Tagging Tag non-compliant cells to discard

fields of the data structure used for performing resource
reservations. Consequently, the ATM Agent just has to
collect this information, fill in a data structure and call the
appropriate routine provided by WinSock2 in order to
perform a reservation.

At the operating system level we have adopted
Windows NT as the platform for the deployment of this
prototype of Quartz. As a result, a system agent and a
filter have been developed for this operating system.

The provision of QoS in Windows NT is limited. We
make use of the real-time priority class and of
mechanisms for memory locking to provide a more
predictable service, which is still non-deterministic.

Only two QoS parameters are defined for Windows
NT. They are:
• WinNT::PriorityLevel : defines the priority level of a

process; used by the operating system to schedule
access to the processor.

• WinNT::MemoryPaging : determines if the memory
allocated by the process will be subject to paging
operations, which introduce unpredictable delays and
may degrade performance.

In the future, we intend to extend the range of systems
supported by Quartz by providing system filters and
agents for other resource reservation protocols.

4.2. The RCP application

A remote copy daemon and client, equivalent to the

UNIX ‘ rcp ’ daemon and command, have been
implemented using the Quartz prototype. This application
is able to use either TCP, UDP (including multicast) or
ATM for data transfer, and a graphical interface allows
the user to select the required protocol and the desired
QoS parameters. Quartz was used as a means of reserving
resources for the multiple network supports without
adding complexity to the application. According to the
network reservation protocol being used, a suitable pair of
system agent and filter is plugged into the QoS agent. The
RSVP agent and filter are used for TCP and UDP, while
ATM requires its own filter and agent.

In order to handle the notion of QoS understood at
application level, we have implemented a data packet
application filter, which interprets QoS as understood by
applications transmitting data packets. The QoS
parameters understood by this filter are described by

Table 7. Data packet QoS parameters

Parameter Name Description
DPkt::PacketSize Size of packets
DPkt::DelayBwPackets Delay between two packets
DPkt::EndToEndDelay Total delay for packet delivery
DPkt::ErrorRatio Acceptable error ratio
DPkt::Guarantee Guarantee level
DPkt::SecurityLevel Security level

Table 7. A clear mapping may be noticed between these
parameters and the generic application-level parameters
presented in Table 1. This mapping is implemented by the
data packet application filter.

The remote copy application allows the user to specify
QoS requirements by providing values for packet size and
packet rate as well as service guarantee (i.e. best-effort,
unloaded or deterministic) through a graphical interface.
These values are interpreted by the translation unit and
then the system agents reserve the corresponding
resources by interacting with the reservation protocols
supported by the network and the operating system.

4.3. Evaluation and analysis

Important conclusions can be reached based on the

observation of the remote copy example and on the results
of performance measurements executed with it.

The remote copy example shows that the resource
provider can be changed without interfering with the
application code. Independently from the reservation
protocol used at the network level – i.e. RSVP or ATM –
equivalent behaviour was observed from the application’s
point of view in regard to the provision of QoS. This
shows that, by using Quartz, the reservation mechanism
became transparent for the application despite the
different characteristics of the lower-level reservation
protocols. Consequently, applications using Quartz are
highly portable, since the code necessary for requesting
QoS behaviour is kept unchanged independently of the
underlying system that is providing resources for the
application. The use of different system agents and filters
shows that Quartz can be used in different platforms, and
that the filters can be combined freely in order to reflect
the characteristics of the underlying system.

Performance tests have shown that the overhead added
by Quartz to the application is very small. Table 8 shows
typical values of the overhead imposed by Quartz for the
remote copy application. This data was obtained on a
Pentium Pro 200 MHz by using the profiling tools that
accompany Microsoft Visual C++ 5.0.

The total overhead caused by Quartz in a single request
(i.e. the time taken to specify, translate and interact with
the resource reservation protocols) is of about 1.2
millisecond for both ATM and RSVP. This value is

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

Table 8. Overhead imposed by Quartz

 ATM RSVP
Initialisation of Reserv. Protocols N/A 24.86 ms
Initialisation of Quartz 346 µs 9.272 ms
Total Overhead per Reservation 1.177 ms 1.220 ms
composed of: QoS Specification 93 µs 113 µs
 QoS Translation 759 µs 991µs
 QoS Reservation 325 µs 116 µs

considerably less that it takes to open a socket (about 10
ms) or to obtain the host name (which in our testbed
varied from 5 to 40 ms). The initialisation of Quartz is
also considerably fast even for RSVP, which takes
relatively long to initialise; since in ATM the reservation
mechanism is integrated with the transport, no extra time
is taken to initialise it. The overhead caused by the
initialisation of Quartz occurs only once, while the
overhead per reservation occurs every time the
application requests a new set of QoS requirements to be
enforced. There is no overhead imposed on the
transmission of data, which depends only on the
networking infrastructure and on the resources reserved
for the communication channel.

In addition to being used in heterogeneous
environments, Quartz can be used in different application
areas. Besides the use of Quartz for data transfer
applications, other applications have been implemented
on top of Quartz in the areas of distributed multimedia
(the Quartz/CORBA Framework and the Distributed Music
Rehearsal Studio) and real-time systems (a telephone
switch application and a pattern recognition mechanism).

The application examples built on top of Quartz show
the adequacy of the mechanisms for specification of QoS
provided by Quartz and its suitability for enforcement of
QoS in open systems. In each of the examples, the QoS
parameters seen by the application, either when it
specifies its QoS requirements or when it receives a QoS
notification, are in the form of application-specific
parameters suitable for the particular application area. The
resulting parameters at system level allow the reservation
of resources to be performed by using the reservation
protocols available in the underlying system.

5. Conclusions and future work

In this paper we have introduced a QoS architecture

that deals with QoS constraints present in distributed
applications. Quartz makes the lower-level aspects of
resource reservation transparent for the application,
although allowing the necessary control through
notification in the case of resource adaptation.

Quartz was designed to allow its use in open systems,
enabling its easy extension to support new classes of

applications and new reservation protocols by adding
components written by the application programmer.

We have developed a prototype of the Quartz
architecture that has been used to provide mechanisms for
QoS specification and enforcement. Applications built on
top of this prototype show that Quartz handles
heterogeneity at both system and application level
efficiently, without incurring severe performance
penalties. In the future, we intend to extend the platform
coverage of the architecture by implementing new
components that would provide support for a wide range
of underlying systems.

Acknowledgements

The authors would like to thank Iona Technologies

(http://www.iona.com) and the Capes foundation
(http://www.capes.gov.br) for supporting this project.

References

[1] C. Aurrecoechea, A. Campbell and L. Hauw “A Survey of
Quality of Service Architectures”, MPG Group, University
of Lancaster, Internal report MPG-95-18, 1995.

[2] R. Steinmetz and L.C. Wolf “Quality of Service: Where
are We?”, IWQoS’97 Proceedings, May 1997.

[3] A. Campbell, G. Coulson and D. Hutchison, “A Quality of
Service Architecture”, ACM Computer Communications
Review, Vol. 24(2), April 1994.

[4] A. Lazar, K-S. Lim and F. Marcocini “Realizing a
Foundation for Programmability of ATM Networks with
the Binding Architecture”, IEEE Journal of Selected Areas
in Communication, Vol. 7, Sept. 1996.

[5] A. Vogel et al. “Distributed Multimedia & QoS: A
Survey”, IEEE Multimedia, Vol. 2(3), Summer 1995.

[6] F. Siqueira “Quartz: A QoS Architecture for Open
Systems”, Ph.D. Thesis, Dept. of Comp. Science, Trinity
College Dublin, December 1999.

[7] ISO “Information Technology: Quality of Service
Framework”, ISO/IEC JTC1/SC21 DIS 13236 ICS
35.020, 1995.

[8] ITU “B-ISDN Protocol Reference Model and Its
Application”, ITU-T Recommendation I.321, April 1991.

[9] R. Braden et al. “Resource Reservation Protocol (RSVP)”.
IETF RFC 2205, September 1997.

[10] D. Hildebrand “An Architectural Overview of QNX”,
QNX Software Systems White Paper, 1999.

[11] Sun Microsystems “Sun Embedded Telecom Platform –
Combining the Power of Solaris Computing with the Real-
Time Performance of the ChorusOS Operating System”,
Sun White Paper, 1999.

[12] V. Yodaiken “The RT-Linux Approach to Hard Real-
Time”, White Paper, October 1997.

[13] Microsoft Corporation “Real-time Systems and Microsoft
Windows NT”, White Paper, June 1995.

[14] J. Gecsel “Adaptation in Distributed Multimedia
Systems”, IEEE Multimedia, Vol. 4(2), April 1997.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 09:35 from IEEE Xplore. Restrictions apply.

