
An Event Based Object Model forDistributed ProgrammingGradimir Starovic, Vinny Cahill, and Brendan TangneyDistributed Systems Group,Department of Computer Science,Trinity College, Dublin 2,Ireland.E-mail: fGradimir.Starovic,Vinny.Cahill,Brendan.Tangneyg@dsg.cs.tcd.ieURL: http://www.dsg.cs.tcd.ie/Fax: +353-1-6772204ABSTRACT: This paper describes the rationale and design of a new distributed sys-tems programming model based on events, constraints, and objects1. The paper describes theinter-object communication or invocation mechanism, and the way in which concurrency,synchronisation, and timing properties are expressed and controlled. The invocation mecha-nism is unusual in that it is event-based. It encourages loose coupling among the objects anda high degree of encapsulation for each object. Concurrency, synchronisation, and timingproperties are expressed in a uniform way using constraints which may be associated withobjects and events.KEYWORDS: events, constraints, inter-object communication mechanism, object-orientedprogramming1 IntroductionIt is well known that large parallel and distributed applications are hard to program,[39], with communication, synchronisation, and timing contributing to the complexity of thetask. It is also accepted that object-orientation goes somewhere towards simplifying theseproblems.The application domain which we are currently addressing is that of distributed virtualreality especially next generation video games. Some of the requirements coming from suchan environment are:� Support di�erent patterns of communication. As an example, a single object maycollect information from a number of sources or disseminate information to a numberof destinations. In general, there may be exchange of information between groups ofobjects, and the group membership may change dynamically.1This work is partially funded by the CEU under ESPRIT contract No. 8636.



� Support soft real-time applications. It must be possible to express timing constraintson object behaviour. Such constraints arise out of the application domain and the wayin which audio and video data are handled. When the constraints are occasionally notsatis�ed there are no catastrophic consequences for the system or for its environment.� Support large applications with thousands of objects, where new objects may be cre-ated and the existing ones may disappear dynamically. This brings out the importanceof issues like scalability and scoping rules.In order to meet these and other requirements a new programming model, known asECO (for Events, Constraints and Objects) has been developed. This paper describes therationale and design of the ECO model.The invocation mechanism is unusual in that it is event-based. It encourages loose cou-pling among objects which supports a high degree of encapsulation for each object. Con-currency, synchronisation, and timing properties are expressed in a uniform way using con-straints which may be associated with objects and events. We describe the way in whichthe abstractions of the ECO model are expressed at the language level. A number of otherimportant issues, like persistence, grouping, and mobility of objects are not considered inthis paper.The next section gives more details about objects with events and constraints. Section3 gives several examples and section 4 surveys some related work and compares it with thework reported in this paper. The latter section presents the ideas which in
uenced ourwork, and in a sense provides a justi�cation for the kind of programming model describedin this paper. The last section summarizes the main ideas, describes the state of the presentimplementation and sets out future work.2 Objects, events, and constraintsThe basic abstractions of the ECO model are objects, classes, events, and constraints. Inthis section we �rst brie
y describe those properties of objects and classes which are relevantfor the description of events and constraints before going on to describe these items in detail.Each object is an instance of a class, it has instance variables and a number of methodswhich operate on these variables. A class speci�es the interface to its instances togetherwith the events and constraints used by the instances. Objects communicate by announcingevents and by processing those events which have been announced. A method can be boundto one or more events and several methods of an object can be bound to the same event.A bound method behaves as an event handler in that it is invoked when the correspondingevent is announced. A method can itself announce one or more events.The type of an event determines the number and types of its parameters. In order to binda method to an event the method signature has to match the event signature. The objectswhich announce an event are the sources of the event. Each occurrence of an event can a�ectzero or more objects (can be delivered to them causing invocations of their methods) | theyare the destinations of the event. A source announces events without having to worry aboutthe identities or locations of the destinations. Similarly, a destination object registers itsinterest in an event without having to worry about the objects which may announce theevent. Thus the sending and receiving object are decoupled. However, if necessary, bothnaming and location information can be expressed using event parameters.Binding between a method and an event is dynamic. The method can stay bound tothe event from the moment its object is created until the object is deleted. Alternatively,



the method is bound at some arbitrary moment during the object lifetime and the bindingcan be changed after that. In our present design events have global scope, and sourcesand destinations may be located at di�erent nodes of the distributed system. We intendto introduce some form of scoping at a later stage (possibly using the idea of spatial andtemporal localities and area of interest managers [32]).A constraint speci�es a condition which controls the propagation of events. For examplean object can register interest in an event with the constraint that it should not be noti�edof occurrences if the value of the As described later there are di�erent kinds of constraints,categorized by the data which they can access, by their evaluation points, and by the actionswhich they are allowed to perform. The information used by the constraints depends on theapplication.A program is a collection of cooperating objects, possibly placed on multiple nodes. Whenit is started, one of its objects must subscribe to the special start event announced by thesystem (a number of objects may subscribe to this event, i.e., there is not necessarily a singleentry point per program). An ECO implementation2 may automatically, or when instructedby the user, add a handler for this event to one or more objects and allow the user to overridethis default handler. The same can be done in some other cases, e.g., default handlers forspecial debugging events may optionally be added to objects. Once the program is startedthe objects communicate with each other by announcing events and by being noti�ed ofevent occurrences. They can also express their interest, or lack of interest in speci�c events.The program may decide to end when it learns about an occurrence of some event.The following sections go on to describe the model in more detail.2.1 Language supportThe ECO programming model can be made available in di�erent existing languages. Twoways in which this can be done are ([7]):� extend an existing language by making the new abstractions visible or explicit, or� add support for the new abstractions using the existing language mechanisms (e.g., byinheriting from library classes which support the new abstractions).Which approach is chosen depends on a speci�c language and the required extensions.The second approach may be easier to implement and easier to use (the original languageremains unchanged). However, when the extensions are of a fundamental nature (e.g., a newinter-object communication mechanism), it may be di�cult to integrate them seamlessly intoan existing language. The �rst approach changes the language, with all the consequenceswhich this brings (including lack of compatibility with the old language) However, a languagepre-processor used with the �rst approach provides more 
exibility.The description in the following sections show how C++ [37] may extended with eventsand constraints.2.2 Declaring eventsEvents have global scope and constraints have class scope. Objects can subscribe interestin or raise events. An event is de�ned with:event EventName(parameters);2A compiler or language preprocessor.



EventName is globally unique, and parameters is a list of event parameters (their names andtypes). A class declares its in-events and out-events with:outevents list of EventNames;inevents list of EventNames;The former are those events which the instances of the class may announce, and the latter arethose which they may handle. In a way, they are similar to the import and export statementsin Modula-2 [41]. which the instances may announce to their environment.2.3 Notify constraintsConstraints are named conditions which control the propagation and handling of events.A Notify constraint is optionally provided by a destination object when it subscribes to anevent. The only data which can be used by this constraint are the values of event parameters,and the identity of the source3 (plus optionally some constants). The destination object usesa Notify constraint to express: I want to be informed about those occurrences of the eventwhich satisfy this condition. Since a Notify constraint does not depend on the local state ofthe destination object it can be evaluated in the context of a source object, or some otherobject (e.g. some special event manager object).A Notify constraint is associated with an event at subscribe time (when the destinationobject subscribes to the event). A group of objects may have mutual agreement that forexample the �rst parameter of an event is the address of the intended destination object, orthat it is the latest time when handling of a particular event occurrence should start, or thatit is the priority of an event occurrence. Each of the destinations can use a di�erent Notifyconstraint to specify when an occurrence of this event type quali�es to be delivered. Thiscan be used to specify for example: deliver to me those occurrences which are sent to medirectly, deliver to me those occurrences which are sent with a su�cient maximum deliverydelay, or deliver to me those occurrences which are sent with su�ciently high priority. In avideo game for example, a collision manager object may be used to detect collisions amonggame objects. It announces the collision event with the identities of the colliding objectspassed as the event parameters. The interested objects may use Notify constraints as �lters;only those collision noti�cations which are of interest to a speci�c object will be deliveredto the object.2.4 Pre and Post constraintsThe Pre and Post constraints are attached to the method/event bindings and behave asa destination object method wrappers. These constraints use the object instance variablesand thus must be evaluated local to the object. They can also use constraint internal data.These type of constraints can be used to implement:� synchronisation within the object (e.g., Pre and Post constraints may be used to im-plement synchronisation variables from [15]. ;, these variables would be constraintinternal data),� control of the concurrency level within a method or within the object,� timing control (e.g., earliest and latest method start-time and end-time, method du-ration from [3], and [25]),3It is assumed that each object has a unique identi�er.



� method pre- and post-conditions, method and object invariants | used for the runtimeveri�cation of object consistency and application correctness.In addition to accessing and possibly modifying the instance variables and constraintdata, Pre and Post constraints can announce events, and Pre constraints can request thatthe current noti�cation is: discarded, enqueued, or processed. This allows constraints to havewait or failure semantics [25].For example consider a ResourceManager object which manages a number of resources,and has one of its methods bound to the GetResource event and one of its methods boundto the FreeResource event (these events are announced by other objects). A Pre constraintfor the method bound to GetResource can check if there are any available resources. If thereare none, it requests that the current event noti�cation is enqueued. A Post constraint forthe method bound to FreeResource requests that a noti�cation is dequeued from the queueassociated with the Pre constraint of the GetResource (if the queue is empty dequeue doesnothing).A Pre constraint may also request that a noti�cation is processed. This is done when itis found that the condition is satis�ed and that the object can proceed with handling thenoti�cation. There are two options which can be used to control the level of concurrencywithin an object: process-active and process-passive. If process-passive is requested thereis a procedure call to the event handler (the event parameters are passed to the handler,which may require that they are unmarhsalled �rst if the noti�cation is received from aremote source). If process-active is requested a new thread is created to execute the eventhandler (the event parameters are again passed to the handler). Each of the discard, enqueue,process-passive and process-active statements ends the processing of the corresponding Preconstraint.The discard/enqueue/dequeue/process options available to the constraints place the re-sponsibility for implementing the synchronisation, timing, and other policies on the user.;The queueing of noti�cations may be too restrictive in some cases. There is a single queueper method, and the enqueue and dequeue allow appending to the end of the queue and re-moving from the front of the queue. Other possibilities (e.g., priority queues, various kinds ofsearching through the queue) may be required by some constraints. However, the describedconstraint options are intentionally left simple as it is expected that they will be su�cientfor a number of applications4. In other cases, constraints may be implemented by specialisedobjects.2.5 Announcing events and subscribing to eventsAn event is announced with:announce EventName(parameters)The EventName must be on the out-event list of the object's class. The announcement isasynchronous, the announcer does not wait for some "reply event" or for some object tohandle the event. A method can be bound to an event initially (when the object is created),and can change its binding dynamically. The former is done in the class de�nition with:MethodName(parameters) handles (EventName, NotifyName, PreName, PostName);and the latter is done within the code with the subscribe and unsubscribe statements:subscribe MethodName (EventName, NotifyName, PreName, PostName);4If required, it would be easy to increase the expressive power of constraints with extensions like: allowspeci�cation of priority with enqueue and process-active; or allow 
ushing of a queue.



unsubscribe MethodName EventName;in both cases the names of the constraints are optional. MethodName is local to the objectwhich invokes subscribe/unsubscribe, and unsubscribe 
ushes the queue of the method/eventPre constraint. It is expected that subscribe and unsubscribe will be used to express object'scurrent interest in certain events, while a Notify constraint will re�ne the speci�cation ofan object's interest in a speci�c event. It is possible to subscribe to or unsubscribe from anumber of events. The following shows an example of a class with events and constraints:event E1(� � �);event E2(� � �);event E3(� � �);class myclass finevents E1, E2;outevents E3;notify constraintsN f � � � g; // Notify constraintpre constraintsC1 f � � � g; // Pre constraintpost constraintsC2 f � � � g; // Post constraintmethodsmymethod(� � �) handles (E1,N,C1,C2);gmyclass::mymethod(� � �) fannounce E3(� � �);unsubscribe mymethod E1;subscribe mymethod (E2,,,);gIn this example, the method �rst subscribes to E1 with some constraints, andthen (after announcing E3) it unsubscribes from E1, and subscribes to E2 withoutany constraints.3 ExamplesAs already described events allow loose coupling between objects. An object may an-nounce events for di�erent reasons, some examples are:� announce \x happened locally" (where x means a speci�c local action was performedor a speci�c local state was reached),



� announce \x happened locally, this will interest X", where X may be the name ofsome object or a group of objects. In this case the announcer knows the names ofdestinations,� announce \I need y done by someone" (by anyone who can do it),� announce \I need y done by Y" (where Y is the name of some object or a group ofobjects).The �rst and third cases are anonymous communications, and second and fourth casesare named communications. With the event-based communication mechanism the names ofdestinations may be passed as event parameters, i.e., events support both anonymous andnamed communication.The rest of this section shows di�erent ways in which constraints can be used. The�rst example is of the previously described ResourceManager (slightly extended, the pool ofmanaged resources may be empty or full). If a request for a resource was announced and thepool is empty the request is queued; if a resource return was announced and the pool is fullthe return request is queued. In this example we assume that there is no need to control thelevel of concurrency within the object. The next example will show how this can be done.Also, the examples are su�ciently simple so that there is no need to use Notify constraints.Only the code related to constraints is shown.class ResourceManager fpre constraintsPreGive f if (isempty) enqueue else process-passive; gPreRet f if (isfull) enqueue else process-passive; gpost constraintsPostGive f if (wasfull) dequeue(PreRet); gPostRet f if (wasempty) dequeue(PreGive); gmethodsGiveResource(� � �) handles (GetResource,,PreGive,PostGive);ResourceReturned(� � �) handles (FreeResource,,PreRet,PostRet);gisfull, isempty, wasfull, and wasempty are boolean expressions which depend on the localstate of the pool. The second example is of a consistent bu�er. It manages some data andallows either multiple active reads or a single active write within the object:class ConsistentBu�er fpre constraintsPreRead fif (current write == 0) fcurrent read++;



process-active gelse enqueue; gPreWrite fif ((current read == 0) && (current write == 0)) fcurrent write++;process-active gelse enqueue; gpost constraintsPostRead fcurrent read- -;if (current read == 0) dequeue(PreWrite); gPostWrite fcurrent write- -;dequeue(PreWrite);dequeue(PreRead); gmethodsRead(� � �) handles (ReadReq,,PreRead,PostRead);Write(� � �) handles (WriteReq,,PreWrite,PostWrite);gDequeuing of a noti�cation can be seen as causing an \internal object event". The code whichevaluates the object's constraints is sequential, and such \internal events" are processedbefore processing of any external events is done. The level of concurrency is controlled atthe observation points, it is not possible for a constraint or method to suspend or aborta method of the same object. Next, we describe the way in which some typical timingconstraints can be implemented.1. start after time and start before time requirements are implemented as Pre constraints.The time may be received as an event parameter or speci�ed by the destination object.It may be required to enqueue a noti�cation for later evaluation. In this case a timerevent can be used to trigger dequeuing of such noti�cations and re-evaluation of thePre constraints.2. �nish after time and �nish before time requirements are implemented as either Pre orPost constraints. The timemay again be received from the event announcer or speci�edlocally. If the constraint is found to be unsatis�ed an event may be announced whichwill cause error processing and possibly some recovery.In addition to synchronisation, concurrency, and timing, constraints can be used to expressmethod pre-conditions, post-conditions, and invariants. Some of the ways in which theyappear in other languages are given next (p is a boolean expression over the object state):



� always p or invariant p,� required p or when p,� ensures p.The �rst case is a method invariant and it is implemented with both Pre and Post constraints.A method pre-condition (the second case) is implemented as a Pre constraint, and methodpost-condition (the last case) as a Post constraint. In these examples, if a Pre constraintis not satis�ed the event noti�cation is usually discarded (optionally some event may beannounced). If a Post constraint is not satis�ed it is usually accompanied by announcingsome event.4 Related workThe possibility of an event-based general-purpose communication mechanism has beensuggested in [30]. This ought to be seen in the context of other proposals for languageand system support for communication (where the communicating entities can be processes,threads, modules, or objects).An event based language for parallel programming called EBL is described by Reuveni[34]. In this language events are the only control mechanism and cause the activation of eventhandlers. Event occurrences can be permanent or temporary and events can be recurrentor non-recurrent. Recurrent events can have multiple active occurrences, independentlyof whether they a�ect one or more destinations, and non-recurrent events can have onlyone active occurrence at any time (occurrences overwrite each other and only the last onesurvives). The basic computational step is the announcement of an internal event (an eventcaused by the program, external events are caused by hardware). EBL is not object-oriented,instead a program consists of a collection of modules and each module consists of a numberof event handlers. Events are typed; each event type has a name. All the occurrences of thesame type of event have the same number and type of parameters (a parameter can be ofan event type, in addition to simple types). The only action possible in an event handler isthe announcement of one or more events. Several events can be announced sequentially orin parallel. A handler can be augmented with a condition which has to be satis�ed beforethe handler is invoked. Reuveni also discusses the importance of scoping of events, the waysof achieving synchronisation with events, and the expressiveness of event based languages.Our work has been in
uenced by [34] and can be seen as an attempt to use some of theseideas in an environment which has objects and constraints.The generative communication promoted by Linda [12] allows processes to communicatevia the tuple space. A sender inserts a tuple (a list of typed data �elds) into the space withouthaving to worry about the identity and locality of the receivers. Receivers can inspect orremove tuples from this space by specifying a template tuple. The reception occurs when amatch for the template tuple is found. Communication through tuple space is used in [28] inthe context of distributed object-oriented languages. Oki et al. [33] use a variant of the Lindaapproach, called anonymous communication, where one �eld of each tuple is the subject �eld,and reception is based on the matching of the subject �elds. Similar to the original approach,communication is independent of the identities and locations of senders and receivers. Aghaand Callsen [2] describe Actorspace, a programming paradigm which integrates Actors [1]and Linda style communication. Actor-names can be expressions, they are evaluated in orderto �nd the actors whose names satisfy the given expression. Actorspaces provide a scoping



mechanism, are named and can form a hierarchy. The control of the names visibility, as wellas control of the scope lifetime, is explicit and dynamic. Our approach has similar goals, butit is based on parameterized events and Notify constraints.It is often stated that distributed systems require group communication, where the groupmembership changes and is determined by the global state of the computation (e.g., [2], [9]).Our work is in line with the attempts to support multiple and changing communicationpatterns. The loose coupling of objects avoids \the tendency of distributed naming systemsto resolve names before communication occurs" (Bayerdor�er [9]), and our constraint mech-anism allows communications to be speci�ed in terms of local object states. The associativebroadcast primitive of [9] allows the sender to provide an expression over attributes with eachoutgoing message. These expressions are evaluated locally where the potential receivers re-side and depending on the outcome of this evaluation the messages are or are not delivered.Bayerdor�er considers events associated with naming and communication. Our events canbe associated with naming and communication, but they can also be external events, timerevents, and scheduling events [36].Menon et al. [30] have thread-based and object-based event handlers. In ECO thereare only object-based handlers. They also mention several applications for which events areespecially suitable: distributed monitoring, debugging, and exception handling. The idea ofloose coupling among communicating entities (this time to ease the integration of softwarecomponents) is also used in [19] and [38]. There is insu�cient space here to compare variousother ways in which events are used (e.g., [16], [22], [26], [27], [35]).Communication and control 
ow are often closely related | for instance communicationprimitives can be blocking or non-blocking. Depending on where and under what conditionsthis blocking is done it is possible to classify various primitives and languages with respectto their support for concurrency and synchronisation control [6]. There has been much workon language support for controlling the level of concurrency within objects and the order inwhich events occur. Arjomandi et al. [7] overview various approaches to adding concurrencysupport to a programming language. We use constraints to specify the level of concurrencywithin an object and do not make threads visible (except through process-active and process-passive). Some of the work on synchronisation constraints is reported in [10], [18], [29], and[40]. Frolund [18] have constraints speci�ed as part of a class de�nition and each constraintrestricts the set of methods which may be invoked when an incoming request is received.A constraint may depend on the parameters of the received invocation and the state of thetarget object5. Both [18] and [40] allow composition of constraints. The former is concernedmore with the permissive and the latter with the restrictive aspect of constraints. In [18]each object has a controller which evaluates the constraints and may delay invocations (eventdeliveries) if there is a chance that this will make them acceptable in future.The Archie language [10] allows speci�cation of synchronisation states (or method pre-states), and method post-states, and integrates these states with type information. It alsoaddresses the problem of multi-party synchronisation by introducing multioperations andcoordinated calls based on [8]. In our case, the constraint mechanism can be used to expressthe required order of event announcements and deliveries at the level of a single object. Mul-tiparty synchronisation may require complex expressions involving multiple events which wedo not support at present. Our constraints allow the implementation of activation conditions[15], which are based on synchronisation counters [5]. An activation condition is attachedto a method, and can depend on the instance variables, names of the methods, invocation5Frolund mentions the possibility of using \history instance variables" in the constraints.



parameters, and synchronisation counters. The counters are the object instance data main-tained by the system and showing for instance the number of times each method was started,�nished, or started and not �nished.The timing behaviour of a system is naturally described with constraints on event occur-rences ([4], [14], [24]). Language support for expressing these constraints helps the develop-ment of programs which meet their timing speci�cation [21]. Kenny and Lin [25] state thatfor a real-time system \there must be a way to de�ne the constraints on time and resourcesto the computations. Some notion of a constraint must therefore be part of the system".Their language (Flex) has a constraint mechanism as a basic programming primitive. Flexconstraints are associated with blocks of code. Exception handlers may be provided andwill be executed when some of the constraints fail. An important concept used by variousreal-time languages is that of observable points [21]. They can be seen as markers, relevantfor evaluating constraints, for making scheduling decisions and for tuning the code. Di�erentlanguages have di�erent notions of observable points. In our case, the observable points areat the object level (start and end of an event handler); in Flex they are at the level of ablock of code.The authors of [3] and [23] describe di�erent ways of expressing timing constraints andintegrating them into an object-oriented language. Timing behaviour can be described byspecifying the minimum and maximum time when a certain observation point in the codeis reached, or by specifying the time interval between two observation points. RTC++[23] allows timing constraints both at the operation and statement level. It also allows anon-timing constraint to be speci�ed for an operation, which can depend on the instancevariables and message parameters. A function may be provided which is invoked when aconstraint is not satis�ed, and which will decide whether or not the invocation should bequeued. The approach described in [3] relies on real-time composition �lters for expressingtiming constraints. There are input and output �lters, speci�ed at the class level. Whenan invocation message is received it is matched against the input �lters for the class. Thematching consists of evaluating a named expression which can depend on both instance andexternal variables. The method names can also be used for matching | a �lter can beshared by several methods of an object. When a match is found the timing constraint fromthe corresponding �lter is used. Our approach is similar but simpler (it has fewer basicabstractions) and more general.Events and constraints have been used for constructing active databases with their Event-Condition-Action programming model (e.g., [13], [20]). Gehani et al. [20] support eventsand triggers in a database programming language. The events are of interest to one objector of interest to a group of objects and can be:� basic events There is a number of prede�ned basic events, e.g., creation or deletion of anobject, invocation of a member function, time-related and transaction-related events.A member function (its signature) can be used as a part of an event declaration.� logical events They are the basic events optionally associated with masks. A mask is apredicate which speci�es which occurrences of an event are of interest. It can use theparameters of the event being masked, or it can use the state of an object.� composite events, logical composite events A composite event combines several logicalevents using the logical operators (and, or, not) and special event operators. The latterallow among other things speci�cation of event order and periodic events.



The work reported in [20] is similar to our work in some ways. One important di�erence isthat in our case events are used as a general communication mechanism. Also, we do nothave composite events, but they can be supported at a higher level. A mask is similar toour constraint, but the latter cannot depend on the state of arbitrary objects. In [20] eventsare local to an object, and triggers are associated with a class de�nition. A trigger links anevent with an action, and is active either perpetually or until the associated event is observedand the action is �red. The trigger corresponds to our facility to subscribe/unsubscribe toan event (both serve to link an event, constraint, and action). In [20] an action can be anarbitrary statement block while in our case an action is an event handler which is a methodof some object.In addition to being used for concurrency, synchronisation, and timing, constraints areused for specifying object invariants ([31]), and as a general construct in declarative languages(e.g., [17]).5 Conclusions, present state and future workThis paper has introduced the ECO programming model. An event-based mechanism isused for communication among objects as it allows a high degree of encapsulation and sim-pli�es development of large and complex applications. A generalised constraint mechanismallows speci�cation of a number of di�erent requirements (synchronisation and concurrencywithin an object, timing behaviour of an object, and object invariants). Although events andconstraints have been used elsewhere, this combination of events, constraints, and objectsallows a simpler and often more natural style of programming.At present, we are implementing the support for the ECO model in a single addressspace. A library which maintains information about classes, objects, events, constraints,and various bindings is linked with and used by the application code. The library providessupport for a number of prede�ned events and allows users to create and use new events.The library itself internally uses events. More details about this implementation can befound in [11].Outstanding items to be addressed include an e�cient distributed implementation andthe type of inheritance to support. In the distributed implementation one of the key issuesis scoping of events. While with inheritance it is known that inheritance may interfere withsynchronisation and timing constraints ([29], [18], [3]). In our case, constraints allow separa-tion of the synchronisation and timing code from the \ordinary" application code. It remainsto be determined whether, in such an environment, there is a need for inheriting constraintsand if there is then how it should be done. Also important is to provide some support forexpressing complex constraints which involve multiple events and multiple objects6. It maybe possible to do this at a higher level using the basic building blocks described here.AcknowledgementsThe following people contributed with their comments and in other ways to the workreported here: Andrew Condon, Alexis Donnelly, Neville Harris, Stephen McGerty, Cia-ran McHale, Karl O'Connell, Paul Taylor (Trinity College Dublin), Dag Belsnes, BrynjulvHauksson, Anund Lie (Norsk Regnesentral Oslo), Pascual Caselles, Luis del Pino (APD S.A.Madrid).6A simple example of this is synchronous communication which involves ordered request and reply events,and may involve two or more objects.



References[1] G. Agha. Actors: A model of concurrent computation in distributed systems. MIT Press,1986.[2] G. Agha and C.J. Callsen. Actorspaces: A model for scalable heterogenous comput-ing. Technical Report UIUCDCS-R-92-1766 and UILU-ENG-92-1746, Department ofComputer Science, University of Illinois at Urbana-Champaign, November 1992.[3] M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans. Real-time speci�cationinheritance anomalies and real-time �lters. In ECOOP, pages 386{407, July 1994.[4] T. Amon. Speci�cation, simulation, and veri�cation of timing behaviour. PhD thesis,University of Washington, 1993.[5] F. Andre, D. Herman, and J.P. Verjus. Synchronisation of Parallel Programs. NorthOxford Academic, Oxford, 1985.[6] G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent programming.ACM Computing Surveys, 115(1):3{43, March 1983.[7] E. Arjomandi, W. O'Farrell, and I. Kalas. Concurrency support for C++: an overview.Technical Report CS-93-03, York University, Canada, August 1993.[8] J-P. Banatre, M. Banatre, and F. Ployette. The concept of Multi-function: a generalstructuring tool for distributed operating system. In Proc. of the 6th IEEE DistributedComputing Conference, pages 478{485, 1986.[9] B.C. Bayerdor�er. Associative Broadcast and the Communication Semantics of Namingin Concurrent Systems. PhD thesis, The University of Texas at Austin, December 1993.[10] M. Benveniste and V. Issarny. Concurrent programming notations in the object-orientedlanguage Archie. Technical Report 1882, INRIA-Rennes, December 1992.[11] V. Cahill, A. Condon, D.Kelly, S.McGerty, K. O'Connell, G. Starovic, and B. Tangney.Moonlight: VOID shell speci�cation. Deliverable 1.5.1., March 1995.[12] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,32(4):444{458, April 1989.[13] S. Chakravarthy and D. Mishra. Snoop: an expressive event speci�cation language foractive databases. Technical Report UF-CIS-TR-93-007, University of Florida, Computerand Information Sciences, March 1993.[14] B. Dascarathy. Timing constraints of real-time systems: constructs for expressing them,methods of validating them. IEEE Transactions on Software Engineering, SE-11(1):80{86, January 1985.[15] D. Decouchant, S. Krakowiak, M. Meysembourg, M. Riveill, and X.R. de Pina. Asynchronisation mechanism for typed objects in a distributed system. In OOPSLA,pages 105{107, 1988.



[16] M. Donner, D. Jameson, and W. Moran. Events: a structuring mechanism for a real-time runtime system. In Proc. of the Real-Time Systems Symposium, pages 22{30,December 1989.[17] B.N. Freeman-Benson and A. Borning. Integrating constraints with an object orientedlanguage. In ECOOP, pages 268{286, June 1992.[18] S. Frolund. Inheritance of synchronisation constraints in concurrent object orientedprogramming. In ECOOP, pages 185{196, June 1992.[19] D. Garlan and D. Notkin. Formalising design spaces: implicit invocation mechanism. InLecture Notes in Computer Science 551: VDM Formal Software Development Methods,pages 31{44, 1991.[20] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Event speci�cation in an active object-oriented database. In Proc. of the ACM SIGMOD International Conference on Man-agement of Data, pages 81{90, San Diego, California, June 1992.[21] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedu-lability. In Proceedings of IEEE Real-Time Systems Symposium, pages 232{242. IEEEComputer Society Press, December 1993.[22] Object Management Group. Object services architecture, August 1992.[23] Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-oriented real-time language design:constructs for timing constraints. In ECOOP/OOPSLA, pages 289{298, October 1990.[24] F. Jahanian, R. Rajkumar, and S. Raju. Runtime monitoring of timing constraints indistributed real-time systems. Technical Report CSE-TR 212-94, University of Michi-gan, April 1994.[25] K.B. Kenny and K. Lin. Building 
exible real-time systems using the Flex language.IEEE Computer, 24(5):70{78, May 1991.[26] T. Larrabee and C.L. Mitchell. Gambit: a prototyping approach to video game design.IEEE Software, 1(4):28{36, October 1984.[27] N. Mans�eld. X Window System. A user's guide. Addison Wesley, 1991.[28] S. Matsuoka and S. Kawai. Using tuple space communication in distributed object-oriented languages. SIGPLAN Notices, 23(11):276{284, 1988.[29] S. Matsuoka and K. Wakita. Synchronisation constraints with inheritance: what is notpossible | so what is? Technical Report 90-010, Department of Information Science,The University of Tokyo, 1990.[30] S. Menon, P. Dasgupta, and R.J. LeBlanc. Asynchronous event handling in distributedobject-based systems. In Proc. the 13th Conference on Distributed Computing Systems,pages 383{390, Pittsburgh, Pennsylvania, May 1993.[31] B. Meyer. Ei�el: The Language. Prentice Hall, Englewood Cli�s, New Jersey, 1992.



[32] Karl O'Connell, Vinny Cahill, Andrew Condon, Stephen McGerty, Gradimir Starovic,and Brendan Tangney. The VOID shell: A toolkit for the development of distributedvideo games and virtual worlds. In To appear in the Proceedings of the Workshop onSimulation and Interaction in Virtual Environments, 1995.[33] B. Oki, M. P
uegl, A. Siegel, and D. Skeen. The Information Bus - an architecture forextensible distributed systems. In ACM Symposium on Principles of Operating Systems,pages 58{68, 1993.[34] A. Reuveni. The Event Based Language and its Multiple Processor Implementations.PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,1980.[35] Y-P. Shan. An event driven Model-View-Controller framework for Smalltalk. In OOP-SLA, pages 347{352, October 1989.[36] G. Starovic. Scheduling and communication with events (unpublished internal docu-ment), June 1994.[37] B. Stroustrup. The C++ Programming Language. 2nd edition. Addison-Wesley, 1991.[38] K.J. Sullivan and D. Notkin. Reconciling environment integration and software evolu-tion. ACM Transactions on Software Engineering and Methodology, 1(3):229{268, July1992.[39] Brendan Tangney, Andrew Condon, Vinny Cahill, and Neville Harris. Requirements forparallel programming in object-oriented distributed systems. The Computer Journal,37(6), August 1994. Also technical report TCD-CS-94-03, Dept. of Computer Science,Trinity College Dublin.[40] C. Tomlinson and V. Singh. Inheritance and synchronisation with enabled-sets. InOOPSLA, pages 103{111, October 1989.[41] N. Wirth. Programming in Modula-2. Springer-Verlag, 1982.


