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Abstract

The experience gained with centralised garbage col-
lection (GC) techniques has left a legacy of assump-
tions, expectations and tradeoffs, which may lead one
to overlook some Global Garbage Detection (GGD)
approaches. We argue that it is not necessary to give
up on comprehensiveness in order to achieve a high de-
gree of concurrency and scalability, although this may
be at a price which 1s not palatable in a centralised
system. For instance, much higher detection latency
or space overhead, at least in terms of worst case sce-
narios, is acceptable in a large distributed system. We
are currently implementing a variation of Schelvis’ al-
gorithm on Amadeus (taking advantage of Amadeus’
object clustering ability), to conduct an empirical eval-
uation of the actual impact of such tradeoffs.

1 Redefining Tradeoffs

Automated GC is often advertised as a means of
obviating the burden and hazard of explicit resource
management, i.e., as a lesser evil which could never-
theless, under appropriate circumstances, be avoided
altogether. This might be true in the context of a
centralised system where each thread independently
manages its own private object graph, i.e.; where the
visibility /accessibility and lifespan of objects does not
go beyond the scope of the thread of control that cre-
ated them. However, automated GC becomes a neces-
sary and unavoidable component of a system featuring
shared and/or persistent objects and a fortiori distri-
bution. These features make manual resource man-
agement not only impractical, but impossible. This
is because objects are potentially shared among inde-
pendent threads of control which cannot have a com-
prehensive view of the overall object graph, and be-
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cause objects outlive the thread of control that created
them.

Although distribution can be made transparent to
some extent, a direct adaptation of centralised GC
algorithms would lead to unacceptable overhead. Dis-
tribution introduces additional costs such as unpre-
dictable and unbounded delays in the delivery of mes-
sages across site boundaries and a potentially much
larger object space. However it provides more avail-
able resources. Not only should the approach be dif-
ferent, but also the expectations put on GGD, leading
to different tradeoffs. For instance, a longer latency in
the detection of garbage objects could be more easily
tolerated, as well as more space overheads, because
resources are less likely to be scarce in such environ-
ment. In particular it should not be necessary to rule
out potential approaches based on unlikely “worst case
scenarios.”

2 Distributed Cycles

One choice often made in order to cope with the
constraints imposed by distribution, is to trade off
comprehensiveness, i.e., the ability to detect dis-
tributed cycles of garbage, for weaker inter-node syn-
chronisation constraints and a higher degree of con-
currency under the assumption that distributed cycles
are, in fact, relatively rare [8, 7, 2, 16].

Under this assumption, it can be considered accept-
able for instance, to try to detect these rare cycles [13],
by heuristically co-locating objects likely to be part of
a cycle so that they can be dealt with by some local
comprehensive GC algorithm & la Bishop [3].

Instead, we prefer to make no assumption about the
topology of the overall distributed object-graph, and
more specifically about the likelihood or rarity of dis-
tributed cycles. Actually, we contend that distributed
cycles of garbage are as likely to occur as local cycles,
and that other tradeoffs ought to be made.

For instance, it can be argued that replicated ob-



jects, make distributed cycles or cliques even more
likely. Of course, the GGD can tackle them sepa-
rately, but that adds to the complexity of the algo-
rithm and does not guarantee that all other dead cy-
cles are detected. On the other hand, an intrinsically
comprehensive GGD could simply consider them as
elementary objects, and would not need to have any
knowledge of their semantics.

Our attention is therefore focused on algorithms
which are intrinsically comprehensive, i.e., inherently
able to detect distributed dead cycles. We contend
that weak synchronisation constraints and a high de-
gree of concurrency can be achieved without giving up
on comprehensiveness.

3 Distributed Tracing

Detecting distributed cycles of garbage involves
some form of graph tracing. Three phases can usu-
ally be identified in tracing GGD schemes [4, 15].

The initial phase builds a consistent snapshot of the
overall object graph. This snapshot is subsequently
traced to detect unreachable objects, while the last
phase entails detecting the termination of the trace
before another GGD iteration may start and resources
used by garbage objects be reclaimed.

This description 1s meant to identify the key issues
rather than trying to capture the actual sequence of
events. For instance, the initial phase described above
essentially consists in preventing race conditions which
would compromise the safety of the GGD (race con-
ditions between messages containing object references
and messages used by the GGD). This can be achieved
either via a tight synchronisation between the muta-
tor processes and GGD [10] or by actually building a
consistent snapshot of the object graph.

A snapshot can be built from scratch during each
iteration of the GGD [15] or maintained, on an on
going basis by a conceptually centralised service [11]
(in which case no explicit termination detection phase
is necessary). Alternatively, a distributed, inaccurate
but nevertheless consistent snapshot, can be built in-
crementally via some “log-keeping” mechanism as de-
scribed in Section 4.

Approaches adapted from centralised, graph-
tracing GC are comprehensive and guarantee a
bounded GGD latency (in terms of the number of
GGD iterations). However, although multiple GGD
iterations can be made to proceed asynchronously and
GGD iterations interleaved [10, 9], resources cannot be
reclaimed until the global mark phase is known to be

complete. These approaches do not make it possible
to detect the termination of a given GGD iteration
based solely on locally available information. To do
so, some sort of global consensus must be reached be-
tween all the nodes in the system. This constitutes a
major bottleneck jeopardizing the scalability of such
algorithms.

As a consequence, it may be tempting to discard
all tracing-based, GGD algorithms as too costly and
cumbersome. The usual taxonomy of GGD algo-
rithms, which emphasizes the “reference counting”
versus “tracing” dichotomy of centralised algorithms
[1, 6], may lead one to overlook other tracing algo-
rithms which would not be applicable in a centralised
environment and therefore not necessarily identified
by such a taxonomy. For instance, algorithms could
be discarded because of the usual demand on the live-
ness property, 1.e., bounded detection latency, which
we contend is not justified (as long as it remains fi-
nite) in a distributed system. Algorithms could also
be hastily discarded because of space overhead which
would be unjustifiable in a centralised environment.

4 Log-keeping

Log-keeping is performed by the mutator and es-
sentially entails keeping track of objects to which ref-
erences have crossed site boundaries. These objects
are locally considered as “alleged roots.” Log-keeping
makes 1t possible to maintain locally a conservative
approximation of the root set for each individual site,
thereby allowing local GC to proceed independently
on each site. GGD consists in eventually ridding the
alleged root set of objects which are not actually ref-
erenced remotely. It is up to the local GC to proceed
with the actual collection of garbage objects. This ap-
proach has often been adapted to decentralized GGD
[13, 14] and can be traced back to Bishop [3].

Log-keeping is orthogonal to the choice of GGD
strategy, i.e., it does not dictate the nature of the
GGD algorithm per se. Moreover, it does not guaran-
tee scalability, nor does 1t preclude comprehensiveness.
However, the choice of strategy used by the GGD to
determine which of these alleged roots are actually not
referenced remotely, affects the way the log-keeping is
performed, as the nature and amount of information
which must be logged may be different.

We distinguish two strategies for log-keeping: eager
and lazy. The former attempts to update the log-
keeping information as soon as possible, at the cost of
additional background messages sent by the mutator.
When an object reference crosses a site boundary, an



eager log-keeping mechanism attempts to immediately
update the log-keeping information maintained for the
target object on the site where this object is located.
The latter attempts to postpone these updates as late
as possible and avoids additional messages, without
prejudice to the safety of the GGD (see Section 6).
The information maintained by the log-keeping
mechanism constitutes a consistent, although not nec-
essarily accurate, snapshot of the actual object graph,
built incrementally as the overall object graph evolves.
To guarantee its consistency, race conditions between
messages containing references and background mes-
sages used for the log-keeping itself must be avoided.
Otherwise live objects could erroneously be identified
as garbage. This consistency constraint can there-
fore potentially be both costly (in terms of additional
messages for instance) and complex when eager log-
keeping is chosen. GGD approaches based on weighted
reference counting [2, 16, 7] or reference listing [13]
makes it possible to avoid this form of eager log-
keeping but are not intrinsically comprehensive.

5 Consensus-free GGD Alternative

Schelvis proposed a GGD algorithm based on the
asynchronous and incremental distribution of time-
stamp packets [14] which seems to have been over-
looked in the literature [1, 13].

Each site maintains a set of alleged roots as ex-
plained in Section 4 (or “entrance nodes” in Schelvis’
terminology). Each entrance node is uniquely iden-
tified by its “time-stamp” composed of the value of
a local clock at the time when the corresponding en-
trance node was last accessed, and the host identifier,
i.e., a pair {local-time, host-id}.

“Time-stamp packets” are repeatedly and asyn-
chronously sent to the remote entrance nodes which
are transitively reachable from local roots, or local en-
trance nodes, via local objects. A time-stamp packet
is made up of the concatenation of time-stamps of rel-
evant entrance nodes and indicates the potential exis-
tence or the absence of a live path from some root via
these nodes.

Each entrance node maintains the history of the
packets it has received, and eliminates the packets
which become obsolete every time it receives new
packets. The algorithm makes it possible to deter-
mine whether a given entrance node is reachable from
some root from the history of time-stamp packets it
has received, 1.e., on the basis of information available
locally.

Time-stamps packets are sent from an entrance
node identified as garbage before removing it, making
it possible to detect dead paths'. The packet concep-
tually sent from an entrance node is derived from the
largest? packet in its history. Distributed dead cycles
(and sub-cycles) can be detected by the node with the
highest time-stamp in the cycle which realises that the
only packets it receives were sent by itself.

Schelvis discusses the time complexity of the algo-
rithm, and the detection latency which is shown to be
unbounded but finite despite potential transient site
failures. This latency is a function of the number of
GC iterations which result in time-stamp packets be-
ing distributed. It depends on the size and structure
of the graph. It is for instance proportional to the
number k of nodes in the cases of simple structures
like a list or a single cycle, but can become O(k?) in
the worst case scenario of detecting a dead distributed
doubled linked list.

Although the idea may seem reminiscent of Hughes’
algorithm [9], Schelvis® algorithm is different in many
respects. Most importantly, time-stamp packets con-
stitute self-contained and idempotent pieces of infor-
mation about the portion of the object graph these
packets have traversed. Moreover, the reachability of
an entrance node can be determined based solely on
the history of packets it has received, that is, on the
basis of information available locally. Therefore, this
algorithm avoids the bottleneck common to algorithms
requiring some form of global consensus as discussed
in Section 3.

However, although this point is not emphasised by
Schelvis, it relies on an eager log-keeping mechanism
which is potentially quite expensive and which consti-
tutes the weakest point of the algorithm.

6 Lazy per Cluster Log Keeping

We propose a low overhead “lazy, per-cluster log-
keeping” mechanism which avoids the race conditions
mentioned in Section 4 but nevertheless maintains
enough information to make it possible to combine

1 Although this is not explicitly stated by Schelvis, this al-
gorithm requires a form of eager log-keeping mechanism which
goes beyond what we described in Section 4: it ensures that the
history of a live entrance node contains at least one packet re-
ceived when a reference to the object first crossed a site bound-
ary, as well as packets received whenever new remote references
to this entrance node were created. Additionally, whenever a
reference to a remote object is removed, the target object is
notified so as to update its history accordingly.

2The algorithm defines a total order relation between time-
stamps and hence time-stamp packets.



it with an intrinsically comprehensive GGD. The idea
of our log-keeping mechanism is to maintain a trail
of “partial back-pointers” along the paths that refer-
ences to a given object have followed during successive
exchanges between sites®.

On Amadeus [5], the overall system-wide object
graph potentially spans both primary and secondary
storage. Amadeus uses object clustering as a way of
reducing the overhead of managing many fine-grained
persistent objects. Objects are grouped within “clus-
ters” which are the unit of (un)mapping between pri-
mary and secondary storage, i.e., respectively “con-
texts” and “containers.” A context is a transient ad-
dress space which contains a set of clusters which may
vary dynamically as clusters are created, mapped into
the context or unmapped from it. A container is a
logically or physically contiguous area of secondary
storage which stores a subset of the clusters of the
systems.

The information related to the exchange of refer-
ences between sites is maintained at the cluster level
because the cluster constitutes the largest common de-
nominator between both kinds of sites. Keeping infor-
mation about exchanges of references among objects
at the per-context or per-container level would be dif-
ficult not only because contexts are transient entities
but also because of the very dynamic nature of the
global object graph. Objects stored in the same con-
tainer can be dynamically mapped into different con-
texts, and objects which were once co-located in the
same context can eventually be unmapped into differ-
ent containers or be migrated to different contexts.

Using clusters as the log-keeping unit makes it pos-
sible to reduce the overhead of keeping the log itself by
sharing the space overhead among several objects. It
also potentially takes advantage of the locality of refer-
ence within clusters, which should contribute to mini-
mizing the amount of information the log has to keep,
and reducing the complexity of the resulting graph of
partial back-pointer paths rooted at this object.

Therefore the aforementioned partial back-pointers
are maintained as a set of logs, one log per cluster, and
must contain enough information (see Section 4) for
the GGD to be comprehensive. Logically, each entry
in the log maintained by each cluster, is indexed by
the identifier of some object, and associated with a list
of cluster identifiers. Such an entry means that this
object is “known” by each of these associated clusters.
A cluster “knows” an object if it either contains a

31t is a back pointer because it leads to whatever cluster or
clusters “know” the given object. It is a partial, back-pointer
because it does not point to each individual object which holds
such a reference, but to their clusters.

reference to this object, or has an entry in its own log
indexed by the identifier of this object. Thus index
objects may or may not belong to the cluster where
the log resides.

The log 1s updated whenever a reference crosses a
site boundary?. The log can be updated either when
references are exchanged as parameters in some cross-
context object invocation, or when some objects that
contains references, are (un)mapped.

The first time a reference to some target object
crosses a site boundary, an appropriate entry can al-
ways be logged in the target’s cluster. This initial
partial back-pointer identifies the target as an alleged
root. The log-keeping mechanism ensures that every
object in the “alleged root set” (see Section 4) of some
site, has an entry in a least one log located at this site.
Our mechanism ensures that when this reference sub-
sequently crosses another site boundary, that there is
a co-located cluster, already belonging to the partial
back-pointer path, where an appropriate entry can be
logged.

The log-keeping mechanism does not try to eagerly
maintain a situation whereby each entry gives a com-
plete list of clusters which contain a reference to a
given object. In other words, it does not attempt to
update remote third party logs even in the case of
exchanges of third party references. Thus i1t avoids
the race conditions mentioned in Section 3. The com-
plete list of the clusters which hold a reference to a
given object can nevertheless be gathered by transi-
tively tracing these partial back-pointer paths.

7 Related Work

Ferreira and Shapiro [8] describe a system based on
a Distributed Shared Memory (DSM) model rather
than the Remote Procedure Call (RPC)/object-
swapping model adopted by Amadeus; it features fine-
grain objects, clustered into fixed-size and disjoint,
“segments.” These segments are themselves logically
grouped into “bunches.” Bunches can be replicated
and shared via the underlying weakly consistent DSM
system. Garbage detection is performed at two levels;
a per bunch comprehensive GC and a “scion cleaner®”
which is not comprehensive. A heuristic is used to
group bunches at one site so that a comprehensive
GC can tackle cycles locally.

This approach relates to ours in the sense that
both systems use some form of object clustering, and

4Our mechanism traps (un)swizzling operations.
5A “scion” could be described as an alleged root for the
bunch where it is maintained.



that log-keeping 1s done on a per cluster basis. How-
ever, when an inter-bunch reference is created and
the bunch of the target object is not local, a “scion-
message” must be sent to the target. Race condi-
tions involved by this eager log-keeping approach, are
avoided by piggy-packing the log-keeping “control”
messages with the messages used by the underlying
consistency protocol. Our system uses instead a lazy
log-keeping approach, and is of course comprehensive.

8 Work in Progress

Amadeus differs from the model described by
Schelvis [14] in many respects. For instance the ex-
plicit duality between primary and secondary storage,
the transient nature of the contexts, and the fine gran-
ularity of the objects (and hence the necessity for clus-
tering).

The per-cluster logs is used to log the history of
received packets for the (public) objects of that clus-
ter. Packets are propagated along the partial back-
pointer paths so as to appropriately and progressively
prune these paths of obsolete entries (for more details,
see Louboutin and Cahill [12]). Contrary to Schelvis’
original algorithm, time-stamp packets are not prop-
agated, “down-stream,” 1.e., along the edges of the
“entrance graph” (which is an abstraction of the ac-
tual object graph), but “up-stream,” i.e., along partial
back-pointer paths.

Our adaptation of Schelvis’ algorithm requires that
the GGD generates more messages than the original
algorithm would require, as a result of the different
strategy used for our log-keeping mechanism. We con-
tend that shifting the overhead from the log-keeping
mechanism, 1.e., from the mutator processes, to the
GGD i1s in itself beneficial to overall system perfor-
mance even 1if it does not decrease the number of mes-
sages exchanged globally. It is, however, expected that
the coarser granularity of the information carried in
these messages should contribute to actually reducing
the number of messages necessary for the GGD oper-
ation. Instead of indicating the potential existence or
the absence of a live path from some root via a list of
relevant objects/nodes, our packets indicate paths via
relevant clusters, 1.e., similar information, but with a
different granularity.

We chose to not give up on comprehensiveness but
nevertheless achieve a high degree of concurrency and
scalability. To avoid the usual bottleneck and pitfall of
tracing-based GGD algorithms, associated with hav-
ing to maintain a consistent abstraction of the ob-
ject graph, and having to reach a global consensus

before any resource can actually be reclaimed, we are
combining a low-overhead, lazy, log-keeping mecha-
nism with an algorithm for GGD inspired by that of
Schelvis. This choice is made at the cost of potentially
larger space overhead, i.e., larger amount of informa-
tion maintained by the log-keeping mechanism, larger
contents of control messages and unbounded (but fi-
nite) detection latency, which we consider to be ac-
ceptable in the framework of a large distributed sys-
tem of persistent objects. The actual implementation
will make it possible to conduct empirical evaluation
of this approach, and of the adequacy of our choices.
The implementation of our adaptation of Schelvis’
algorithm on Amadeus is being carried out, focusing
initially on primary-storage GGD. The correctness of
our adaptation of this algorithm remains to be proven.
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