
European Research Seminar on Advances in Distributed Systems ����

Title� On Comprehensive Global Garbage Detection

Subject Area� Distributed Operating Systems

Principal author� Sylvain R�Y� Louboutin

E�mail� Sylvain�Louboutin�dsg�cs�tcd�ie

Phone� �������	
�����

Fax� �������
		��
�

Address� Distributed Systems Group

Department of Computer Science

University of Dublin� Trinity College�

Dublin �� �Ireland�



On Comprehensive Global Garbage Detection

Sylvain R�Y� Louboutin� Vinny Cahilly

Distributed Systems Group�

Department of Computer Science�

Trinity College� Dublin �� Ireland

Abstract

The experience gained with centralised garbage col�
lection �GC� techniques has left a legacy of assump�
tions� expectations and tradeo�s� which may lead one
to overlook some Global Garbage Detection �GGD�
approaches� We argue that it is not necessary to give
up on comprehensiveness in order to achieve a high de�
gree of concurrency and scalability� although this may
be at a price which is not palatable in a centralised
system� For instance� much higher detection latency
or space overhead� at least in terms of worst case sce�
narios� is acceptable in a large distributed system� We
are currently implementing a variation of Schelvis� al�
gorithm on Amadeus �taking advantage of Amadeus�
object clustering ability�� to conduct an empirical eval�
uation of the actual impact of such tradeo�s�

� Rede�ning Tradeo�s

Automated GC is often advertised as a means of
obviating the burden and hazard of explicit resource
management� i�e�� as a lesser evil which could never�
theless� under appropriate circumstances� be avoided
altogether� This might be true in the context of a
centralised system where each thread independently
manages its own private object graph� i�e�� where the
visibility	accessibility and lifespan of objects does not
go beyond the scope of the thread of control that cre�
ated them� However� automated GC becomes a neces�
sary and unavoidable component of a system featuring
shared and	or persistent objects and a fortiori distri�
bution� These features make manual resource man�
agement not only impractical� but impossible� This
is because objects are potentially shared among inde�
pendent threads of control which cannot have a com�
prehensive view of the overall object graph� and be�

�E�mail� Sylvain�Louboutin�dsg�cs�tcd�ie
yE�mail� Vinny�Cahill�dsg�cs�tcd�ie

cause objects outlive the thread of control that created
them�
Although distribution can be made transparent to

some extent� a direct adaptation of centralised GC
algorithms would lead to unacceptable overhead� Dis�
tribution introduces additional costs such as unpre�
dictable and unbounded delays in the delivery of mes�
sages across site boundaries and a potentially much
larger object space� However it provides more avail�
able resources� Not only should the approach be dif�
ferent� but also the expectations put on GGD� leading
to di�erent tradeo�s� For instance� a longer latency in
the detection of garbage objects could be more easily
tolerated� as well as more space overheads� because
resources are less likely to be scarce in such environ�
ment� In particular it should not be necessary to rule
out potential approaches based on unlikely 
worst case
scenarios��

� Distributed Cycles

One choice often made in order to cope with the
constraints imposed by distribution� is to trade o�
comprehensiveness� i�e�� the ability to detect dis�
tributed cycles of garbage� for weaker inter�node syn�
chronisation constraints and a higher degree of con�
currency under the assumption that distributed cycles
are� in fact� relatively rare �
� �� �� ����
Under this assumption� it can be considered accept�

able for instance� to try to detect these rare cycles �����
by heuristically co�locating objects likely to be part of
a cycle so that they can be dealt with by some local
comprehensive GC algorithm �a la Bishop ����
Instead� we prefer to make no assumption about the

topology of the overall distributed object�graph� and
more speci�cally about the likelihood or rarity of dis�
tributed cycles� Actually� we contend that distributed
cycles of garbage are as likely to occur as local cycles�
and that other tradeo�s ought to be made�
For instance� it can be argued that replicated ob�



jects� make distributed cycles or cliques even more
likely� Of course� the GGD can tackle them sepa�
rately� but that adds to the complexity of the algo�
rithm and does not guarantee that all other dead cy�
cles are detected� On the other hand� an intrinsically
comprehensive GGD could simply consider them as
elementary objects� and would not need to have any
knowledge of their semantics�

Our attention is therefore focused on algorithms
which are intrinsically comprehensive� i�e�� inherently
able to detect distributed dead cycles� We contend
that weak synchronisation constraints and a high de�
gree of concurrency can be achieved without giving up
on comprehensiveness�

� Distributed Tracing

Detecting distributed cycles of garbage involves
some form of graph tracing� Three phases can usu�
ally be identi�ed in tracing GGD schemes ��� ����

The initial phase builds a consistent snapshot of the
overall object graph� This snapshot is subsequently
traced to detect unreachable objects� while the last
phase entails detecting the termination of the trace
before another GGD iteration may start and resources
used by garbage objects be reclaimed�

This description is meant to identify the key issues
rather than trying to capture the actual sequence of
events� For instance� the initial phase described above
essentially consists in preventing race conditions which
would compromise the safety of the GGD �race con�
ditions between messages containing object references
and messages used by the GGD�� This can be achieved
either via a tight synchronisation between the muta�
tor processes and GGD ���� or by actually building a
consistent snapshot of the object graph�

A snapshot can be built from scratch during each
iteration of the GGD ���� or maintained� on an on
going basis by a conceptually centralised service ����
�in which case no explicit termination detection phase
is necessary�� Alternatively� a distributed� inaccurate
but nevertheless consistent snapshot� can be built in�
crementally via some 
log�keeping� mechanism as de�
scribed in Section ��

Approaches adapted from centralised� graph�
tracing GC are comprehensive and guarantee a
bounded GGD latency �in terms of the number of
GGD iterations�� However� although multiple GGD
iterations can be made to proceed asynchronously and
GGD iterations interleaved ���� ��� resources cannot be
reclaimed until the global mark phase is known to be

complete� These approaches do not make it possible
to detect the termination of a given GGD iteration
based solely on locally available information� To do
so� some sort of global consensus must be reached be�
tween all the nodes in the system� This constitutes a
major bottleneck jeopardizing the scalability of such
algorithms�
As a consequence� it may be tempting to discard

all tracing�based� GGD algorithms as too costly and
cumbersome� The usual taxonomy of GGD algo�
rithms� which emphasizes the 
reference counting�
versus 
tracing� dichotomy of centralised algorithms
��� ��� may lead one to overlook other tracing algo�
rithms which would not be applicable in a centralised
environment and therefore not necessarily identi�ed
by such a taxonomy� For instance� algorithms could
be discarded because of the usual demand on the live�
ness property� i�e�� bounded detection latency� which
we contend is not justi�ed �as long as it remains ��
nite� in a distributed system� Algorithms could also
be hastily discarded because of space overhead which
would be unjusti�able in a centralised environment�

	 Log�keeping

Log�keeping is performed by the mutator and es�
sentially entails keeping track of objects to which ref�
erences have crossed site boundaries� These objects
are locally considered as 
alleged roots�� Log�keeping
makes it possible to maintain locally a conservative
approximation of the root set for each individual site�
thereby allowing local GC to proceed independently
on each site� GGD consists in eventually ridding the
alleged root set of objects which are not actually ref�
erenced remotely� It is up to the local GC to proceed
with the actual collection of garbage objects� This ap�
proach has often been adapted to decentralized GGD
���� ��� and can be traced back to Bishop ����
Log�keeping is orthogonal to the choice of GGD

strategy� i�e�� it does not dictate the nature of the
GGD algorithm per se� Moreover� it does not guaran�
tee scalability� nor does it preclude comprehensiveness�
However� the choice of strategy used by the GGD to
determine which of these alleged roots are actually not
referenced remotely� a�ects the way the log�keeping is
performed� as the nature and amount of information
which must be logged may be di�erent�
We distinguish two strategies for log�keeping� eager

and lazy� The former attempts to update the log�
keeping information as soon as possible� at the cost of
additional background messages sent by the mutator�
When an object reference crosses a site boundary� an



eager log�keeping mechanism attempts to immediately
update the log�keeping informationmaintained for the
target object on the site where this object is located�
The latter attempts to postpone these updates as late
as possible and avoids additional messages� without
prejudice to the safety of the GGD �see Section ���

The information maintained by the log�keeping
mechanism constitutes a consistent� although not nec�
essarily accurate� snapshot of the actual object graph�
built incrementally as the overall object graph evolves�
To guarantee its consistency� race conditions between
messages containing references and background mes�
sages used for the log�keeping itself must be avoided�
Otherwise live objects could erroneously be identi�ed
as garbage� This consistency constraint can there�
fore potentially be both costly �in terms of additional
messages for instance� and complex when eager log�
keeping is chosen� GGD approaches based on weighted
reference counting ��� ��� �� or reference listing ����
makes it possible to avoid this form of eager log�
keeping but are not intrinsically comprehensive�


 Consensus�free GGD Alternative

Schelvis proposed a GGD algorithm based on the
asynchronous and incremental distribution of time�
stamp packets ���� which seems to have been over�
looked in the literature ��� ����

Each site maintains a set of alleged roots as ex�
plained in Section � �or 
entrance nodes� in Schelvis�
terminology�� Each entrance node is uniquely iden�
ti�ed by its 
time�stamp� composed of the value of
a local clock at the time when the corresponding en�
trance node was last accessed� and the host identi�er�
i�e�� a pair flocal�time� host�idg�


Time�stamp packets� are repeatedly and asyn�
chronously sent to the remote entrance nodes which
are transitively reachable from local roots� or local en�
trance nodes� via local objects� A time�stamp packet
is made up of the concatenation of time�stamps of rel�
evant entrance nodes and indicates the potential exis�
tence or the absence of a live path from some root via
these nodes�

Each entrance node maintains the history of the
packets it has received� and eliminates the packets
which become obsolete every time it receives new
packets� The algorithm makes it possible to deter�
mine whether a given entrance node is reachable from
some root from the history of time�stamp packets it
has received� i�e�� on the basis of information available
locally�

Time�stamps packets are sent from an entrance
node identi�ed as garbage before removing it� making
it possible to detect dead paths�� The packet concep�
tually sent from an entrance node is derived from the
largest� packet in its history� Distributed dead cycles
�and sub�cycles� can be detected by the node with the
highest time�stamp in the cycle which realises that the
only packets it receives were sent by itself�
Schelvis discusses the time complexity of the algo�

rithm� and the detection latency which is shown to be
unbounded but �nite despite potential transient site
failures� This latency is a function of the number of
GC iterations which result in time�stamp packets be�
ing distributed� It depends on the size and structure
of the graph� It is for instance proportional to the
number k of nodes in the cases of simple structures
like a list or a single cycle� but can become O�k�� in
the worst case scenario of detecting a dead distributed
doubled linked list�
Although the idea may seem reminiscent of Hughes�

algorithm ���� Schelvis� algorithm is di�erent in many
respects� Most importantly� time�stamp packets con�
stitute self�contained and idempotent pieces of infor�
mation about the portion of the object graph these
packets have traversed� Moreover� the reachability of
an entrance node can be determined based solely on
the history of packets it has received� that is� on the
basis of information available locally� Therefore� this
algorithmavoids the bottleneck common to algorithms
requiring some form of global consensus as discussed
in Section ��
However� although this point is not emphasised by

Schelvis� it relies on an eager log�keeping mechanism
which is potentially quite expensive and which consti�
tutes the weakest point of the algorithm�

� Lazy per Cluster Log Keeping

We propose a low overhead 
lazy� per�cluster log�
keeping� mechanism which avoids the race conditions
mentioned in Section � but nevertheless maintains
enough information to make it possible to combine

�Although this is not explicitly stated by Schelvis� this al�
gorithm requires a form of eager log�keeping mechanism which
goes beyond what we described in Section �� it ensures that the
history of a live entrance node contains at least one packet re�
ceived when a reference to the object �rst crossed a site bound�
ary� as well as packets received whenever new remote references
to this entrance node were created� Additionally� whenever a
reference to a remote object is removed� the target object is
noti�ed so as to update its history accordingly�

�The algorithm de�nes a total order relation between time�
stamps and hence time�stamp packets�



it with an intrinsically comprehensive GGD� The idea
of our log�keeping mechanism is to maintain a trail
of 
partial back�pointers� along the paths that refer�
ences to a given object have followed during successive
exchanges between sites��
On Amadeus ���� the overall system�wide object

graph potentially spans both primary and secondary
storage� Amadeus uses object clustering as a way of
reducing the overhead of managing many �ne�grained
persistent objects� Objects are grouped within 
clus�
ters� which are the unit of �un�mapping between pri�
mary and secondary storage� i�e�� respectively 
con�
texts� and 
containers�� A context is a transient ad�
dress space which contains a set of clusters which may
vary dynamically as clusters are created� mapped into
the context or unmapped from it� A container is a
logically or physically contiguous area of secondary
storage which stores a subset of the clusters of the
systems�
The information related to the exchange of refer�

ences between sites is maintained at the cluster level
because the cluster constitutes the largest commonde�
nominator between both kinds of sites� Keeping infor�
mation about exchanges of references among objects
at the per�context or per�container level would be dif�
�cult not only because contexts are transient entities
but also because of the very dynamic nature of the
global object graph� Objects stored in the same con�
tainer can be dynamically mapped into di�erent con�
texts� and objects which were once co�located in the
same context can eventually be unmapped into di�er�
ent containers or be migrated to di�erent contexts�
Using clusters as the log�keeping unit makes it pos�

sible to reduce the overhead of keeping the log itself by
sharing the space overhead among several objects� It
also potentially takes advantage of the locality of refer�
ence within clusters� which should contribute to mini�
mizing the amount of information the log has to keep�
and reducing the complexity of the resulting graph of
partial back�pointer paths rooted at this object�
Therefore the aforementioned partial back�pointers

are maintained as a set of logs� one log per cluster� and
must contain enough information �see Section �� for
the GGD to be comprehensive� Logically� each entry
in the log maintained by each cluster� is indexed by
the identi�er of some object� and associated with a list
of cluster identi�ers� Such an entry means that this
object is 
known� by each of these associated clusters�
A cluster 
knows� an object if it either contains a

�It is a back pointer because it leads to whatever cluster or
clusters 	know
 the given object� It is a partial� back�pointer
because it does not point to each individual object which holds
such a reference� but to their clusters�

reference to this object� or has an entry in its own log
indexed by the identi�er of this object� Thus index
objects may or may not belong to the cluster where
the log resides�
The log is updated whenever a reference crosses a

site boundary�� The log can be updated either when
references are exchanged as parameters in some cross�
context object invocation� or when some objects that
contains references� are �un�mapped�
The �rst time a reference to some target object

crosses a site boundary� an appropriate entry can al�
ways be logged in the target�s cluster� This initial
partial back�pointer identi�es the target as an alleged
root� The log�keeping mechanism ensures that every
object in the 
alleged root set� �see Section �� of some
site� has an entry in a least one log located at this site�
Our mechanism ensures that when this reference sub�
sequently crosses another site boundary� that there is
a co�located cluster� already belonging to the partial
back�pointer path� where an appropriate entry can be
logged�
The log�keeping mechanism does not try to eagerly

maintain a situation whereby each entry gives a com�
plete list of clusters which contain a reference to a
given object� In other words� it does not attempt to
update remote third party logs even in the case of
exchanges of third party references� Thus it avoids
the race conditions mentioned in Section �� The com�
plete list of the clusters which hold a reference to a
given object can nevertheless be gathered by transi�
tively tracing these partial back�pointer paths�

� Related Work

Ferreira and Shapiro �
� describe a system based on
a Distributed Shared Memory �DSM� model rather
than the Remote Procedure Call �RPC�	object�
swapping model adopted by Amadeus� it features �ne�
grain objects� clustered into �xed�size and disjoint�

segments�� These segments are themselves logically
grouped into 
bunches�� Bunches can be replicated
and shared via the underlying weakly consistent DSM
system� Garbage detection is performed at two levels�
a per bunch comprehensive GC and a 
scion cleaner��
which is not comprehensive� A heuristic is used to
group bunches at one site so that a comprehensive
GC can tackle cycles locally�
This approach relates to ours in the sense that

both systems use some form of object clustering� and

�Our mechanism traps �un�swizzling operations�
�A 	scion
 could be described as an alleged root for the

bunch where it is maintained�



that log�keeping is done on a per cluster basis� How�
ever� when an inter�bunch reference is created and
the bunch of the target object is not local� a 
scion�
message� must be sent to the target� Race condi�
tions involved by this eager log�keeping approach� are
avoided by piggy�packing the log�keeping 
control�
messages with the messages used by the underlying
consistency protocol� Our system uses instead a lazy
log�keeping approach� and is of course comprehensive�


 Work in Progress

Amadeus di�ers from the model described by
Schelvis ���� in many respects� For instance the ex�
plicit duality between primary and secondary storage�
the transient nature of the contexts� and the �ne gran�
ularity of the objects �and hence the necessity for clus�
tering��
The per�cluster logs is used to log the history of

received packets for the �public� objects of that clus�
ter� Packets are propagated along the partial back�
pointer paths so as to appropriately and progressively
prune these paths of obsolete entries �for more details�
see Louboutin and Cahill ������ Contrary to Schelvis�
original algorithm� time�stamp packets are not prop�
agated� 
down�stream�� i�e�� along the edges of the

entrance graph� �which is an abstraction of the ac�
tual object graph�� but 
up�stream�� i�e�� along partial
back�pointer paths�
Our adaptation of Schelvis� algorithm requires that

the GGD generates more messages than the original
algorithm would require� as a result of the di�erent
strategy used for our log�keeping mechanism� We con�
tend that shifting the overhead from the log�keeping
mechanism� i�e�� from the mutator processes� to the
GGD is in itself bene�cial to overall system perfor�
mance even if it does not decrease the number of mes�
sages exchanged globally� It is� however� expected that
the coarser granularity of the information carried in
these messages should contribute to actually reducing
the number of messages necessary for the GGD oper�
ation� Instead of indicating the potential existence or
the absence of a live path from some root via a list of
relevant objects	nodes� our packets indicate paths via
relevant clusters� i�e�� similar information� but with a
di�erent granularity�
We chose to not give up on comprehensiveness but

nevertheless achieve a high degree of concurrency and
scalability� To avoid the usual bottleneck and pitfall of
tracing�based GGD algorithms� associated with hav�
ing to maintain a consistent abstraction of the ob�
ject graph� and having to reach a global consensus

before any resource can actually be reclaimed� we are
combining a low�overhead� lazy� log�keeping mecha�
nism with an algorithm for GGD inspired by that of
Schelvis� This choice is made at the cost of potentially
larger space overhead� i�e�� larger amount of informa�
tion maintained by the log�keeping mechanism� larger
contents of control messages and unbounded �but ��
nite� detection latency� which we consider to be ac�
ceptable in the framework of a large distributed sys�
tem of persistent objects� The actual implementation
will make it possible to conduct empirical evaluation
of this approach� and of the adequacy of our choices�
The implementation of our adaptation of Schelvis�

algorithm on Amadeus is being carried out� focusing
initially on primary�storage GGD� The correctness of
our adaptation of this algorithm remains to be proven�

References

��� Saleh E� Abdullahi� Eliot E� Miranda� and
Graem A� Ringwood� Collection schemes for dis�
tributed garbage� In Yves Bekkers and Jacques
Cohen� editors� International Workshop on Mem�
ory Management� pages ���
�� St�Malo� Brittany�
September ����� Springer Verlag � Lecture Notes
in Computer Science� LNCS ����

��� D�I� Bevan� Distributed Garbage Collection us�
ing Reference Counting� PARLE �Parallel Archi�
tectures and Languages Europe�� pages �����
��
June ��
�� LNCS ����

��� Peter B� Bishop� Computer systems with a very
large address space and garbage collection� PhD
thesis� Massachusetts Institute of Technology�
Laboratory for Computer Science� Cambridge�
MA� USA� May ����� MIT	LCS	TR���
�

��� Anders Bj�ornerstedt� Secondary Storage Garbage
Collection for Decentralized Object�Based Sys�
tems� PhD thesis� The Royal Institute of Tech�
nology and Stockholm University� Electrum ����
S���� �� KISTA� Sweden� June ����� Available
as Report No ���

��� Vinny Cahill� Se�an Baker� Chris Horn� and
Gradimir Starovic� The Amadeus GRT � Generic
Support for Distributed Persistent Programming�
In OOPSLA� �����

��� Andr�e Couvert� Aomar Maddi� and Ren�e Pe�
drono� Partage d�Objects dans les Syst�emes Dis�
tribu�es � Principes des Ramasse�Miettes� Rap�
port de Recherche ���� INRIA�Rennes� Campus



Universitaire de Beaulieu� F������ Rennes� June
��
��

��� Peter WilliamDickman� Distributed Object Man�
agement in a Non�Small Graph of Autonomous
Networks with Few Failures� PhD thesis� Darwin
College� Cambridge University� September �����

�
� Paulo Ferreira and Marc Shapiro� Garbage col�
lection and DSM consistency� In Proceedings of
the First Symposium on Operating Systems De�
sign and Implementation �OSDI�� Monterey� Cal�
ifornia� USA� November �����

��� J� Hughes� A Distributed Garbage Collection Al�
gorithm� In ACM Conference on Functional Pro�
gramming Languages and Computer Architecture�
pages �������� Nancy� France� September ��
��
Springer Verlag � Lecture Notes in Computer Sci�
ence� LNCS ����

���� Niels Christian Juul� Comprehensive� Concur�
rent� and Robust Garbage Collection in the Dis�
tributed� Object�Based System Emerald� PhD the�
sis� Department of Computer Science� University
of Copenhagen� Universitetsparken �� DK�����
Kobenhavn �� February ����� Rapport Nr���	�
ISSN �����
�
��

���� Barbara Liskov and Rivka Ladin� Highly�
available distributed services and fault�tolerant
distributed garbage collection� In Proceedings
of the �th Symposium on the Principles of Dis�
tributed Computing� pages ������ Vancouver
Canada� August ��
�� ACM�

���� Sylvain R�Y� Louboutin and Vinny Cahill� Es�
caping the Legacy of Centralised Garbage Collec�
tion � Towards comprehensive and scalable global
garbage detection in a distributed system with
�ne grain persistent objects� submitted for pub�
lication�

���� David Plainfoss�e� Distributed Garbage Collection
and Referencing Management in the Soul Object
Support System� PhD thesis� Universit�e Pierre �
Marie Curie � Paris VI� Paris� France� June �����

���� M� Schelvis� Incremental Distribution of Times�
tamp Packets� A New Approach To Distributed
Garbage Collection� In Proceedings OOPSLA��	�
pages ����
� New Orleans� October ��
�� ACM�

���� Nalini Venkatasubramanian� Gul Agha� and Car�
olyn Talcott� Scalable distributed garbage collec�
tion for systems of active objects� In Yves Bekkers

and Jacques Cohen� editors� International Work�
shop on Memory Management� pages ��������
St�Malo� Brittany� September ����� Springer Ver�
lag � Lecture Notes in Computer Science� LNCS
����

���� P� Watson and I� Watson� An e cient garbage
collection scheme for parallel computer architec�
tures� In J�W� de Bakker� A�J� Nijmaan� and
P�C� Treleaven� editors� PARLE �Parallel Archi�
tectures and Languages Europe�� pages ��������
Eindhoven� The Netherlands� June ��
��


