
A Lazy Log-Keeping Mechanism forComprehensive Global Garbage Detection onAmadeusSylvain Louboutin and Vinny CahillDistributed Systems Group,Department of Computer Science,Trinity College, Dublin 2,Ireland.E-mail: fSylvain.Louboutin,Vinny.Cahillg@dsg.cs.tcd.ieURL: http://www.dsg.cs.tcd.ie/Fax: +353-1-6772204ABSTRACT: Global Garbage Detection (GGD) in object-oriented distributed systemsrequires that each application process maintains some information in support of GGD. Main-taining this information is known as log-keeping. In this paper we describe a low-overhead,log-keeping mechanism which proceeds lazily and avoids race conditions while neverthelessmaintaining enough information for comprehensive GGD to take place.KEY WORDS: Object-Oriented Distributed Systems, Comprehensive Global GarbageDetection1 IntroductionGlobal Garbage Detection (GGD) in object-oriented distributed systems requires thateach application process (conventionally called a mutator) maintains some information insupport of GGD. Maintaining this information is known as log-keeping.Log-keeping essentially entails keeping track of objects to which references have crossedsite boundaries, and therefore become locally \alleged roots." Global Garbage Detection(GGD) consists in eventually identifying among these objects those which are not actuallyreferenced remotely. It is up to the local GC to proceed with the actual collection of garbageobjects.The information maintained by the log-keeping mechanism constitutes a consistent, al-though not necessarily accurate, snapshot of the actual object graph, built incrementally. InAmadeus [Cahill et al., 1993] this snapshot is maintained as a set of logs, one log per-cluster.We distinguish two strategies for log-keeping: eager and lazy. When an object refer-ence crosses a site boundary, an eager log-keeping mechanism attempts to update the logmaintained for the target object on the site where this object is located. This may involveadditional control messages, e.g., when exchanging references of some third-party remote



LOCAL ROOT SET

OBJECT SET

ACTUAL ROOT SET

GLOBAL ROOT SETFigure 1: Object set, local root set, global root set and actual root setobject, and therefore potential race conditions between these messages and messages con-taining object references. These race conditions may jeopardize the consistency of the logs,leading to erroneously identifying a live object as garbage. Ensuring the consistency of thelogs can therefore be both costly and complex when eager log-keeping is chosen. On theother hand, lazy log-keeping avoids additional control messages, without prejudice to thesafety of the GGD.Log-keeping is a necessary consequence of distribution, and does not dictate the natureof the GGD algorithm. However, the choice of strategy used by the GGD a�ects the natureand amount of information the log-keeping mechanism has to maintain. For instance, GGDapproaches based on weighted reference counting [Bevan, 1987, Watson and Watson, 1987,Dickman, 1991] or reference listing [Plainfoss�e, 1994b] makes it possible to avoid eager log-keeping but are not intrinsically comprehensive.This document describes a lazy log-keeping facility aimed at supporting comprehensiveGGD on Amadeus [Cahill et al., 1993].2 System ModelThis section presents an abstract view of the underlying system which attempts notto be too speci�c about actual implementation details although reecting the Amadeus[Cahill et al., 1993] model. It focuses on characteristics essential to the design of the log-keeping mechanism.2.1 Root SetsA site is a contiguous address space. Per-site GC is performed locally and independentlyof any other site. The root set for local GC consists of some local roots { the local root set {i.e., objects arbitrarily designated as roots, plus some global roots { the global root set { i.e.,objects alleged to be referenced from other (possibly remote) sites. The actual root set ismade of objects, which although not necessarily reachable from a local root, are neverthelessalive; the union of the local root set and global root set is a superset of the actual root setas shown on Figure 1.The actual root set cannot be e�ciently known accurately at all times and a conservativeapproximation is used instead. This conservative approximation is the union of the local rootset and the global root set, and is maintained jointly by mutators and the GGD algorithm.



The mutator conservatively adds (write only) objects to the global root set as referencesto them cross site boundaries. The GGD purges the global root set to narrow it down toobjects actually referenced from other sites. GGD is therefore decoupled from local garbagecollection.The invariant which the log-keeping mechanism must maintain with regards to root setscan be expressed as follows: the union of the local and global root sets is a superset of theactual root set of the local object graph.2.2 ObjectsAn object is a contiguous portion of address space, whether on primary or secondarystorage, potentially containing references to other objects. An object can be designated asbeing global, i.e., potentially known and invoked from a remote location, and/or persistent,i.e., may potentially outlive the thread of control that created it, as well as the context inwhich it was created. Conversely, an object can be local and/or volatile.A persistent object should not hold references to any volatile object, so as to prevent theeventual occurrence of dangling references. All objects transitively referenced by a persistentobject should eventually be made persistent.2.3 Clusters, Contexts and ContainersA context is a transient address space. A cluster is a collection of one or more objects.Clusters of objects are the unit of mapping into contexts. Each context contains a set ofclusters which may vary dynamically as clusters are created, mapped into or un-mappedfrom it. A cluster is mapped into at most one context at a time.A cluster of persistent objects is stored in some container. A container is a logically orphysically contiguous area of secondary storage. There may be zero, one or more containersper physical host. Each container stores a subset of the clusters in the system.The log-keeping mechanism considers that a cluster is local to a context if its log (seeSection 3.2) is accessible in that context. At context termination, all co-located clustersmust be deactivated before any one of them may actually be unmapped. This is necessaryto ensure that their respective logs can be updated appropriately before their contents arecommitted to secondary storage1.2.4 ReferencesObjects are the vertices and references the edges of the global object graph. Two forms ofreferences are considered: canonical references and language-speci�c references. Canonicalreferences are used in objects stored on secondary storage and are sent to other contexts.Language-speci�c references are used between objects co-located within the same context.The process of converting a canonical reference into a language-speci�c reference is calledswizzling; the reverse is called unswizzling.The log-keeping mechanism relies on the fact that when an object is activated (sometimeafter its cluster has been mapped into a context), every reference that it contains is swizzled;conversely, when this object is eventually deactivated (before its cluster is unmapped froma context), every (swizzled) references that it contains is unswizzled.1This constraint could however be lifted if the local GC could participate in appropriately updating thelogs. This would make it possible for the GC to preemptively un-map a cluster which has been deactivated.



Similarly, references are marshalled and unmarshalled when exchanged between con-texts. The former involves unswizzling the reference to its canonical form, so that it can besent across context boundaries, while the latter involves swizzling the reference back to itslanguage-speci�c form.The canonical and language speci�c forms of a reference may in fact be identical. Swiz-zling and unswizzling may then be null operations, but it is required that every referencecrossing a site boundary be examined in turn2. However, references exchanged within acontext are not trapped by the log-keeping mechanism. This keeps the overhead due tolog-keeping to a minimum.2.5 ProxiesWhen swizzling a reference to an absent object, a proxy for the object is created. If theabsent object is already mapped into some other context, a G-proxy is created; such a proxyhas the same interface as the remote object that it represents and acts as its surrogate.The G-proxy handles the marshalling and un-marshalling of the parameters to be sent to orreceived from the remote object that it represents3.If on the other hand the absent object is dormant, i.e., a persistent object stored insome container, a P-proxy for its whole cluster is created4. When such an absent objectis eventually invoked by some thread of control the entire cluster containing this object ismapped into the current context, overlaying its P-proxy5, and the invoked object is activated.2.6 Cross Context InvocationsThe log-keeping mechanism can only be made aware of object invocations made acrosscontext boundaries since only these invocations require down-calls to the system, for instanceto marshal and unmarshal parameters.When an object reference is exchanged between a proxy and the server object that itrepresents, the system is able to identify both the server object and the object to which thereference is being exchanged. The system is however not able to identify the client objectsince interactions between co-located objects, in this case between the client object and theproxy of the server object, are performed independently from the system.2.7 Mature ObjectsEvery object is created immature. A global object is promoted, i.e., becomes mature,when a reference to it is marshalled. A persistent object is promoted when a reference to itis unswizzled or when it is �rst deactivated. The allocation of a global name, or canonicalreference, to an object is postponed until it is promoted. When promoted, an object isassigned to a cluster which may have to be created.2Except for the special case of the references contained in clusters migrated between containers.3The absent object might eventually be made to overlay its proxy if it is later mapped into the samecontext. The proxy is thus made to occupy the same amount of space as the object that it represents.4We assume the existence of a mechanismwhich makes it possible to locate an object for which a referenceis known anywhere in the system.5Actually load balancing or security considerations may require that a cluster be mapped in some othercontext.



3 Log-KeepingThis section describes the design of the log-keeping mechanism, its data structures andits algorithm.3.1 Notation and De�nitionsThe notation introduced below and used throughout the reminder of this paper is onlymeant to facilitate the description of the mechanism. It does not necessarily reect thenaming scheme of the underlying system.� X is a cluster (i.e., a name in upper case).� blue is an object (i.e., a colour name in lower case).� X:blue is an object blue belonging to cluster X .� @A is a site which may be either a context or a container (i.e., an upper case letterpreceded by an \@").� X:blue@A is an object blue (which belongs to cluster X ) at site @A; @A being eithera container or a context. Note that any of blue or X.blue or X.blue@A can be usedinterchangeably to refer to the same object.� " blue is a reference to the object blue.� fblue; � � � ; Y; � � �gX is an entry in the log of cluster X (see Section 3.2) associatingobject blue with cluster Y . The ellipsis � � � is used to show that the object may alsobe associated with other clusters by the same entry as there is at most one entry for agiven object.� fblue; Y g@A is an entry in the log of context @A (see Section 3.5) in this case, @A canonly refer to a context since there are no per container log.3.2 Clusters As Log-Keeping UnitThe overall system-wide object graph potentially spans both primary and secondarystorage as shown in Figure 2. Keeping information about exchanges of references amongobjects at the per context or per container level would be di�cult not only because contextsare transient entities, but also because of the very dynamic nature of the global object graph.Objects stored in the same container can be dynamically mapped into di�erent contexts, andobjects which were at one time co-located in the same context, can eventually be unmappedinto di�erent containers or migrated to di�erent contexts. This information should thereforebe more closely associated with individual objects.With an appropriate clustering policy [Gourhant et al., 1992] objects are more likely toreference other objects belonging to the same cluster. Using clusters as log-keeping unit doesnot only make it possible to share the space overhead of the logs among several clusteredobjects, but also takes advantage of the locality of reference within clusters. It minimizes theamount of information the log has to keep because exchanges of references between objectsbelonging to the same cluster do not have to be logged.Therefore, each cluster maintains a log. Logically, each entry in this log is indexed by theidenti�er (ID) of some object and contains a list of cluster IDs (and possibly a timestamp).Such an entry means that this object is \known" by each of these associated clusters. Acluster \knows" an object if it either contains a reference to this object, or has an entry in



Green

Blue

W

{Blue,Y}
Violet

{Violet,X}

X

Z

Y
Amber

Brown

Grey

Yellow

Pink

Red
{Brown,Z}

{}

{Yellow,X}
{Pink,Y,W}

White

{White,Y}

@B

@C

@A

Figure 2: Ideal situationits log indexed by the ID of this object. The index objects may or may not belong to thecluster where the table resides as will be explained later in Section 3.4.3.3 Lazy Log-KeepingFigure 2 shows an \ideal" situation whereby every cluster's log shows the complete listof clusters containing references to each of its objects and nothing else. In this Figure, @Aand @B are contexts while @C is a container, although, conceptually the distinction doesnot matter. For instance, object pink in cluster Z mapped in context @B, i.e., Z.pink@B,is known by Y.red@B and W.green@C. Therefore, the log of cluster Z contains the entryfpink; Y;WgZ.It should be noted that the global root set of context @B consists of the objects Pink andYellow. ObjectWhite which is only associated with a local cluster in the entry fWhite; Y gZdoes not belong to the global root set.The situation depicted in Figure 2 is however unlikely to occur if a lazy log-keepingmechanism is used. Such mechanism maintains a weaker invariant that every object in theglobal root set of some site, has an entry in at least one per-cluster log located at this site.



3.4 Partial Back Pointer PathThe aforementioned invariant can be maintained without necessarily keeping a strictlyaccurate per cluster log as shown in Figure 2. It is not necessary for such a log to maintain anexact list of all the clusters holding a reference to some object. However, enough informationmust be kept to make it possible for the GGD to decide whether or not a particular entry isobsolete and can safely be discarded (see Section 4).To do so, it must be possible to eventually gather, for every object, the complete list of(not co-located) clusters which contains a reference to this object, even though this list isnot necessarily kept entirely in the log of the cluster to which this object belongs. The ideaof this log-keeping mechanism is to lazily leave a trail of partial back pointers along the pathsa reference to an object has followed during successive exchanges between sites.In other words, an entry in a cluster log associates an object with a list of clusters whichknow this object, where \knowing" may only mean containing an entry indexed by thisobject in their own log. This entry can be described as a partial back pointer. It is a backpointer because it leads to whatever cluster or clusters know a given object. It is a partialback pointer because it does not point to each individual object which holds such a referencebut to their clusters.In the example shown in Figure 6, an entry in the log of cluster Z, associates an objectred with a list of clusters, in this case fred; Y gZ. This means that cluster Y contains eithera reference "red, or that its log contains an entry fred; � � �gY . The list of clusters whichcontains a reference to a given object can be gathered by tracing these partial back pointerpaths6.Locality of reference within clusters should therefore contribute to reducing the numberof such paths for a given object and hence the complexity of the resulting tree or graph madeof the partial back pointer paths rooted at this object.3.5 Growth of a Tree of Partial Back Pointer PathsThis sections describes how a graph of partial back pointer paths grows from the initialentry logged when a newly created object is promoted, up to entries pointing to all theclusters which actually contain a reference to this object. It shows how a root entry canalways be logged when a newly created object is promoted and how a reference in transitthrough a site does not fail to leave behind a partial back pointer path.Missing Link Cluster: The ID of some cluster, chosen at random among the clustersmapped with a client object is piggy-backed with the parameter list of any remote invocationto a server object in case this invocation may return a reference. This cluster7 will be referredto as the missing link cluster.Per-context log: The per-context log is a transient structure logically maintained at thecontext level which persists only for as long as the context. This log logically associates6This list does not necessarily include some remote active clusters which may contain a reference tothe object. However, since such clusters would be co-located into the same context as some other clusteralready logged along these partial back pointer path, the invariant is not broken and an appropriate entrywill eventually be logged when their context terminates.7For instance the cluster associated with the ID of the server in the per context log.



Y

blue

@B@A Z.green

red

Figure 3: Reference sent as a parameter of a remote invocationeach proxy in the context with the local cluster having �rst imported (either unmarshalledor swizzled) a reference to this remote object into this context.Exporting a Reference: A reference to an object can be exported from some context@A to another context @B in either of the following two ways:1. As shown in Figure 3, where a client red@A sends a reference "Z.green to the serverY.blue@B8.(a) If Z.green is promoted as the result of its reference being marshalled for the �rsttime (see Section 2.7), green has just been allocated to its cluster Z@A. Theidentity of the remote server Y.blue@B being known (see Section 2.6), the entryfgreen; Y gZ must be logged9.(b) The entry fgreen; � � � ; Y; � � �gZ must also be logged if Z.green was already matureand mapped into context @A.(c) If Z.green is not mapped in context @A, an entry indexed by green necessarilyexists in the per context log. For instance if this entry is fgreen;Wg@A, the entryfgreen; � � � ; Y; � � �gW must be logged.2. Figure 4 shows a server X.red@A returning a reference "Z.green to client blue@B asthe result of some invocation. As the identity of the remote client is not known (seeSection 2.6) the ID of the missing link cluster, for instance V@B, is used instead.(a) If Z.green is promoted as the result of its reference being marshalled for the �rsttime (see Section 2.7), green has just been allocated to its cluster Z@A. The rootentry fgreen; V gZ must be logged.(b) Similarly, if Z.green was already mature and mapped into context @A, the entryfgreen; � � � ; V; � � �gZ must logged.(c) If Z.green is not mapped in context @A, an entry indexed by green necessarilyexists in the per context log. For instance if this entry is fgreen;Wg@A, the entryfgreen; � � � ; V; � � �gW must be logged.8The proxy of the server is represented as a small grey square.9An entry is only logged into some table if it is not already present.



@B@A

blue

red

Z.green
X

VFigure 4: Reference returned as a result of a remote invocationWhen a global object is promoted, that is, when its reference crosses a site boundary forthe �rst time (marshalled), an entry for this object can always be logged immediately intothe log of its cluster. This entry constitutes the �rst link, or root entry, in a partial backpointer path rooted at this object. From this point, and until the GGD eventually removesthis entry, if ever (see Section 4), and as long as this entry is associated to some non-localclusters, local per site GCs will consider this object as a global root.Furthermore, when a reference to either a local mature object, or a reference to someremote object is exported, the log of respectively the cluster to which this object belongs, orthe cluster known to have initially imported the reference into the context can be updatedwith an entry pointing to the next link in the partial back point path.Importing a Reference: A reference to an object can be imported into some context@B from another context @A in either of the two ways previously described. The object towhich the reference is imported is already mature.1. As shown in Figure 3, where the server Y.blue@B receives a reference "Z.green fromthe client red@A.If Z.green is not mapped in @B and there is no entry indexed by green in the log ofcontext @B, the entry fgreen; Y g@B must be logged.2. As shown in Figure 4, where the client blue@B receives a reference "Z.green from aserver X.red@A as the result of some invocation. The identity of the client, i.e., of theobject who �rst imports the reference into context @B, is not known (see Section 2.6).The ID of the missing link cluster, for instance V@B, must be used instead.If Z.green is not mapped in @B, and there is no entry indexed by green in the log ofcontext @B, the entry fgreen; V g@B must be logged.When a remote reference is imported for the �rst time, i.e., as soon as a proxy is createdfor the global object to which the reference is imported, an entry is logged in the per contextlog. The cluster associated with this entry is identical to the cluster associated with thecorresponding entry in the per-cluster log of the object to which the reference is beingimported.



Activating a Cluster: When some cluster X is activated into context @A, for each ref-erence to some non-local object which is swizzled but not yet indexed in the log of @A, e.g.,"Z.green, the entry fgreen;Xg@A must be logged.Additionally, if activating a cluster results in overlapping a proxy, i.e., if an object whichwas indexed in the per-context log is mapped, the corresponding entry in the per-contextlog must be removed. Activating a cluster is equivalent to importing all the references thatit contains.De-activating a Cluster: When some cluster X is deactivated from context @A, foreach remote reference being unswizzled, the cluster indexed by the referenced object in theper-context log must be updated.For instance, when "Z.green is unswizzled, if the entry indexed by green in the per-contextlog is fgreen;Wg@A, the entry fgreen; � � � ;X; � � �gW must be logged.If unswizzling "Z.green actually results in promoting object Z.green, which would thennecessarily be local, the root entry fgreen;XgZ must be logged.When a reference to a persistent object is �rst unswizzled, i.e., when a persistent objectis promoted because its reference is held by a cluster being deactivated, the root entry forthis object can be logged directly in the log of its cluster10. Similarly an entry associatingthe cluster being deactivated with a local mature object to which a reference is unswizzledcan also be logged directly. Entries associating some remote object with the cluster beingdeactivated are however logged into the log of the cluster known to have �rst imported it(found in the per-context log).Even though inter-cluster but intra-context exchanges of references cannot be trappedby the log-keeping mechanism, they are eventually logged when clusters are deactivated.Deactivating a cluster is equivalent to exporting all the references that it contains.References in transit: Whenever a reference to some object transits through a context,it is �rst logged into the log of this context, associated with the cluster known to have �rstimported this reference. This cluster can either be the cluster having actually importedit, or a missing link cluster arbitrarily chosen. What matters is that both parties involvedin exchanging a reference agree upon which cluster is known to have imported it. In thisway, the previous link in the partial back pointer path points to this cluster. And the logof this cluster may eventually become the next link in the path, should this reference bere-exported to another site. The path of partial back pointers therefore remains unbroken.This is illustrated in the following example:Figure 5 shows an object pink@B which invokes object Y.blue@A. Y.blue@A returns thereference "Y.green@A as the result of this invocation. The identity of the cluster of the clientobject (in this case pink) is not known11, the missing link cluster V@B is used instead so thatthe entries fgreen; V gY and fgreen; V g@B can be logged. Object pink@B12 later re-exportsthis reference by invoking object X.amber@C and passes the reference "Y.green@A as oneparameter of this invocation. The cluster of the remote server, i.e., X, being known, theentries fgreen;XgV and fgreen;Xg@C are logged.10When a persistent object is promoted by crossing a site boundary, that is, when this object is itselfdeactivated, no per-cluster log needs to be updated.11Furthermore, pink may not be mature.12It could be any other object mapped in context @B.



amber

X

Y.green@A

@A

{}

Y

Y.green@A

blue

green

pink

{}

@C

@B

(V)

(...)
{green, V}

{green, V}

{green, X}

{green, X}

V

Figure 5: A reference in transit3.6 Inaccuracies in the LogsFigure 6 represents a set of clusters and the contents of their respective logs as couldbe observed after a few exchanges of references have taken place within the system. Sitesboundaries are not represented. Unlike the \ideal" situation represented in Figure 2, theirlogs are not necessarily accurate, although they contain enough information for any localgarbage collector to be safe, no matter how these clusters eventually end up being distributedacross di�erent sites. In other words, although these logs may contain inaccuracies, they arenevertheless complete, since the invariant stated in Section 3.3 is not broken.These logs may contain three kind of inaccuracies:� Obsolete entries such as fblue;WgZ and fmaroon; Y gZ. The former is obsolete becausethe reference to object blue previously held by some object of clusterW does not existanymore; the latter because objectmaroon does not exist anymore. Both entries wouldeventually be removed by the GGD.� Incomplete entries, i.e., which give an incomplete list of the clusters actually containinga reference to some object. This list can nevertheless be reconstructed using availableinformation held by other per-cluster logs which form the partial back pointer path.For instance, the entry like fred;W;XgZ would be more accurate than the entryfred; Y gZ that the per-cluster log for Z actually contains. However the partial backpointer path can be traced as follow: entry fred; Y gZ, means that object red is knownto cluster Y. However, no object in cluster Y holds any reference to object red, but



Orange

Indigo

{Indigo,X}

Y

{Red,X}X

Amber

Brown

Grey

Yellow

Pink

{Red,W}

{Pink,X}

W

Red

Green

Blue
{Red,Y}

{Blue,W}

{Maroon,Y}

Z

{Brown,Y}

Figure 6: Partial back pointer paththere is an entry fred;XgY . In turn object X.grey actually holds a reference "Z.redand there is an entry fred;WgX in the same cluster. In cluster W, object W.pink isthe only place where a reference "Z.red can be found.� Entries belonging to some partial back pointer path such as fred; Y gZ. Although noobjects in cluster Y per se holds any reference to object Z.red, this entry is not obsoletesince the log of cluster Y contains an entry indexed by object red.Y may either have been used as a missing link cluster, or an object in Y may haveonce held the reference "Z.red and forgotten it after having forwarded it to X.grey, orelse, Y may have been the �rst cluster to have imported "Z.red in a context whereit was mapped although it was another cluster which re-exported it to X.grey. It isnot possible at this stage to know which of these possibilities applies, which shows,as stated in Section 3.5, that any cluster is equally valid to serve as the missing linkcluster. Similarly, the entry fred;XgY is not obsolete either even though this clusterdoes not contain any object red.4 Pruning the Partial Back Pointer Path TreesThe rôle of the GGD is to identify which entries in the di�erent logs maintained by thelog-keeping mechanism, i.e., per-cluster logs and per-context Any comprehensive, i.e., graph-tracing, GGD policy can be used. See Louboutin and Cahill [Louboutin and Cahill, 1995]



for further details about an adaptation of an algorithm for GGD inspired by that of Schelvis[Schelvis, 1989] using this lazy per-cluster log-keeping mechanism.Garbage Objects: An object becomes garbage when it is not reachable from any localroot and there is no entry in the log of any local cluster associating the object's ID with theID of some non-local cluster.Garbage Clusters: A cluster becomes garbage when it contains only garbage objects,and there is no entry in its per-cluster log associating some object's ID with the ID of somenon-local cluster.Garbage per-cluster log entry: An entry in some per-cluster log indexed by some objectred can be collected when red is no longer \known" by any of the associated clusters in thisentry. An entry can also be collected whenever the object indexing it has been collected bythe GC.Garbage per-context log entry: An entry in some per-context log indexed by someobject blue can be collected by the local per-context GC13 when no local object contains anyreference to object blue, i.e., as soon as the proxy for blue is itself collected by the local GC,or when the actual object blue eventually overlays its own proxy145 Related WorkFerreira and Shapiro [Ferreira and Shapiro, 1994] describe a system based on a Dis-tributed Shared Memory (DSM) model rather than the Remote Procedure Call (RPC)/object-swapping model adopted by Amadeus; it features �ne-grain, i.e., smaller than a page, objects,clustered into �xed-size, i.e., made of a �xed number of contiguous pages, and disjoint, \seg-ments." These segments are themselves logically grouped into \bunches." Bunches can bereplicated and shared via the underlying weakly consistent DSM system. Objects are identi-�ed by their address within a 64 bit system-wide address space encompassing both primaryand secondary storage15. GC is performed at two levels; a per bunch comprehensive GC anda \scion cleaner" which is not comprehensive. A heuristic is used to group bunches at onesite so that a comprehensive GC can tackle cycles locally.This approach relates to ours in the sense that both systems use some form of objectclustering, and that log-keeping is done on a per cluster basis. However, when an inter-bunchreference is created16 and the bunch of the target object is not local, a \scion-message" musteventually be sent to the target; this creates an additional overhead (additional message)for mutator processes. Race conditions that these additional log-keeping messages wouldcreate are avoided by piggy-packing these messages on the messages used by the underlyingconsistency protocol. Our system avoids such additional log-keeping messages altogether.13Unlike entries in per-cluster logs which can only be collected by the GGD mechanism.14The per-context log is not implemented as an independent data structure but as an additional �eld inthe header of an object proxy (see Section 2.5) containing the ID of the associated cluster.15Object addressing is a combination of OID and SSP approaches [Plainfoss�e, 1994a].16Such creation is trapped via a \write-barrier" unlike our RPC based system which uses (un)swizzlingoperations.



6 ConclusionLaziness: Our log-keeping mechanism does not attempt to update remote third party logseven in the case of exchanges of third party references, it does not require additional \control"messages, and hence avoids race conditions common to eager log-keeping approaches. Thismechanism also postpones the update of the log as late as possible (e.g., until contexttermination for inter-cluster, intra-context exchanges of references), hence, it does not triggerobject-faults which would have not otherwise occurred.Log-keeping for comprehensive GGD: The �rst time a reference to some target objectcrosses a site boundary, an appropriate entry can always be logged in the target's cluster.This initial partial back-pointer identi�es the target as a global root. Our mechanism ensuresthat when this reference subsequently crosses another site boundary, that there is a co-locatedcluster, already belonging to the partial back-pointer path, where an appropriate entry canbe logged. Thus it can be seen that the complete list of the clusters which hold a referenceto a given object can be gathered by transitively tracing these partial back-pointer paths.It therefore maintains enough information for a comprehensive GGD which would proceedby tracing the graphs of partial back-pointer paths rather than the actual object graph.Robustness: This mechanism is robust. Logs are updated when a reference is marshalled,unmarshalled, unswizzled or swizzled, and before such action is actually performed. If theactual exchange of reference or the mapping or unmapping of some cluster which triggeredthese log-keeping operations fails, it would result in some unnecessary log entries whichwould have to be later collected. It would result in additional detection latency but wouldnot a�ect the safety property of the GGD.Overhead: The overhead of this mechanism is mostly space overhead, i.e., size of theper-cluster logs and possibly clusters containing only garbage objects but which cannot becollected. Since log-keeping operations are performed by trapping (un)swizzling operationsit should only add a negligible computing overhead.However, a GGD using this log-keeping mechanism generates potentially more inter-sitemessages than a GGD which traces the actual object graph or uses an eager log-keepingmechanism. These additional messages are due to the inaccuracies in the logs explained inSection 3.6. We contend that shifting the overhead from the log-keeping mechanism, i.e.,from the mutator processes, to the GGD is in itself bene�cial to overall system performanceeven if it does not decrease the number of messages exchanged globally.The mechanism requires that some information (of the size of a cluster ID) be piggy-backed on the parameter lists of all inter-context object invocations. This overhead is deemedacceptable.Worst case scenario: If k is the total number of objects in the system, and n the totalnumber of clusters in the system, a worst case scenario may generate a per-cluster log of sizek(n� 1), i.e., a monstrous per-cluster log with k entries, each of them associated with n� 1cluster IDs. If every per-cluster log in the system grow to this proportion, a potential spaceoverhead of kn(n� 1)sizeof(ID) would have to be considered.However, it is expected that such a scenario is highly unlikely to occur, and that typicalcases would be more reasonable due to object clustering (and dynamic re-clustering) andlocality of reference within clusters, and among clusters. An e�ective GGD algorithm would



also contribute to continuously keeping the growth of the logs under control. The log-keepingmechanism could also be optimized so as not to log entries corresponding to exchanges ofreferences between clusters which remain co-located after being (un-)mapped.References[Bevan, 1987] Bevan, D. (1987). Distributed Garbage Collection using Reference Counting.PARLE (Parallel Architectures and Languages Europe), pages 176{187. LNCS 259.[Cahill et al., 1993] Cahill, V., Baker, S., Starovic, G., and Horn, C. (1993). Generic run-time support for distributed persistent programming. In Paepcke, A., editor, OOP-SLA (Object-Oriented Programming Systems, Languages and Applications) '93 Confer-ence Proceedings, volume 28, pages 144{161, Washington D.C., USA. ACM, New York.Also technical report TCD-CS-93-37, Dept. of Computer Science, Trinity College Dublin.ftp://ftp.dsg.cs.tcd.ie/pub/doc/TCD-CS-93-37.ps.gz.[Dickman, 1991] Dickman, P. W. (1991). Distributed Object Management in a Non-SmallGraph of Autonomous Networks with Few Failures. PhD thesis, Darwin College, Cam-bridge University.[Ferreira and Shapiro, 1994] Ferreira, P. and Shapiro, M. (1994). Garbage collection andDSM consistency. In Proceedings of the First Symposium on Operating Systems Designand Implementation (OSDI), Monterey, California, USA.[Gourhant et al., 1992] Gourhant, Y., Louboutin, S., Cahill, V., Condon, A., Starovic, G.,and Tangney, B. (1992). Dynamic Clustering in an Object-Oriented Distributed System.In Proceedings of OLDA-II (Objects in Large Distributed Applications), Ottawa, Canada.ftp://ftp.dsg.cs.tcd.ie/pub/doc/dsg-24.ps.gz.[Louboutin and Cahill, 1995] Louboutin, S. R. and Cahill, V. (1995). On ComprehensiveGlobal Garbage Detection. In European Research Seminar on Advances in DistributedSystems (ERSADS), Alpes d'Huez, France. Also technical report TCD-CS-95-11, Dept.of Computer Science, Trinity College Dublin. ftp://ftp.dsg.cs.tcd.ie/pub/doc/TCD-CS-95-11.ps.gz.[Plainfoss�e, 1994a] Plainfoss�e, D. (1994a). Comparaisons entre les OIDs et les châ�nes dePSS. Note Technique SOR-131, INRIA{SOR, Paris, France.[Plainfoss�e, 1994b] Plainfoss�e, D. (1994b). Distributed Garbage Collection and ReferencingManagement in the Soul Object Support System. PhD thesis, Universit�e Pierre & MarieCurie { Paris VI, Paris, France.[Schelvis, 1989] Schelvis, M. (1989). Incremental Distribution of Timestamp Packets: ANew Approach To Distributed Garbage Collection. In Proceedings OOPSLA'89, pages37{48, New Orleans. ACM.[Watson and Watson, 1987] Watson, P. and Watson, I. (1987). An e�cient garbage col-lection scheme for parallel computer architectures. In de Bakker, J., Nijmaan, A., andTreleaven, P., editors, PARLE (Parallel Architectures and Languages Europe), pages 432{443, Eindhoven, The Netherlands.


