
It's Your Choice - On the Design and Implementation of a Flexible
Metalevel Architecture

Chris Zimmermann Vinny Cahill

Distributed Systems Group,
Department of Computer Science,
Trinity College, Dublin 2, Ireland
{czimmerm, vjcahill}@dsg.cs.tcd.ie

February 15, 1996

Abstract
Tradi t ional con,figurable operating s y s t e m s typzcnlly
provide os fixed a n d l imited se t of f unc t iona l i t y . We
propose a m,etalevel architecture, wh,ere application-
d e f i n d objects can, choose from a rich select ion of pos-
sable configurations and are therefore able to d y n a m i -
cally ch,an,ge th,e w a y in which t h e y are executed t o thpe
configuration, th,at su i t s best. T h i s allows applications
t o nda,pt opemting s y s t e m beh,aiiiour t o m e n unant ic i -
p d e d requiremen,ts durin,g ru.n-time. A distrzbuted ap-
plication, which processes mul t imedia data serves as an
exam,ple t o i l l u s t r d e the c o m e p t s described.

1 Introduction
Traditional configurable operating systems typically
provide a fixed and limited set of functionality. With
the advent of a new generation of applications, such
as mnltimedia systems, where applicat,ions must be
able to adapt to changing requirements during run-
time, such limited operating system support may be a
hinderence to maintaining the level of efficiency that
these operating systems were configured for. Since
the applications have to be adaptable, operating sys-
t,ems in turn must be able to support adaption dur-
ing run-time. Besides traditional functionality such as
scheduling and storage management, this means offer-
ing interfaces that allow applications to control the
way in which an operating system provides this fiinc-
tionality [KL93, I<TW92]. It is no longer sufficient
for an operating system just to offer scheduling fiinc-
tionnlity, for example, without providing a means of
changing the way in which it does this scheduling, i.e.
of choosing individual scheduling policies. Another ex-
ample is persistence: should the size of objects, which
are persistent, change during the life-time of the ap-
plication, the operating system has to adapt its mech-
anisms and policies to provide the most efficient solu-
tion for a given object size [ZK93].

This paper presents a solution to this problem. We
facilitate this adaptation process by employing a re-

flective architecture, where application-defined objects
(the units of computation in our model) are able to
choose from a rich selection of possible configurations
and are therefore able to dynamically change the way
in which they are executed to the configuration that
suits best.
The remainder of this paper is organized as follows:
after this introduction we discuss the underlying op-
erating system framework named Tigger which serves
as an implementation basis for the concepts presented
in this paper. We use an example from the field of
multimedia computing to illustrate the use of this ar-
chitecture. Sections on implementation issues with
some performance figures together with a discussion
of related work conclude this paper.

2 Tigger
Tigger is an object-support operating system frame-
work [CHJ+94] which serves as the environment for
implementing the concepts presented in this paper.
This framework provides typical operating system ser-
vices such as persistence and scheduling using objects
as the basic units of computation. A general feature
of t.his framework is its ability to be tailored to the
specific needs of different target environments.

Interactive video games provide one possible target
environment for the Tigger framework. Since these
video games are highly interactive, they have require-
ments in terms of support for (soft) real-time object
behavior. 'This support then has to be provided by the
underlying instantiation of Tigger. Therefore, an in-
stantiation of the framework that is aimed at this tar-
get environment has to provide this real-time support
by means of real-time scheduling of threads as well as
real-time synchronization protocols. In contrast, the
requirements in terms of persistence are constrained
to simple services such as transferring an object state
from and to disk if indeed persistence is needed a t all.

In addition to these general requirements, individual

116
0-8186-7395-8/96 $05.00 0 1996 IEEE

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

applications which are part of these environments have
their own demands in terms for specific algorithms or
mechanisms which the underlvine framework has to

defined objects', they are able to control certain as-
pects of the execution of those baselevel objects. The
entiret,v of all metaobiects is called a metmnace.

I "

supply. A video game using multimedia data such as
a video clip, for example, may need a particular real-
time schedllling mechanism, depending on the type of
multimedia da ta it has to process. These requirements
may even vary during the run-time of this application.

Piglet, the metalevel architecture of Tigger, structures
this metalevel into three groups of entities which re-
present the nature of the underlying instantiation of a
Tigger.

The functionality of a particular instantiation of Tig-
ger is subdivided into single components or subframe-
works responsible for implementing specific object
support services. These subframeworks can then be
configured to meet the needs of specific application
areas such as video games.

3 Structuring the Metalevel
From an application-oriented point of view the func-
tionality supplied by an instantiation of Tigger is
structured as depicted in Fig. 1. This overall architec-
ture named Piglet is detailed in the following sections.

ilaregian Controller

Tigger

Figure 1: Metalevel Structure of Tigger

3.1 The Metalevel

The basic units of computation in our mod.el are ob-
jects. To control the way in which these objects
are executed, we employ a concept called metaob-
,jects [Mae87]. Since these metaobjects know about
the internal organization and structure of application-

3.2 Metanuclei
As discussed above, Tigger is a collection of subframe-
works responsible for implementing various algorithms
dealing with single aspects such as process manage-
ment. Towards applications, the content,s of each of
these subframeworks are represented by metnnmclei.
Metanuclei are a means for grouping all the mech-
anisms and policies regarding a certain fiinctional-
ity that a particular instantiation of Tigger supports.
Take process management as an example. A pro-
cess management met,anucleiis for real-time support
includes real-time scheduling policies and synchroni-
zation protocols. Metanuclei therefore contain the rel-
evant code for one specific operating system fiinction-
ality.

3.3 Metaregions
Each metanucleus consists of a set of metaregions. A
metaregion in turn consists of a (possibly empty) set of
metaobjects implementing the same functionality and
exposing the same interface to application-defined ob-
jects. The difference between the individual metaob-
jects forming a metaregion is their behavior when pro-
viding this functionality. For example a scheduler
metaregion being part of a real-time metanucleus con-
sists of different scheduler metaobjects realizing differ-
ent> real-time scheduling algorithms. They all exhibit
the same functionality (i.e. scheduling) but do it dif-
ferently according to the algorithm that they imple-
ment. Another example is a metaregion containing
different pagers realizing object persistence. Pagers
aimed a t different object sizes all do the same thing:
transferring the state of objects to and from disk. The
way they achieve this is different depending on the size
of the object.

In addition to the individual metaobjects, each
metaregion has a controller which allows metaobjects
to be attached to objects and allows a metaregion to
be queried about its contents and the capabilities of
the individual metaobjects. This part of the interface
is used by objects to control which metaobject of the
metaregion is controlling a certain aspect of its behav-
ior. Besides this controller interface, each metaregion
defines a common interface for the metaobjects this
metaregion contains. This common interface of the
metaobjects2 is then used by applications to change

'Also called bus elevel objects-or baseobjects for
short [Zim96a]-to emphasize the difference between base-

'The interface of a metaobject is also known as a me-
and metalevel

taobject protocol (MOP) [KdRBSl, Zim96bI.

117

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

the way in which they are executed. To continue t,he
scheduler example from above, methods provided by
this scheduler MOP include yielding the CPU and
waiting for anot,her thread to finish; these methods
all have to be implemented by the individual metaob-
jects which are part of the metaregion.

Compared to traditional approaches to organizing
metaobjects such as the multi-model reflection frame-
work [OIT93] or Apertos [Yok93], metaregions have
two distinct advantages. First of all, a metaregion
can capture a common part of the metaobjects that
it contains. For example consider support for thread
management to be provided by a scheduler metare-
gion. Since each scheduler metaobject has to manage
queues containing various threads (such as queues for
active or blocked threads , this common functiona1it.y
can be implemented by t h e metaregion.

This can easily be done when an object-oriented pro-
gramming language supporting inheritance such as
C++ [Str92] is used to implement metaregions. The in-
dividual metaobjects are then derived from a baseclass
providing the common interface of the metaregion.
The second advantage is that metaregions int,roduce
a stahcal ly typed metalevel. One of t.he advantages of
this static typing is that the source code can be com-
piled into machine code instead of being interpreted
at run-time [CWr85, DT881. Although not all binding
decisions can be made a t compile-time, more efficient
mechanisms such as virtual function tables [ES91] can
be employed which result in faster overall execut.ion
of the program compared to just interpreting it a t
run-time. A detailed discussion of metaregions can
be found elsewhere [Zim96a].

3.4 Metaobjects
Metaobjects implement the non-algorithmic behavior
of objects, i.e. they control the way in which these ob-
jects are executd . The responsibilities of the metaob-
jects are twofold: on one side they are in charge of sup-
plying the implementation of the MOP representing
the metaregion as explained above; on t,he other side
they intercept individual method calls to the baseob-
jects transparently. This allows the fitnctionalit,y as-
sociated with the metaobjects to actually take place.
Take persistence as an example. Suppose a program-
mer wants to maintain the state of an object heyond
the run-time of a particular program that this object
is part of. He or she does so by telling the metaob-
ject that is in charge of implementing persistence that
the state of the baseobject is now persistent by call-
ing a suitable met,hod provided by of this metaobject.
When this object is about to be destroyed (for exam-
ple at the end of the run-time of the application), the
metaobject intercepts this destruction process in order
to save the state for the object to secondary storage.

4 An Example
This section uses an example of a multimedia baseob-
ject to explain the concepts discussed above. This

Generic Multimedia Object
r

the multi- speaker /
media data window

i

om
Figure 2: A Baseobject Processing Multimedia Data

object consists of three internal building blocks as de-
picted in Fig. 2. A source side gathers the da ta (either
from a network connection or from secondary storage)
which is then processed and displayed on a screen or
output to a speaker. Examples of multimedia data
include audio data streams which are filtered by the
processing stage or video data streams encoded ac-
cording to MPEG [Gal911 which are decompressed by
the processing stage.

Real-Time Metanucleus I F 1 Persistence Metanucleus

I MPEG Object I

Figure 3: The Metaleve1 Structure of the Multimedia
Object

This multimedia object uses an active object model
allowing multiple threads to be active inside the object
a t any point in time. This baseobject employs two
metanuclei: one for real-time functionality and one
for persistence (see Fig. 3). Each of these metanuclei

118

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

contains one metaregion3.

The real-time metanucleus contains a metaregion re-
sponsible for scheduling the threads associated with
the different active object models (different mod-
els for active objects can be identified depending
on when a thread is associated with a particular
method of the object [YT89]). These schedulers im-
plement different real-time scheduling algori.thms such
as priority-based scheduling (PRIO), Least Slack Time
First (LSTF) [DM89], Rate-Monotonic (R.M) and Ear-
liest Deadline First (EDF) [LL73].

The persistence metanucleus contains a metaregion
providing pagers supporting different object sizes.
These pagers are responsible for transferring object
states to and from secondary storage, and all employ
different algorithms for doing so depending on the ob-
ject size at which they are targeted. To be most effi-
cient when dealing with small object sizes, the relevant
metaobject groups small objects onto a memory page
before storing this page on disk. In contrast to this,
the metaobject aimed at supporting large object sizes
may avail of certain features of the storage :subsystem
such as burst transfer.

To motivate the ability to change an object’s
behavior-i.e. the way its code is being executed-
imagine the following situation. Currently, the ob-
ject described above is displaying an MPEG-encoded
video clip from disk. Depending on the parameters
of this video clip such as compression ratio, an EDF-
scheduler metaobject has been chosen from the sched-
uler metaregion to control the method which decom-
presses the video clip. Since MPEG-encoded video
clips tend t o be large, it also uses t,he metaobject
aimed a t large objects from the pager metaregion.

Now suppose the user on whose behalf this object is
executing requests a change of media type. Display-
ing of the video clip has to be stopped and some audio
track should be filtered and played back instead. In
order to maintain efficiency, the object has to change
both the scheduler metaobject and the pager meta-
object,. Since audio streams tend to be smaller than
video streams, the object now selects a pager meta-
object aimed a t smaller object sizes. In addition to
this, the scheduler metaobject is changed from EDF
to a metaobject, implementing an R.M policy since the
time it takes to process the audio da ta stream does
not vary as this was the case with the MPEG-encoded
video stream.

The necessary changes of the metaobjects are initi-
ated via an interface provided by the metaregions.
To the application programmer, the exchanging of
metaobjects and the resulting metaregion-in.terna1 ac-
tions happen transparently. All he or she has to do
to trigger this change is to detach the old! metaob-
ject from the object and to attach it to the new me-
taobject. Both methods are part of the mietaregion

controller interface.

3The actual structure of these metanuclei is more com-
Due to space constraints, a detailed discussion is plex.

omitted.

I query0 4 (mol, mo2, . . . , mo,)]
a t t ach(metaobj e c t)
detach(metaobiect1

Table 1: Generic Interface defined by the Metaregion

Tab. 1 briefly sketches the most important methods
defined by the generic part of the metaregion inter-
face. query returns a list of the metaobjects that a
metaregion defines, attach allows an object to link
a metaobject to itself, and detach finally reliqiiishes
this link again.

5 Implementation
Because two of our main goals for this project are
portability and efficiency, we chose C++ as our pri-
mary implementation language. C++ will also be our
first supported language for application-development
making use of our metalevel architecture. Since C++
is a compiled language, a preprocessor will need to be
employed to modify the source code in order to make
method interception possible [CM93, Chi951. This
modified source code is then compiled using an or-
dinary C++ compiler and linked with the necessary
metalevel support.

Baselevel

.... /
.

_ _ _ _ _ _ _ _ Piglet

Metalevel

Baseobject Records

Figure 4: Implementation of the Metalevel Architec-
ture

5.1 Internal Organization
Internally, our metalevel architecture is structured as
depicted in Fig. 4. The solid arrow represents an ex-
plicit invocation of metaregions which are members of
a metaniicleus done by an application in order to con-
trol which metaobjects are attached to it or simply to

119

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

call individual metaobjects. The dashed arrows repre-
sent the flow of control that takes place during method
interception a t run-time. When a method which is
part of an object (the checked part of the baseobject
in Fig. 4) is entered or left, a t rap to the generic part of
Piglet (named Piglet Core) occurs. This generic part
then takes care of distributing the notification of this
method call to the individual metaobjects in the dif-
ferent metanuclei. Upon method interception, these
metaobjects can t,ake the appropriat,e action depend-
ing on the policy or mechanism they implement.
Internally, a metaniicleus maintains a database of
baseobject characteristics. Due to the nature of the
different metanuclei, these characteristics are highly
metanucleus-dependent. To continue the real-time ex-
ample from above, in addition to the particular real-
time scheduling policy which can be derived from the
metaobject controlling this baseobject, a record of this
database would also contain parameters such as period
and deadline of the threads attached to the methods.

Instead of having a metaniicleus-wide database of
baseobject records, an alternative would be to have
the met,aregions manage their own object database
(perhaps derived from some generic baseclasses).
However doing so would cause too much overhead in
terms of memory consumption (esp. when there are
many metaregions inside a metanucleus) and lookup-
time, because then each metlaobject would have to do
its own lookup upon invocation instead of doing it
once on entering a metaniicleus (cf. Sect. 5.2).
These object characteristics can be subdivided into
two parts: a default part which applies to all instances
of a template and a baseobject-speczfic part which is
individual to this baseobject. A template corresponds
to a class in class-based languages such as C++[Str92]
or Eiffel [hIey92] or to prototypes in languages based
on delegation such as Self [US87]. This allows a two-
staged hierarchy: a default value can be applied t,o
all future instances of a template which then can be
changed when an instance-a object-is actually cre-
ated.

5.2 Performance
Tab. 2 gives some performance figures for our proto-
type implementation of Piglet (all values in microsec-
onds). All measures were conducted using a 90 MHz
Pentium-based P C clone with 32 MB of main memory
and a second-level cache of 256 kB. To eliminate any
effects of a cold cache, only a hundred objects were
used. These objects then issued a synthetic load ont,o
the metalevel in terms of method access and thereby
trapping to the mehlevel.

The first row reports the overhead associated with
trapping from the base- to the metalevel. In the cur-
rent implementation, this reflects the performance loss
caused by the modified source code. Basically, this
consists of testing a single bit, a conditional branch
if no metalevel interception is to take place or an in-
direct call to Piglet Core if a metaobject requested a
metalevel interception (MLI) and eventually an indi-

I TraD into Piglet Core I 2.4 1 "
Null Metaobject I 33.3
Obiect Lookun I 14.4

Table 2: Performance Figures of the Prototype Imple-
mentation (all times in pseconds)

rect call to the original method. This indirect call is
responsible for the sub-optimal performance, because
it causes the processor-internal pipeline to stall and
issuing of wait-states until the pipeline is re-filled. In-
stead of wrapping the original method, an alterna-
tive would have been to inject the metalevel-trapping
code directly into the original method of the object.
But this would have caused various problems with the
preprocessor so we preferred this simpler but slightly
slower option.
In addition to this overhead caused by the wrapping
code, the second row gives the actual time it takes to
route the flow of control from the base- to the me-
talevel. Here, a null metaobject which immediately
returns after being called gives the overall overhead
induced by the metalevel. This figure gives an im-
pression of how big the price is that has t,o be paid for
the benefits that our architecture entails.

The last row gives the time that it takes to perform a
lookup of an object description in the database main-
tained by each metanucleus. Note that this cost oc-
curs only once when the flow of control enters the
metanucleus before the MLI is distributed by a suit-
able dispatcher to the individual metaregions inside
the metanucleus. Another option would been to let
each metaobject do its own lookup but this would have
result in an additional performance penalty because
most metaobjects need this information anyway.

5.3 Current Status
As discussed above, a prototype implementation of the
metalevel architecture has been built and measured.
But just a metalevel architecture on its own without
additional functionality is not very useful but merely
a proof of concept. Therefore, we are currently in the
process of tying a small real-time executive, which is
named Roo and is part of the overall Tigger instantia-
tion for real-time support [ZC95], to this metalevel ar-
chitecture. In addition to the scheduling support dis-
cussed above, this real-time executive, which is aimed
at the support of soft real-time behavior, provides dif-
ferent real-time synchronization mechanisms and ac-
tive object models.
In combination with Piglet, this allows applications to
reconfigure their operating support environments to
their specific needs in terms of support for soft real-
time a t run-time as discussed in Sect. 4. Connect-
ing different subframeworks for the support of persis-
tence and other operating system services to Piglet is
planned for the future.

120

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

6 Related Work References

The architecture discussed above allows applications
to tailor the behavior of an operatting system dynam-
ically in order to be able to adapt changing require-
ments. Traditional operating system frameworks such
as Choices [CIJ+91, CIMR931 and reflective systems
like Apertos [Yok93, LYI951 typically offer only a very
limited choice of mechanisms which they support. In
contrast to this, our approach has the poten-tial to pro-
vide the programmer with a rich selection of possible
algorithms and policies to choose from. This prepack-
aging of functionality does not necessarily have to be
expensive as one might expect. A recent effort con-
cerned with the design and implemention of the pro-
cess management metaniicleus for real-time support
showed that wing operating system framework tech-
niques result in small run-time overhead but provided
a rich set of functionality [ZC95].

Another recent approach to adaptable systems con-
sists of allowing applications to dynamically insert
code into an operating system kernel. But as one can
imagine, there are several problems associated with
this variant; a breach of security and consistency of
the overall system is one of them. In order to over-
come this security problem, run-time checks have to
be inserted, which result in a less efficient system.
Our design, however, prevents any breaches of secu-
rity. By placing metaregions and metaobjects in sep-
arate protection domains such as address spaces, we
prevent any tampering with the code of metaregions
and metaobjects.

Examples for this second flavor of adaptable systems
are Spin and Bridge [BSP+95, W+93]. But these pro-
posals tend to either compromise efficiency or are too
restrictive regarding the mechanisms a programmer
can use when developing kernel-code [B+94, SB94].
For example Wahbe et a1 [W+93] report up to 1 2 %
fault isolation overhead when trying to prevent any
breach of consistency.

7 Conclusion

We presented a metalevel architecture for the dynamic
adaption of operating system behavior. By structur-
ing the metalevel into metanuclei, metaregions and
metaobjects, we provide a means for the application
programmer to select the functionality the current en-
vironment requires, thereby catering for the ability to
change this functionality should this become neces-
sary. By using the example of a object processing
multimedia data, we motivated the necessity for an
adaptable application support environment.

We implemented our architecture using object-
oriented design and mechanisms, Performance figures
of a prototype implementation give some impressions
of the costs which are involved using the above archi-
tecture.

[B+94]

[BSP+95]

[Chi951

[CHJ+94]

[CIJ+91]

[CIMR931

[CM93]

[CW85]

[DM891

Brian N. Bershad et al. SPIN-An
Extensible Microkernel for Application-
specific Operating System Services. In
Gth ACM SIGOPS European, Workshop on,
“Matching Operating Systems To Applicn.-
tion Needs”, pages 68-71, 1994.

Brian N. Bershad, Stefan Savage, Prze-
myslaws Pardyak, Emin Giin Sirer, Marc
Fiuczynski, Susan Eggers, David Becker,
and Craig Chambers. Extensiblity, Safety
and Performance in the SPIN Operating
System. In Proceedings of th,e 15‘,h Sym!-
posium on, Operating System Prinxiples,
pages 267-284,1995.

Shigeru Chiba. A Metaobject Protocol for
C++. In Proceedings of the IOth Conferenux
on Object- Oriented Proqramminq Sustems,
Lnngu.ages and Programm,ing, Dag& 285:
299, 1995.

V. Cahill, Christine Hogan, Alan Judge,
Darragh O’Grady, Brendan Tangney, and
Paul Taylor. Extensible systems - the
Tigger approach. In Proceedings of th,e
SIGOPS European Worksh,op, pages 151-
153. ACM SIGOPS, 1994.

Roy H. Campbell, Nayeem Islam, Ralph
Johnson, Panos Kougiouris, and Pet,er
Madany. Choices, Frameworks and Re-
finement. In Luis-Felipe Cabrera, Vincent
RUSSO, and Marc Shapiro, editors, Object-
Orientation in Operating Systems, pages
9-15. IEEE Computer Society Press, 1991.

Roy Campbell, Nayeem Islam, Peter
Madany, and David Raila. Designing
and Implementing Choices: An Object-
Oriented System in C++. Com,mu,n,ication,s
of the ACM, 36(9):117-125, 1993.

Shigeru Chiba and Takashi Masuda. De-
signing an Extensible Distributed Lan-
guage with a Meta-Level Architecture. In
Proceedings of the European, Confermce on,
0 b,ject- Oriented Programm,ing, pages 483-
501, 1993.

Luca Cardelli and Peter Wegner. On Un-
derstanding Types, Data Abstraction, and
Polymorphism. AGM Compu,tin,g Suriieys,
17(4) ~471-523, 1985.

Michael L. Dertouzos and Aloysius Ka-Lau
Mok. Multiprocessor On-Line Schedul-
ing of Hard Real-Time Tasks. IEEE
Transaxtions on Softuiare Engin,eerin,g,
15(12):1497-1506, 1 2 1989.

121

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

[DT88] Scott Danforth and Chris Thomlinson.
Type Theories and Object-Oriented Pro-
gramming. ACM C o m p u t i n g Surueys ,
20(1):29-72, 1988.

[ESSl] Margaret A. Ellis and Bjarne Stroustrup.
Th,e Ann,otated C++ Reference Man,ual.
Addison-Wesley Publishing, 1991.

[Gal911 D. L. Gall. MPEG: A Video Com-
pression Standard for Multimedia Appli-
cations. C o m m u n i c a t i o n s of the ACM,
34(4):46-58, 1991.

[KdRBSl] Gregor Kiczales, Jim des Rivieres, and
Daniel Bobrow. T h e A r t of t he Metaobject
Protocol. MIT Press, 1991.

Gregor Kiczales and John Lamping. Oper-
ating Systems: Why Object-Oriented'? In
Proceedinup of thx 3'd W o r k s h o p of Ob,ject-
Oriented O p e m t i n g S y s t e m s , pages 25-30,
1993.

[KL93]

[KTW92] Gregor Kiczales, Marvin Theimer, and
Brent Welch. A New Model of Abstraction
for Operating System Design. In Proceed-
ings of the 2nd In te rna t iona l W o r k s h o p o n
Object-Oriented Operating S y s t e m s , pages
346-349, 1992.

[LL73] C. L. Liu and James W. Layland. Schedul-
ing Algorithms for Multiprogramming in a
Hard Real-Time Environment,. Jou,mal of
th,e ACM, 20(1):46-61, 1973.

Rodger Lea, Yasuhiko Yokote, and Jun-
Ichiro Itoh. Adaptive Operating System
Design Using Reflection. In Proceedings of
t he SLh Worksh,op o n Hot Topics o n Oper-
at ing S y s t e m s , pages 95-100, 1995.

Pattie Maes. Concepts and Experiments in
Computational Reflection. In Proceedings
of t he 2nd Conference o n Object-Oriented
Programming System,s, Languages and A p -
p l i ca t ionq pages 147-155, 1987.

[Mey92] Betrand Meyer. Eiffel- T h e L m g u a g e .

[LYI95]

[Mae871

Prentice Hall International, 1992.

[OIT93] H. Okamura, Y. Ishikawa, and &I. Tokoro.
Metaleve1 Decomposition in AL-l/D. In
Proceedings of t he 1'' In t e rna t iona l S y m -
p o s i u m o n Object Technologies f o r A d -
vanced Sof tware, pages 110-127. Springer
Verlag, 1993.

[SB94] Stefan Savage and Brian N. Bershad. Is-
sues in the Design of an Extensible Oper-
ating System. Technical report, Dept. of
Comp. Science, University of Washington,
1994.

[Str92]

[US871

[Wf93]

[Yok93]

[YT89]

[ZC95]

[Zim96a]

[Zim96b]

[ZK93]

Bjarne Stroustrup. Th,e C++ Program,ming
Language. Addison-Wesley, Second edi-
tion, 1992.

David Ungar and Randall B. Smith. Self
The Power of Simplicity. In Proceedin,gs
of th,e Pd Con,ference on, Ob,ject- O r i m t e d
Program,ming System,s, Langu,ages and A p -
pl icat ions, pages 227-241, 1987.

Robert Wahbe et al. Efficient Software-
Based Fault Isolation. In Proceedin,gs of
the idth S y m p o s i u m o n Operating S y s t e m
Principles , pages 203-216, 1993.

Yasuhiko Yokote. Kernel Structuring for
Object-Oriented Operating Systems: The
A ertos Approach. In Proceedings of th,e
1" In t e rna t iona l Symposiu,m o n Object
Technologies f o r Advan,ced Sof tum-e, pages
145-162. Springer Verlag, 1993.

Akinori Yonezawa and Mario Tokoro, ed-
itors. Object- O r i m t e d Conwurrent Pro -
gra,mm,ing. MIT Press, 1989.

Chris Zimmermann and Vinny
Cahill. Roo: A Framework for Real-Time
Threads. In Proceedings of t he Worlcsh,op
o n Distr ibuted and Parallel R e a l - T i m e S y s -
t e m s , held at the gth In t e rna t iona l P a d -
le1 Processing Symposiu,m, pages 137-146,
1995.

Chris Zimmermann. How to Structure
Your Regional Meta-A New Approach
to Organizing the Metalevel. In Chris
Zimmermann, editor, A d 7 " 3 in, Ob,ject-
Oriented Metalevel Archi tectures o.nd R e -
f lect ion. CRC Press, 1996.

Chris Zimmermann. Metalevels, MOPS
and what the Fuzz is all about. In Chris
Zimmermann, editor, Advances in Object-
Oriented Metalevel Archi tectures and R e -
f lect ion. CRC Press, 1996.

Chris Zimmermann and Albrecht W.
K r aas , Mach, : Co n cep ts a,n d Progrnm,min,g
(in, G e r m a n) . Springer-Verlag, 1993.

122

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore. Restrictions apply.

