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Abstract 
Tradi t ional  con,figurable operating s y s t e m s  typzcnlly 
provide os fixed a n d  l imited se t  of f unc t iona l i t y .  We 
propose a m,etalevel architecture, wh,ere application- 
d e f i n d  objects can, choose from a rich select ion of pos-  
sable configurations and  are therefore able to d y n a m i -  
cally ch,an,ge th,e w a y  in which  t h e y  are executed t o  thpe 
configuration, th,at su i t s  best. T h i s  allows applications 
t o  nda,pt opemting s y s t e m  beh,aiiiour t o  m e n  unant ic i -  
p d e d  requiremen,ts durin,g ru.n-time. A distrzbuted ap- 
plication, which  processes mul t imedia  data serves  as an 
exam,ple t o  i l l u s t r d e  the  c o m e p t s  described. 

1 Introduction 
Traditional configurable operating systems typically 
provide a fixed and limited set of functionality. With 
the advent of a new generation of applications, such 
as mnltimedia systems, where applicat,ions must be 
able to adapt to changing requirements during run- 
time, such limited operating system support may be a 
hinderence to maintaining the level of efficiency that 
these operating systems were configured for. Since 
the applications have to  be adaptable, operating sys- 
t,ems in turn must be able to support adaption dur- 
ing run-time. Besides traditional functionality such as 
scheduling and storage management, this means offer- 
ing interfaces that allow applications to control the 
way in which an operating system provides this fiinc- 
tionality [KL93, I<TW92]. It is no longer sufficient 
for an operating system just to offer scheduling fiinc- 
tionnlity, for example, without providing a means of 
changing the way in which it does this scheduling, i.e. 
of choosing individual scheduling policies. Another ex- 
ample is persistence: should the size of objects, which 
are persistent, change during the life-time of the ap- 
plication, the operating system has to adapt its mech- 
anisms and policies to provide the most efficient solu- 
tion for a given object size [ZK93]. 

This paper presents a solution to this problem. We 
facilitate this adaptation process by employing a re- 

flective architecture, where application-defined objects 
(the units of computation in our model) are able to 
choose from a rich selection of possible configurations 
and are therefore able to dynamically change the way 
in which they are executed to the configuration that 
suits best. 
The remainder of this paper is organized as follows: 
after this introduction we discuss the underlying op- 
erating system framework named Tigger which serves 
as an implementation basis for the concepts presented 
in this paper. We use an example from the field of 
multimedia computing to illustrate the use of this ar- 
chitecture. Sections on implementation issues with 
some performance figures together with a discussion 
of related work conclude this paper. 

2 Tigger 
Tigger is an object-support operating system frame- 
work [CHJ+94] which serves as the environment for 
implementing the concepts presented in this paper. 
This framework provides typical operating system ser- 
vices such as persistence and scheduling using objects 
as the basic units of computation. A general feature 
of t.his framework is its ability to be tailored to the 
specific needs of different target environments. 

Interactive video games provide one possible target 
environment for the Tigger framework. Since these 
video games are highly interactive, they have require- 
ments in terms of support for (soft) real-time object 
behavior. 'This support then has to be provided by the 
underlying instantiation of Tigger. Therefore, an in- 
stantiation of the framework that is aimed at this tar- 
get environment has to  provide this real-time support 
by means of real-time scheduling of threads as well as 
real-time synchronization protocols. In contrast, the 
requirements in terms of persistence are constrained 
to simple services such as transferring an object state 
from and to disk if indeed persistence is needed a t  all. 

In addition to these general requirements, individual 

116 
0-8186-7395-8/96 $05.00 0 1996 IEEE 

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 05:08 from IEEE Xplore.  Restrictions apply. 



applications which are part of these environments have 
their own demands in terms for specific algorithms or 
mechanisms which the underlvine framework has to 

defined objects', they are able to control certain as- 
pects of the execution of those baselevel objects. The 
entiret,v of all metaobiects is called a metmnace. 

I "  

supply. A video game using multimedia data  such as 
a video clip, for example, may need a particular real- 
time schedllling mechanism, depending on the type of 
multimedia da ta  it has to  process. These requirements 
may even vary during the run-time of this application. 

Piglet, the metalevel architecture of Tigger, structures 
this metalevel into three groups of entities which re- 
present the nature of the underlying instantiation of a 
Tigger. 

The functionality of a particular instantiation of Tig- 
ger is subdivided into single components or subframe- 
works responsible for implementing specific object 
support services. These subframeworks can then be 
configured to meet the needs of specific application 
areas such as video games. 

3 Structuring the Metalevel 
From an application-oriented point of view the func- 
tionality supplied by an instantiation of Tigger is 
structured as depicted in Fig. 1. This overall architec- 
ture named Piglet is detailed in the following sections. 

ilaregian Controller 

Tigger 

Figure 1: Metalevel Structure of Tigger 

3.1 The Metalevel 

The basic units of computation in our mod.el are ob- 
jects. To control the way in which these objects 
are executed, we employ a concept called metaob- 
,jects [Mae87]. Since these metaobjects know about 
the internal organization and structure of application- 

3.2 Metanuclei 
As discussed above, Tigger is a collection of subframe- 
works responsible for implementing various algorithms 
dealing with single aspects such as process manage- 
ment. Towards applications, the content,s of each of 
these subframeworks are represented by metnnmclei. 
Metanuclei are a means for grouping all the mech- 
anisms and policies regarding a certain fiinctional- 
ity that  a particular instantiation of Tigger supports. 
Take process management as an example. A pro- 
cess management met,anucleiis for real-time support 
includes real-time scheduling policies and synchroni- 
zation protocols. Metanuclei therefore contain the rel- 
evant code for one specific operating system fiinction- 
ality. 

3.3 Metaregions 
Each metanucleus consists of a set of metaregions. A 
metaregion in turn consists of a (possibly empty) set of 
metaobjects implementing the same functionality and 
exposing the same interface to  application-defined ob- 
jects. The difference between the individual metaob- 
jects forming a metaregion is their behavior when pro- 
viding this functionality. For example a scheduler 
metaregion being part of a real-time metanucleus con- 
sists of different scheduler metaobjects realizing differ- 
ent> real-time scheduling algorithms. They all exhibit 
the same functionality (i.e. scheduling) but do it dif- 
ferently according to the algorithm that they imple- 
ment. Another example is a metaregion containing 
different pagers realizing object persistence. Pagers 
aimed a t  different object sizes all do the same thing: 
transferring the state of objects to  and from disk. The 
way they achieve this is different depending on the size 
of the object. 

In addition to the individual metaobjects, each 
metaregion has a controller which allows metaobjects 
to be attached to objects and allows a metaregion to 
be queried about its contents and the capabilities of 
the individual metaobjects. This part of the interface 
is used by objects to control which metaobject of the 
metaregion is controlling a certain aspect of its behav- 
ior. Besides this controller interface, each metaregion 
defines a common interface for the metaobjects this 
metaregion contains. This common interface of the 
metaobjects2 is then used by applications to change 

'Also called bus elevel objects-or baseobjects for 
short [Zim96a]-to emphasize the difference between base- 

'The interface of a metaobject is also known as a me- 
and metalevel 

taobject protocol (MOP) [KdRBSl, Zim96bI. 
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the way in which they are executed. To continue t,he 
scheduler example from above, methods provided by 
this scheduler MOP include yielding the CPU and 
waiting for anot,her thread to finish; these methods 
all have to be implemented by the individual metaob- 
jects which are part of the metaregion. 

Compared to traditional approaches to organizing 
metaobjects such as the multi-model reflection frame- 
work [OIT93] or Apertos [Yok93], metaregions have 
two distinct advantages. First of all, a metaregion 
can capture a common part of the metaobjects that 
it contains. For example consider support for thread 
management to be provided by a scheduler metare- 
gion. Since each scheduler metaobject has to  manage 
queues containing various threads (such as queues for 
active or blocked threads , this common functiona1it.y 
can be implemented by t h e metaregion. 

This can easily be done when an object-oriented pro- 
gramming language supporting inheritance such as 
C++ [Str92] is used to implement metaregions. The in- 
dividual metaobjects are then derived from a baseclass 
providing the common interface of the metaregion. 
The second advantage is that metaregions int,roduce 
a stahcal ly  typed metalevel. One of t.he advantages of 
this static typing is that  the source code can be com- 
piled into machine code instead of being interpreted 
at run-time [CWr85, DT881. Although not all binding 
decisions can be made a t  compile-time, more efficient 
mechanisms such as virtual function tables [ES91] can 
be employed which result in faster overall execut.ion 
of the program compared to just interpreting it a t  
run-time. A detailed discussion of metaregions can 
be found elsewhere [Zim96a]. 

3.4 Metaobjects 
Metaobjects implement the non-algorithmic behavior 
of objects, i.e. they control the way in which these ob- 
jects are executd .  The responsibilities of the metaob- 
jects are twofold: on one side they are in charge of sup- 
plying the implementation of the MOP representing 
the metaregion as explained above; on t,he other side 
they intercept individual method calls to the baseob- 
jects transparently. This allows the fitnctionalit,y as- 
sociated with the metaobjects to actually take place. 
Take persistence as an example. Suppose a program- 
mer wants to maintain the state of an object heyond 
the run-time of a particular program that this object 
is part of. He or she does so by telling the metaob- 
ject that is in charge of implementing persistence that 
the state of the baseobject is now persistent by call- 
ing a suitable met,hod provided by of this metaobject. 
When this object is about to be destroyed (for exam- 
ple at the end of the run-time of the application), the 
metaobject intercepts this destruction process in order 
to save the state for the object to secondary storage. 

4 An Example 
This section uses an example of a multimedia baseob- 
ject to explain the concepts discussed above. This 

Generic Multimedia Object 
r 

the multi- speaker / 
media data window 

i 

om 
Figure 2: A Baseobject Processing Multimedia Data 

object consists of three internal building blocks as de- 
picted in Fig. 2. A source side gathers the da ta  (either 
from a network connection or from secondary storage) 
which is then processed and displayed on a screen or 
output to a speaker. Examples of multimedia data 
include audio data streams which are filtered by the 
processing stage or video data streams encoded ac- 
cording to MPEG [Gal911 which are decompressed by 
the processing stage. 

Real-Time Metanucleus I F 1  Persistence Metanucleus 

I MPEG Object I 

Figure 3: The Metaleve1 Structure of the Multimedia 
Object 

This multimedia object uses an active object model 
allowing multiple threads to  be active inside the object 
a t  any point in time. This baseobject employs two 
metanuclei: one for real-time functionality and one 
for persistence (see Fig. 3). Each of these metanuclei 
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contains one metaregion3. 

The real-time metanucleus contains a metaregion re- 
sponsible for scheduling the threads associated with 
the different active object models (different mod- 
els for active objects can be identified depending 
on when a thread is associated with a particular 
method of the object [YT89]). These schedulers im- 
plement different real-time scheduling algori.thms such 
as priority-based scheduling ( PRIO), Least Slack Time 
First (LSTF) [DM89], Rate-Monotonic (R.M) and Ear- 
liest Deadline First (EDF) [LL73]. 

The persistence metanucleus contains a metaregion 
providing pagers supporting different object sizes. 
These pagers are responsible for transferring object 
states to and from secondary storage, and all employ 
different algorithms for doing so depending on the ob- 
ject size at which they are targeted. To be most effi- 
cient when dealing with small object sizes, the relevant 
metaobject groups small objects onto a memory page 
before storing this page on disk. In contrast to  this, 
the metaobject aimed at supporting large object sizes 
may avail of certain features of the storage :subsystem 
such as burst transfer. 

To motivate the ability to change an object’s 
behavior-i.e. the way its code is being executed- 
imagine the following situation. Currently, the ob- 
ject described above is displaying an MPEG-encoded 
video clip from disk. Depending on the parameters 
of this video clip such as compression ratio, an EDF- 
scheduler metaobject has been chosen from the sched- 
uler metaregion to control the method which decom- 
presses the video clip. Since MPEG-encoded video 
clips tend t o  be large, it also uses t,he metaobject 
aimed a t  large objects from the pager metaregion. 

Now suppose the user on whose behalf this object is 
executing requests a change of media type. Display- 
ing of the video clip has to be stopped and some audio 
track should be filtered and played back instead. In 
order to maintain efficiency, the object has to change 
both the scheduler metaobject and the pager meta- 
object,. Since audio streams tend to be smaller than 
video streams, the object now selects a pager meta- 
object aimed a t  smaller object sizes. In addition to 
this, the scheduler metaobject is changed from EDF 
to a metaobject, implementing an R.M policy since the 
time it takes to process the audio da ta  stream does 
not vary as this was the case with the MPEG-encoded 
video stream. 

The necessary changes of the metaobjects are initi- 
ated via an interface provided by the metaregions. 
To the application programmer, the exchanging of 
metaobjects and the resulting metaregion-in.terna1 ac- 
tions happen transparently. All he or she has to do 
to trigger this change is to detach the old! metaob- 
ject from the object and to attach it to  the new me- 
taobject. Both methods are part of the mietaregion 

controller interface. 

3The actual structure of these metanuclei is more com- 
Due to space constraints, a detailed discussion is plex. 

omitted. 

I query0 4 (mol, mo2, . . . , mo,) ] 
a t t  ach(metaobj e c t  ) 
detach(metaobiect1 

Table 1: Generic Interface defined by the Metaregion 

Tab. 1 briefly sketches the most important methods 
defined by the generic part of the metaregion inter- 
face. query returns a list of the metaobjects that  a 
metaregion defines, attach allows an object to link 
a metaobject to itself, and detach finally reliqiiishes 
this link again. 

5 Implementation 
Because two of our main goals for this project are 
portability and efficiency, we chose C++ as our pri- 
mary implementation language. C++ will also be our 
first supported language for application-development 
making use of our metalevel architecture. Since C++ 
is a compiled language, a preprocessor will need to be 
employed to modify the source code in order to make 
method interception possible [CM93, Chi951. This 
modified source code is then compiled using an or- 
dinary C++ compiler and linked with the necessary 
metalevel support. 

Baselevel 

.... / 
. 

_ _ _ _ _ _ _ _  Piglet 

Metalevel 

Baseobject Records 

Figure 4: Implementation of the Metalevel Architec- 
ture 

5.1 Internal Organization 
Internally, our metalevel architecture is structured as 
depicted in Fig. 4. The solid arrow represents an ex- 
plicit invocation of metaregions which are members of 
a metaniicleus done by an application in order to con- 
trol which metaobjects are attached to it or simply to 
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call individual metaobjects. The dashed arrows repre- 
sent the flow of control that  takes place during method 
interception a t  run-time. When a method which is 
part of an object (the checked part of the baseobject 
in Fig. 4) is entered or left, a t rap to the generic part of 
Piglet (named Piglet Core) occurs. This generic part 
then takes care of distributing the notification of this 
method call to the individual metaobjects in the dif- 
ferent metanuclei. Upon method interception, these 
metaobjects can t,ake the appropriat,e action depend- 
ing on the policy or mechanism they implement. 
Internally, a metaniicleus maintains a database of 
baseobject characteristics. Due to the nature of the 
different metanuclei, these characteristics are highly 
metanucleus-dependent. To continue the real-time ex- 
ample from above, in addition to the particular real- 
time scheduling policy which can be derived from the 
metaobject controlling this baseobject, a record of this 
database would also contain parameters such as period 
and deadline of the threads attached to the methods. 

Instead of having a metaniicleus-wide database of 
baseobject records, an alternative would be to have 
the met,aregions manage their own object database 
(perhaps derived from some generic baseclasses). 
However doing so would cause too much overhead in 
terms of memory consumption (esp. when there are 
many metaregions inside a metanucleus) and lookup- 
time, because then each metlaobject would have to do 
its own lookup upon invocation instead of doing it 
once on entering a metaniicleus (cf. Sect. 5.2).  
These object characteristics can be subdivided into 
two parts: a default part which applies to all instances 
of a template and a baseobject-speczfic part which is 
individual to this baseobject. A template corresponds 
to a class in class-based languages such as C++[Str92] 
or Eiffel [hIey92] or to prototypes in languages based 
on delegation such as Self [US87]. This allows a two- 
staged hierarchy: a default value can be applied t,o 
all future instances of a template which then can be 
changed when an instance-a object-is actually cre- 
ated. 

5.2 Performance 
Tab. 2 gives some performance figures for our proto- 
type implementation of Piglet (all values in microsec- 
onds). All measures were conducted using a 90 MHz 
Pentium-based P C  clone with 32 MB of main memory 
and a second-level cache of 256 kB. To eliminate any 
effects of a cold cache, only a hundred objects were 
used. These objects then issued a synthetic load ont,o 
the metalevel in terms of method access and thereby 
trapping to  the mehlevel. 

The first row reports the overhead associated with 
trapping from the base- to  the metalevel. In the cur- 
rent implementation, this reflects the performance loss 
caused by the modified source code. Basically, this 
consists of testing a single bit, a conditional branch 
if no metalevel interception is to take place or an in- 
direct call to  Piglet Core if a metaobject requested a 
metalevel interception (MLI) and eventually an indi- 

I TraD into Piglet Core I 2.4 1 " 
Null Metaobject I 33.3 
Obiect Lookun I 14.4 

Table 2: Performance Figures of the Prototype Imple- 
mentation (all times in pseconds) 

rect call to the original method. This indirect call is 
responsible for the sub-optimal performance, because 
it causes the processor-internal pipeline to stall and 
issuing of wait-states until the pipeline is re-filled. In- 
stead of wrapping the original method, an alterna- 
tive would have been to  inject the metalevel-trapping 
code directly into the original method of the object. 
But this would have caused various problems with the 
preprocessor so we preferred this simpler but slightly 
slower option. 
In addition to this overhead caused by the wrapping 
code, the second row gives the actual time it takes to 
route the flow of control from the base- to the me- 
talevel. Here, a null metaobject which immediately 
returns after being called gives the overall overhead 
induced by the metalevel. This figure gives an im- 
pression of how big the price is that  has t,o be paid for 
the benefits that  our architecture entails. 

The last row gives the time that it takes to perform a 
lookup of an object description in the database main- 
tained by each metanucleus. Note that  this cost oc- 
curs only once when the flow of control enters the 
metanucleus before the MLI is distributed by a suit- 
able dispatcher to the individual metaregions inside 
the metanucleus. Another option would been to let 
each metaobject do its own lookup but this would have 
result in an additional performance penalty because 
most metaobjects need this information anyway. 

5.3 Current Status 
As discussed above, a prototype implementation of the 
metalevel architecture has been built and measured. 
But just a metalevel architecture on its own without 
additional functionality is not very useful but merely 
a proof of concept. Therefore, we are currently in the 
process of tying a small real-time executive, which is 
named Roo and is part of the overall Tigger instantia- 
tion for real-time support [ZC95], to this metalevel ar- 
chitecture. In addition to the scheduling support dis- 
cussed above, this real-time executive, which is aimed 
at the support of soft real-time behavior, provides dif- 
ferent real-time synchronization mechanisms and ac- 
tive object models. 
In combination with Piglet, this allows applications to 
reconfigure their operating support environments to  
their specific needs in terms of support for soft real- 
time a t  run-time as discussed in Sect. 4. Connect- 
ing different subframeworks for the support of persis- 
tence and other operating system services to Piglet is 
planned for the future. 
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6 Related Work References 

The architecture discussed above allows applications 
to tailor the behavior of an  operatting system dynam- 
ically in order to be able to adapt changing require- 
ments. Traditional operating system frameworks such 
as Choices [CIJ+91, CIMR931 and reflective systems 
like Apertos [Yok93, LYI951 typically offer only a very 
limited choice of mechanisms which they support. In 
contrast to this, our approach has the poten-tial to pro- 
vide the programmer with a rich selection of possible 
algorithms and policies to  choose from. This prepack- 
aging of functionality does not necessarily have to be 
expensive as one might expect. A recent effort con- 
cerned with the design and implemention of the pro- 
cess management metaniicleus for real-time support 
showed that  wing operating system framework tech- 
niques result in small run-time overhead but provided 
a rich set of functionality [ZC95]. 

Another recent approach to adaptable systems con- 
sists of allowing applications to dynamically insert 
code into an operating system kernel. But as one can 
imagine, there are several problems associated with 
this variant; a breach of security and consistency of 
the overall system is one of them. In order to over- 
come this security problem, run-time checks have to 
be inserted, which result in a less efficient system. 
Our design, however, prevents any breaches of secu- 
rity. By placing metaregions and metaobjects in sep- 
arate protection domains such as address spaces, we 
prevent any tampering with the code of metaregions 
and metaobjects. 

Examples for this second flavor of adaptable systems 
are Spin and Bridge [BSP+95, W+93]. But these pro- 
posals tend to either compromise efficiency or are too 
restrictive regarding the mechanisms a programmer 
can use when developing kernel-code [B+94, SB94]. 
For example Wahbe et a1 [W+93] report up to 1 2  % 
fault isolation overhead when trying to  prevent any 
breach of consistency. 

7 Conclusion 

We presented a metalevel architecture for the dynamic 
adaption of operating system behavior. By structur- 
ing the metalevel into metanuclei, metaregions and 
metaobjects, we provide a means for the application 
programmer to select the functionality the current en- 
vironment requires, thereby catering for the ability to 
change this functionality should this become neces- 
sary. By using the example of a object processing 
multimedia data,  we motivated the necessity for an 
adaptable application support environment. 

We implemented our architecture using object- 
oriented design and mechanisms, Performance figures 
of a prototype implementation give some impressions 
of the costs which are involved using the above archi- 
tecture. 
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