
An Overview of the Tigger Object-SupportOperating System FrameworkVinny Cahill?Distributed Systems GroupDepartment of Computer ScienceTrinity College DublinIrelandhttp://www.dsg.cs.tcd.ie/Abstract. This paper describes the motivations for and main featuresof Tigger { a framework for the construction of a family of object-supportoperating systems that can be tailored for use in a variety of di�erentapplication domains. An important goal of the design of Tigger is thatinstantiations of the framework should be able to support (a numberof) di�erent object models in order to allow a range of object-orientedlanguages for distributed or persistent programming to be supportedwithout unnecessary duplication of e�ort. A further goal of the designis that instantiations of the framework should be able to support thesame object model in di�erent ways depending on the requirements ofthe applications to be supported by those instantiations. This paperdescribes the main features of the Tigger framework that allow thesegoals to be realised.1 IntroductionWhile the use of object-support operating systems { supporting distributed orpersistent objects { has been advocated for many application domains [5], re-search within the Distributed Systems Group (dsg) at Trinity College has re-cently been considering their deployment in two speci�c areas: support for Con-current Engineering (ce) environments1; and support for the development andexecution environments of next-generation, multi-user/distributed, arcade andpersonal-computer (pc) video games [15].These application domains are similar at one level in that they are funda-mentally concerned with multiple distributed users interacting via shared dis-tributed and persistent objects. Moreover, these two application domains arenot necessarily distinct; game development is inherently a ce activity involvinggame designers, artists, musicians, and software developers. Furthermore, the? Email: vinny.cahill@dsg.cs.tcd.ie1 By \environment" is really meant what is known in the ce community as a \frame-work", i.e., a system encapsulating a set of tools, together with the data used bythose tools, under a common design management protocol.

technologies being deployed in both domains, for example, real-time video andaudio or three-dimensional graphics, overlap.Despite these similarities, there are many di�erences that must be accommo-dated. At the highest level, the object models appropriate to each applicationdomain di�er. ce environments often employ what may be described as a shareddata object model in which objects are passive and accessed by active threads ofcontrol. In contrast, the game execution environment described in [15] employs areactive object model with event-based communication, i.e., objects representinggame entities are autonomous but react to events raised by other objects. Objectsreceive noti�cations of events of interest determined by reference to parametersof those events. While these particular models represent di�erent positions alonga continuum of possible object models, the key observation is that an importantfeature of any
exible object-support operating system should be the ability tosupport a number of di�erent object models without duplication of e�ort, if notnecessarily simultaneously.While these application domains exhibit similar functional requirements,their non-functional requirements vary considerably from application to applica-tion and installation to installation. Requirements in areas such as support forsecurity, heterogeneity, reliability and fault tolerance, allowable memory usage,and real-time behaviour vary considerably. For example, the requirements forsupporting the same video game on a stand-alone arcade machine or pc, in aprivate network of arcade machines, or across the public telephone network varyconsiderable but must be supported by a common system interface. Likewise therequirements imposed by supporting a concurrent software engineering environ-ment in a traditional workstation/server environment are di�erent from thoseof any of the above scenarios. Nevertheless, the game developer still needs easyaccess to the game execution system during testing and debugging and, moreimportantly, the game designer needs immediate access to the execution systemduring the game tuning phase when the \playability" of the game is being im-proved. The key observation here is that any
exible object-support operatingsystem should be capable of supporting the same object model in di�erent waysdepending on the way in which the applications supported by the system are tobe deployed.In keeping with these observations, the Tigger project2 undertook the design,not of a single object-support operating system, but of a family of object-supportoperating systems whose members can be customised for use in a variety ofdi�erent application domains. The two primary goals of this design were:1. to allow members of the family to support (a number of) di�erent objectmodels in order to allow a range of di�erent object-oriented programminglanguages for distributed and persistent programming to be supported with-out unnecessary duplication of e�ort; and2. to allow the same object model to be supported in di�erent ways subject todi�ering non-functional requirements.2 which was named after A.A. Milne's famously bouncy character!

To support customisability, the design is captured as a framework that canbe instantiated to implement the individual members of the family. The Tiggerframework can be instantiated to implement particular object-support operatingsystems meeting particular functional and non-functional requirements. Instan-tiations of the Tigger framework can be layered above bare hardware, (real-time)microkernels, or conventional operating systems. The Tigger framework is suf-�ciently general so as to allow a set of possible instantiations that is capableof supporting a wide range of object-oriented programming languages for dis-tributed or persistent programming and that is suitable for use in a wide range ofapplication areas exhibiting di�erent non-functional requirements. In addition,the Tigger framework has been designed to be extensible so that new function-ality can be supported when required.The major abstractions supported by the Tigger framework are distributedor persistent objects, threads, and extents (i.e., protected collections of ob-jects). A given Tigger instantiation may support only distributed objects, onlypersistent objects, or both. Of course, di�erent instantiations will support theseabstractions in di�erent ways (for example, in order to accommodate di�erentobject models) by employing di�erent mechanisms and policies.Individual Tigger instantiations may support additional abstractions, such asactivities (i.e., distributed threads) and object clusters as required. Moreover,all of these abstractions are based on lower-level abstractions such as contexts(i.e., address spaces) and endpoints (i.e., communication channels) that arenot normally expected to be used directly by supported languages or individualapplications.The simplest object-support operating system that can be instantiated fromthe framework is one supporting a single user and a single object model providingeither distributed or persistent objects. Other instantiations of the frameworkmay support additional abstractions, multiple users, or multiple object models.The remaider of this paper gives an overview of the Tigger framework, con-centrating on the way in which it provides support for distributed and persistentprogramming languages. For a complete description of the framework see [3].2 Related WorkThis section introduces a number of previous systems that have particularlyin
uenced Tigger: the Amadeus object-support operating system, which was de-veloped by dsg, and the Choices and Peace object-oriented operating systems.Amadeus [9] was a general-purpose object-support operating system thatsupported distributed and persistent programming in multi-user distributed sys-tems. Amadeus was targeted for use in what may broadly be described as co-operative applications concerned with access to shared data in domains such ascomputer-aided design (cad), o�ce automation, and software engineering.A major feature of Amadeus was that it was designed to support the use ofa range of existing object-oriented programming languages. A language couldbe extended to support a set of (inter-related) properties including distribution,

persistence, and atomicity for its objects by using the services of the Amad-eus Generic Runtime Library (grt), while maintaining its own native objectreference format and invocation mechanism [4]. The Amadeus grt provideda range of mechanisms from which the language designer could choose thoseappropriate for the intended use of the extended language. Extended versions ofC++ and Ei�el, which were known as C** [7] and Ei�el** [13] respectively, and animplementation of the E persistent programming language [12] were supportedby Amadeus.Other major features of Amadeus included language-independent supportfor atomic objects and transactions [14, 24] based on the use of the RelaXtransaction manager and libraries [11], and a novel security model supportingaccess control for objects at the level of individual operations as well as isolationof untrustworthy code [17].Experience with the design and implementation of Amadeus has obviouslyhad a major in
uence on Tigger. Tigger shares the goal of language independenceand has adopted several of the key features of Amadeus including the idea of agrt and the basic security model. However, the goal of Tigger is to allow theimplementation of a variety of object-support operating systems providing moreor less functionality as required, rather than a single general-purpose system aswas the goal of Amadeus.Apart from Amadeus, Tigger has been most in
uenced by Choices [6], whichdeveloped a C++ framework for the construction of operating systems for dis-tributed and shared memory multiprocessors, and Peace [19], which addressedthe use of object-oriented techniques in the construction of a family of operat-ing systems for massively parallel computers. The Peace family encompassesa number of di�erent members ranging from one supporting a single thread ofcontrol per node to one supporting multiple processes per node.In some sense, Tigger may be seen as combining these two research areas todevelop a family of object-oriented object-support operating systems. The devel-opment of an object-oriented object-support operating system, to be known asSoul, was proposed previously by Shapiro in [20]. Shapiro envisaged developinga \hierarchy of object-support object types and classes" that could \be re-used,parameterized, and combined together, in order to build speci�c object-supportfunctions". This is indeed a reasonable description of the Tigger framework! Alater paper on Soul, [21], elaborated on the original proposal and described a\preliminary design" for the interface that should be provided by a microkernelsuitable for hosting the Soul class hierarchy. However, no other description ofthe Soul object-oriented object-support operating system appears to be avail-able in the literature. The Soul project has apparently instead concentrated onthe development of speci�c mechanisms for object reference management andgarbage collection in distributed systems.

3 OverviewTigger is a framework for the construction of a family of object-support operatingsystems. Every instantiation of the framework is an object-support operatingsystem to which one or more object-oriented programming languages are boundin order to provide an application programming interface. Like other object-support operating systems, Tigger instantiations will typically provide supportfor features such as creation of distributed or persistent objects; access to remoteobjects; object migration; access to stored persistent objects; dynamic loadingof objects on demand; dynamic loading and linking of class code; and protectionof objects.In fact, the heart of any Tigger instantiation is a generalised object-accessmechanism that allows local, remote, stored, protected, or unprotected objectsto be accessed in a uniform manner. This mechanism provides support for allaspects of locating the target object, mapping the object and its class into mem-ory, and forwarding the access request to the object as required. In fact, thisbasic mechanism subsumes much of the functionality provided by the Tiggerframework and provides the basis for supporting a high degree of network trans-parency for object access. Of course, the details of what this mechanism does,and how it does it, are subject to customisation and will di�er from one Tiggerinstantiation to another.It is important to understand two points about the nature of the functionalityprovided by a Tigger instantiation. First, a Tigger instantiation, in cooperationwith the runtime libraries of supported languages, only provides the necessarysupport for the use of objects by applications, i.e., a Tigger instantiation is anobject-support system. The semantics and function of the objects that they sup-port are opaque to Tigger instantiations. A particular object might implementa spreadsheet, one cell in a spreadsheet, a �le, or a �le server. The distinctionis not visible to Tigger instantiations. While some objects will implement (partsof) particular applications (such as the \spreadsheet cell" object above), otherobjects may provide common services including those that are usually thoughtof as being part of an operating system (such as the \�le server" object above).The second major point to be understood is that a Tigger instantiation is alanguage-support system { the functionality provided by a Tigger instantiationis intended to be used by object-oriented programming languages to provideprogramming models based on distributed or persistent objects to their applica-tion programmers. Thus, the main interface provided by a Tigger instantiationis that provided for the language implementer. The interface used by an appli-cation developer is that provided by a supported language. Moreover, a Tiggerinstantiation provides only basic support for distribution or persistence that isintended to be supplemented by each language's runtime library in order toimplement the programming model of the language. How support for distribu-tion or persistence is made available in any language { whether transparentlyto application programmers, via a class library, or even via the use of particularlanguage constructs { is not mandated by the Tigger framework. Likewise, thedegree of network transparency provided by the language is a function of the

programmingmodel supported by the language. Of course, the Tigger frameworkhas been designed to support languages that provide a high degree of networktransparency.4 Software ArchitectureTigger instantiations are intended to support both conventional object-orientedprogramming languages that have been extended to support distributed or per-sistent programming as well as object-oriented languages originally designed forthat purpose. Moreover, this is intended to be done in a way that does not im-pose particular constructs and models on the language and, where an existinglanguage is being extended, that does not necessarily require changes to its com-piler nor to its native object reference format or local invocation mechanism. Inthis way, the language designer is free to choose the object model to be providedto application programmers independently. Supporting existing (local) objectreference formats and invocation mechanisms allows the common case of localobject invocation to be optimised. Finally, where an existing language is to besupported, this approach facilitates the reuse and porting of its existing compilerand runtime libraries.In order to achieve these goals, every Tigger instantiation provides one ormore grts providing common runtime support for one or more languages sup-porting distributed or persistent programming that have similar requirementson their runtime support. A more precise characterisation of a grt is given in[3]. Su�ce it to say here that a grt is generic in the sense that it provides onlythat part of the support for distribution or persistence that is independent of anylanguage. Every grt is bound to a Language Speci�c Runtime Library (lsrt) foreach language to be supported. The lsrt provides language-dependent runtimesupport. Each grt provides an interface to the language implementer that hasbeen designed to interface directly and easily to an lsrt. Thus, the interface toa Tigger instantiation seen by a language implementer is that of one of the grtsthat it provides.This basic approach to language support is derived from the Amadeus project.Unlike Amadeus, which provided a single grt supporting a (fairly limited) rangeof mechanisms that could be used by supported languages, the Tigger frameworkallows grts to be customised depending on the object model and intended useof the language(s) to be supported. For example, grts supporting remote objectinvocation (roi) and/or distributed shared memory (dsm) style access to dis-tributed objects, grts supporting the use of di�erent object fault detection oravoidance schemes, and grts supporting the use of eager, lazy, or no swizzlingcan all be instantiated from the framework. A given Tigger instantiation cansupport one language or several similar languages with one grt, or a numberof di�erent languages with several grts. For example, �gure 1 shows one possi-ble scenario in which one Tigger instantiation provides two di�erent grts: onegrt is being used to support the C** and Ei�el** programming languages whilethe other is being used to support the E programming language. Both C** and

Ei�el** support distributed and persistent objects using roi and eager swizzlingrespectively, while E is a non-swizzling persistent programming language. The�gure depicts a scenario in which one application is written using some combi-nation of two supported languages. While such interworking between languagesmay be facilitated when the languages involved have some of their runtime sup-port in common, it should be noted that it cannot be implemented completelyat this level { additional mechanisms are still required at higher levels to, forexample, support inter-language type checking.
Application

Eiffel**
LSRT

C**
LSRT

E LSRT

Application

Eager Swizzling
GRT

Non-swizzling
GRT

Tigger InstantiationFig. 1. A Tigger instantiation.Amadeus supported exactly the set of languages depicted in �gure 1 but witha single grt. However, the Amadeus grt was both complex and large, and hencepenalised languages and applications that typically only required a subset of thefeatures that it provided. The Tigger approach allows the grt to be customisedaccording to the speci�c requirements of the language implementer.4.1 Logical ModelThe classes making up the Tigger framework are divided into �ve main class cat-egories [2]. Essentially, each of these class categories is responsible for supportingsome subset of the fundamental abstractions provided by the Tigger frameworkas follows:{ the grt class category { known as Owl3 { supports distributed and persistentobjects and optionally clusters, and provides the main interface to supportedlanguages. An instantiation of Owl corresponds to a grt as described aboveand, a single Tigger instantiation may include multiple Owl instantiations.3 Yes, you've guessed it! All the class categories are called after characters from A.A.Milne's books.

{ the threads class category { known as Roo { supports threads and relatedsynchronisation mechanisms, and may support activities and jobs. Supportedlanguages (i.e., their lsrts) and applications may use Roo directly.{ the communications class category { known as Kanga { supports endpoints.Again, supported languages and applications may use Kanga directly.{ the storage class category { known as Eeyore { supports containers andstorage objects. Supported languages are not expected to use Eeyore directlyand hence its main client is Owl.{ the protection class category { known as Robin { supports extents and re-lated abstractions.
ROBIN
(extents)

EEYORE
(containers

storage objects)

KANGA
(endpoints)

ROO
(threads)

global

OWL
(global/

persistent objects)
global

Fig. 2. Tigger class categories.Figure 2 is a top-level class diagram for the Tigger framework showing theclass categories introduced above and their using relationships. Note that bothOwl and Roo are labelled as global meaning that they may be used by allthe other class categories. In the case of Roo, this re
ects the fact that all thecomponents of a Tigger instantiation are expected to be thread-aware. In thecase of Owl, this re
ects the fact that components of a Tigger instantiation mayuse distributed or persistent objects.While Owl is specialised depending primarily on the needs of the language(s)to be supported, the other class categories can also be specialised to support dif-ferent mechanisms and policies. In particular, di�erent instantiations of Robindetermine whether the Tigger instantiation of which it is a part supports onlya single extent or multiple extents, as well as whether it supports one or morecontexts. Other responsibilities of Robin include supporting cross-extent objectinvocation and unique object identi�cation. Decisions made about the implemen-

tation of Robin are therefore of fundamental importance for the overall structureof a Tigger instantiation.The Robin and Owl class categories are described in detail in [3]. For descrip-tions of early versions of Roo and Kanga see [8]. Eeyore is based on the Amadeuspersistent object store (pos) framework described in [16]. The remainder of thispaper gives an overview of the Owl class category.5 Object-Support FunctionalityThis section considers how the functionality required to support distributedand persistent objects can be divided between an lsrt and a grt. Given thisseparation of responsibilities, the major services supported by Owl, as well as themain options for implementing those services, are then identi�ed. An importantgoal of Tigger was that Owl should provide as much of the required functionalityas possible. Only where a service is clearly language-speci�c or is intimatelyconnected with the code that is generated by the language's compilation systemis that service assigned to the lsrt.In reading the following sections, it should be borne in mind that a partic-ular Owl instantiation (i.e., grt) might support only persistent objects, onlydistributed objects, or both. Hence, not all of these services will need to besupported by all Owl instantiations. Furthermore, the list presented here is notexhaustive; Owl can be extended to support other services.Object layout and naming: Unless the compilation system is to be seri-ously constrained by the use of a grt, the lsrt should be able to dictate thelayout of objects in memory, the format of internal/local references used by suchobjects, and the mapping from such an object reference to the address of a col-located object. To re
ect this fact, internal/local references are referred to aslanguage references or lrefs from here on.A grt, on the other hand, should be responsible for the provision of glob-ally unique object identi�ers (oids) suitable for identifying every object in thesystem4 A grt should also be responsible for the provision of external/globalreferences (referred to simply as global references or grefs from here on). A grtshould also implement the mapping from a gref for an object to the location ofthat object in the system.Where the language to be supported already supports distribution or persis-tence, its lsrt will already support its own form of oid and gref. Moreover,its lrefs and grefs may be the same. Owl does not support all possible ex-isting gref formats but only those that support an Owl-de�ned protocol. Owlinstantiations may however use (virtual) addresses as grefs. Owl also supportslanguages in which grefs and lrefs are the same as long as the grefs supportthe appropriate protocol.Object access, binding, and dispatching: Each language is free to de-termine how objects may be accessed by their clients. However, it is important4 In the Tigger framework, responsibility for the format and allocation of oids actuallyrests with Robin rather than Owl.

to realise that this decision has important repercussions for the choice of objectfault avoidance or detection mechanisms that are available and for the ways inwhich object faults can be resolved. Typically, the choice of possible object faultavoidance, detection, or resolution mechanisms is constrained by the form ofaccess to objects allowed. For example, the use of proxies to represent absentobjects is not appropriate where direct access to the instance data of an objectby its clients is allowed.Since the means of binding code to objects and of dispatching invocations(including the layout of parameter frames) is usually intrinsic to the compilationsystem, these must continue to be implemented in the lsrt. Thus, a grt need notbe involved in local object invocation. However, this also means that when roiis used to access remote distributed objects, the marshalling and unmarshallingof roi requests, as well as the dispatching of incoming requests to their targetobjects, must be done by or in cooperation with the lsrt.Object allocation and garbage collection: Owl only supports allocationof objects on the heap or embedded in other (heap-allocated) objects. Moreover,Owl is responsible for management of the heap and hence provides the routinesto allocate (and where supported, deallocate) objects.When necessary, Owl supports garbage collection of distributed or persistentobjects both within memory and within the pos as required.Object fault detection and avoidance: Detection or avoidance of objectfaults is the responsibility of the lsrt since it depends on the type of access toobjects supported and the mechanisms used may need to be tightly integratedwith the compilation system. For example, if presence tests are used to detectabsent objects, the language compiler or preprocessor will usually be requiredto generate the code necessary to perform these tests before any access to anobject proceeds.Owl does however provide underlying support for a number of common objectfault detection mechanisms (for example, presence tests and proxies) as well assupport for object fault avoidance. Other object fault detection mechanisms maybe implemented entirely at the language level.Object fault resolution:Where object fault detection is used, Owl providesthe underlying means of resolving object faults including locating the targetobjects, mapping objects, transferring roi requests to objects, and/or migratingthreads as appropriate. The choice of object fault resolution policy is howeverconstrained by the lsrt.In the case of roi requests, the formatting of the request must however becarried out by the lsrt since only it understands the format of parameter frames.Owl does however support the marshallingand unmarshalling of lrefs and valuesof basic types. The translation of lrefs to the corresponding grefs and viceversa must be carried out in cooperation with the lsrt. Similar comments applyto migration of objects. On the remote side, the lsrt must be prepared toaccept incoming roi requests from the grt, unmarshal the parameters, dispatchthe request in the language-speci�c manner, and, once the request has beencompleted, to marshal the reply. Note that the dispatching of the request must

be carried out by the lsrt since only it understands the dispatching mechanismto be used.Mapping, unmapping, and migration: Owl provides the basic supportfor the mapping and unmapping of persistent objects as well as the migrationof distributed objects.During mapping or migration, Owl supports the conversion of objects tolocal format where heterogeneity is supported; no, lazy, and eager swizzling ofreferences as required; and binding of code to mapped objects. In each case,these actions require language- (and indeed type-) speci�c information. Hence,while Owl supports each of these, it does so in cooperation with the lsrts ofsupported languages.Where swizzling is used, the grt must be able to translate a gref to theappropriate lref (whether or not the target object is mapped into the currentaddress space). This again requires cooperation with the lsrt depending on theobject faulting strategy in use.Likewise, binding of code to a recently-mapped object must be done in alanguage-speci�c way. However, Owl provides the underlying support for dy-namic linking where this is required including supporting the storage and re-trieval of class code.Determining which objects can be unmapped or migrated also depends onthe object faulting strategy in use. Nevertheless, Owl supports both anchoredand non-anchored code.Clustering: Owl supports the use of both application-directed and trans-parent clustering as required.Directory Services: Finally, Owl provides a (persistent) name service (ns)that can be used to attach symbolic names to object references.6 An Overview of the Owl Class CategoryJust as the overall Tigger framework describes the architecture of a family ofobject-support operating systems, Owl may be said to describe the architectureof a family of grts. A grt supporting one or more speci�c languages is instanti-ated by providing appropriate implementations of (a subset of) the classes thatconstitute the Owl class category. The process of instantiating a grt from Owlis obviously driven by the requirements of the language(s) to be supported butis also constrained by the model of a grt and of grt{lsrt interaction embodiedin the design of Owl. This section describes the abstract model of a grt, and ofits interaction with an lsrt, that underpins the design of Owl. The next sectiondescribes the organisation of the Owl class category in more detail.6.1 grt ModelA grt provides runtime support for distribution or persistence in cooperationwith the lsrts of the languages that it supports and the other components of theTigger instantiation of which it is a part. Some grts support only distributed

objects, others only persistent objects, while some support both. Whether a grtsupports distributed or persistent objects is determined by the way in which it isinstantiated. Thus, distributed or persistent objects can be seen as specialisationsof abstract GRT objects supported by Owl. Every grt supports at least thefollowing services for grt objects5:{ object creation;{ location-independent object naming;{ object faulting;{ object mapping and unmapping;{ directory services.Together these services constitute the basic runtime support that must be pro-vided for any distributed or persistent programming language. Depending onhow each is implemented, the resulting grt can support distributed or persis-tent objects using various policies and mechanisms. A given grt can also provideadditional services such as object deletion or garbage collection, object cluster-ing, or marshalling and unmarshalling of roi requests. The Owl class categorydescribed in the remainder of this paper includes classes providing a number ofthese additional services. Moreover, Owl has been designed to be extensible sothat support for further services, for example, transaction management, can beprovided in the future.Typically, each of these services is invoked by a downcall from the lsrt to thegrt and makes use of upcalls from the grt to the lsrt when a language-speci�caction has to be performed or language-speci�c information obtained.Every grt provides exactly one form of gref and one swizzling policy asdictated by the language(s) to be supported. A grt may support either objectfault avoidance or object fault detection. In the case of object fault detection,the actual detection of object faults is the responsibility of the lsrt. A givengrt may support the lsrt in using a number of di�erent techniques for objectfault detection or the object fault detection technique used may be completelytransparent to the grt. A grt supporting object fault detection may provide anumber of di�erent interfaces for object fault reporting. Each object fault report-ing interface implies a set of allowable object fault resolution techniques that thegrt can apply. In addition, a grt for use in a multi-extent Tigger instantiationalways provides interfaces supporting cross-extent object invocation and objectmigration between extents.6.2 Object ModelAbstractly, at the language level, an object is an entity with identity, state, andbehaviour [2]. Every language object is assumed to have an associated type thatspeci�es the interface to the object available to its clients.5 In the following, the term \object" is used as a synonym for \grt object" unlessotherwise noted.

On the other hand, a grt object can be viewed as being essentially a con-tainer for one or more language objects that can be uniquely identi�ed and towhich code implementing the interface to the contained object(s) can be bounddynamically by the appropriate lsrt. Distributed or persistent language ob-jects must be mapped, in a way speci�c to their language, onto appropriategrt objects. The most obvious mapping is to use a single grt object for eachdynamically allocated language object. Other mappings are also possible. Forexample, an array of language objects could be contained within a single grtobject or a language object might be embedded within another language objectthat is contained within a grt object. The main consequence of supporting ar-rays of language objects or embedded language objects is that lrefs may mapto arbitrary addresses within a grt object rather than just the start address ofthe object.In any case, both the internal structure of a particular grt object and thesemantics implemented by the contained language objects are dictated by thelanguage level. Such information can be acquired by the grt if necessary onlyby making upcalls to the lsrt. In particular, a set of upcall methods, which areimplemented by the appropriate lsrt and which the grt can call when required,must be bound to every grt object in a way de�ned by Owl.Object Allocation and Layout New grt objects are created dynamically inthe grt's heap by explicitly calling the grt. Neither static allocation of grtobjects in some per-context data segment nor stack allocation of grt objects issupported.Every grt object has a header that is used to store information required bythe grt to manage the object. Depending on the grt instantiation, this headermay be allocated contiguously with the grt object in memory or separately(perhaps to allow grt objects to be moved within memory while mapped). Innormal operation, an object's grt header is transparent to the language levelalthough it may be accessed by upcall code provided by the lsrt.Language objects are expected to be contiguous in memory but may havecontiguous or non-contiguous headers containing information required by theirlsrts. In order to support lsrts that use non-contiguous object headers, a grtmay be specialised to allow grt objects to be split into (at most) two memoryregions resulting in the four possible grt object layouts being supportedObject Naming grt objects are uniquely identi�ed by Robin oids. grts mayassign oids to objects either eagerly, i.e., when they are created, or lazily, i.e.,at least some time before they become visible outside of their cradle extent, i.e.,the extent in which they were created. A grt that supports lazy oid allocationmay for example allocate oids to objects only when they become known outsideof their cradle extent, when they become known outside of the context in whichthey were created, or, if clustering is supported, when they become known outsideof their initial cluster.

Supporting lazy oid allocation requires that the grt can detect when anobject reference is about to be exported from an extent, context, or cluster asappropriate. This means that lazy oid allocation is only possible if the grtsupports swizzling and may additionally require an address space scan [22].A grt object to which no oid has been allocated is known as an immatureobject. By de�nition immature objects exist and are known only within theextent in which they were created. When allocated an oid, an object is said tobe promoted to being a mature object.The grefs provided by a grt serve not only to allow the referenced objectto be located but are also used to support object fault handling mechanisms.For example, as well as providing the target object's oid or storage identi�er,a gref might contain information to allow a proxy for the object to be createdwhen required.In addition, since most grts will support embedded language objects withina grt object, a gref may refer to a particular o�set within a grt object. This isuseful where a gref is to be converted to an lref referring to such an embeddedlanguage object rather than its enclosing language object.Code Management The code to be bound to each language object is providedby its lsrt as a class. A given type may be represented by one or more classes.For example, if the lsrt uses proxies for object fault detection, then every typemay be represented by a real class bound to language objects of that type anda proxy class bound to proxies for objects of that type. Each class consists ofapplication code, which implements the methods required by the object's type,and upcall code, which implements the upcall methods to be bound to grtobjects containing objects of that type6. As mentioned previously, the upcallcode is bound to the appropriate grt object by the grt while the applicationcode is bound to the language object in a language-speci�c way by its lsrt,usually in response to an upcall from the grt. Note however that only a singleset of upcall methods can be associated with each grt object.Each class is represented by a class descriptor and named by a class identi�erthat acts as an index for the class descriptor in the grt's class register (cr).Objects and RepresentativesA distributed or persistent language objectcan have representatives in many contexts. The representatives of an objectmight be used to implement an object and its proxies, the replicas of a replicatedobject, or the fragments of a fragmented object. The mapping of a distributedor persistent language object onto a set of representatives is thus language-speci�c. Moreover, depending on the object model supported by the language,the existence of multiple representatives of an object in the system may or maynot be transparent to application programmers.To support this model, a grt object can likewise have representatives inmany contexts. The representatives of a grt object share its identity. However,6 Upcall code may be speci�c to one type or shared between di�erent types, for ex-ample, Ei�el** uses the same upcall code for all types.

the representatives may be di�erent sizes and may or may not have applicationcode bound to them. Moreover, the code bound to each representative may bethe same or di�erent. All representatives of a grt object do however have grtobject headers and all have (possibly di�erent) upcall code bound to them. If,when, and how representatives for grt objects are created depends on the grtinstantiation. For example, to support a language that uses proxies for objectfault detection, a grt might be instantiated that creates representatives forabsent grt objects that are the same size as the real object and have proxyapplication code bound to them. If the language uses descriptors to representabsent objects, the grt instantiation might create representatives for absentobjects that are smaller that the actual object and have no application codebound to them.When the grt creates or maps an object or a representative for an object,such as a proxy, the grtwill ask the lsrt to prepare the object/representative forpossible accesses by its clients by making an upcall to the object/representative.This upcall allows the lsrt to carry out any appropriate language-speci�c ac-tions necessary to make the object/representative ready to be accessed. Typi-cally, this will include binding application code to the object/representative butmay also involve initiating swizzling or doing other format conversions whichare necessary prior to the object/representative being accessed. Thus, initiatingswizzling is the responsibility of the lsrt and not the grt. When exactly thegrt makes this upcall depends on the particular grt instantiation.7 The Organisation of the Owl Class CategoryA grt consists of a number of major functional components that can be indi-vidually customised to implement a grt providing some required set of object-support mechanisms and policies. The seven major components of all grts areillustrated in �gure 3 along with one optional component. These major com-ponents are implemented by instances of classes derived from the major classhierarchies that make up the Owl class category. Other Owl class hierarchiesdescribe grt objects, clusters, and various support classes used by the majorcomponents of a grt.The main interface between an lsrt and a grt is provided by an instanceof OwlGRTsc7. Subclasses of OwlGRT provide the major grt methods related toobject (and cluster) management callable from lsrts and are also responsiblefor the translation between lrefs and grefs that takes place at the lsrt/grtinterface.Every grt has a heap in which objects are created and mapped as required.A grt's heap is implemented by an instance of OwlHeapsc that provides themethods to allocate and deallocate memory from the heap. Higher-level meth-ods, such as those to create objects and clusters within the heap or those tomap and unmap objects and clusters into and out of the heap, are provided by7 The notation \ClassNamesc" is used to denote subclasses of ClassName, i.e., \Class-Namesc" can be read as \one of the subclasses of ClassName".

GRT Interface
(OwlGRT)

Name Service
Interface

(OwlNameService)

Object Manager
(OwlObjectManager)

Location Service
(OwlGlobalReference

ToLocation)

Heap
(OwlHeap)

Extent Fault Handler
Proxy

(OwlExtentFault
HandlerProxy)

Class Register
(OwlClassRegister)

LSRT

Downcalls

Upcalls

Cluster Manager
(OwlClusterManager)

Fig. 3. The major components of a grt and their main using relationships.a heap manager { an instance of OwlManagersc. Heap managers come in twovarieties: object managers (oms) and cluster managers (clms). oms { instancesof OwlObjectManagersc { provide methods related to the creation, mapping,and unmapping of objects, while clms { instances of OwlClusterManagersc {provide methods related to the creation, mapping, and unmapping of clusters.Every grt has an om. A grt that supports application-directed clustering willalso have a clm. Thus, as indicated by the shaded lines in �gure 3, a clm is anoptional component of a grt. The om or clm is also the component of the grtthat interacts with Eeyore { the storage class category { to store and retrieveobjects or clusters respectively when required.While heap managers are responsible for control of the heap, the location of,

and, where necessary, forwarding of access requests to absent objects (be theypersistent objects stored in the pos, distributed objects located on another node,or objects belonging to a di�erent extent) is encapsulated within the locationservice (ls) component of the grt, which is implemented by an instance of Owl-GlobalReferenceToLocationsc. The ls implements the grt's mapping from thegref for an object to its current location in the (possibly distributed) system.Since an absent object reported to the ls may actually be non-existent or, ina multi-extent Tigger instantiation, belong to a di�erent extent, the ls is alsoresponsible for raising extent faults. In a grt supporting distribution, the ls isa distributed component and uses Kanga { the communications class category{ for communication between its distributed parts.Every grt has a proxy for its local efh, which is an instance of OwlExtent-FaultHandlerProxysc. Thus, instances of OwlExtentFaultHandlerProxysc arekernel-aware objects that allow cross-extent object invocation to be implemented.A cr is a repository for class descriptors and code. Every grt uses a cr{ an instance of OwlClassRegistersc { to obtain the class code for new andrecently mapped objects when required. A cr is normally persistent and mayalso be remotely accessible. Likewise, the objects that it uses to store classes andtheir code would normally be expected to be persistent. Thus, a cr representsa good example of a service provided by the Tigger framework that is itselfimplemented using distributed and persistent objects. The design of the Tiggerframework assumes that there is a single cr in each system, which is sharedbetween all the grts (and all the extents) in that system. It is worth notingthat although the cr is a trusted service, it can belong to any desired extent.Finally, every grt also provides a ns to supported languages via an instanceof OwlNameServicesc. Although instances of OwlNameServicesc are local volatileobjects that are private to one grt, the directories to which they refer aretypically implemented by distributed persistent objects. Thus the ns as a wholecan be seen as another example of a service provided by the Tigger frameworkthat is itself implemented using distributed and persistent objects. Moreover,individual directories may belong to di�erent extents.In addition to the class hierarchies describing the main components of thegrt, further class hierarchies describe objects and clusters. The OwlObject classhierarchy describes the methods supported by grt objects and the structure ofgrt object headers. The OwlObject hierarchy also describes the upcalls thatmust be provided for each object by the lsrt and provides the means of bindingthe upcall code to a grt object/representative. Similarly, the OwlCluster classhierarchy describes the methods supported by clusters. In addition, Owl includesa number of other important class hierarchies that are introduced brie
y here.{ OwlLanguageReference Describes the protocol to be supported by lrefs.{ OwlGlobalReference Describes the protocols supported by grefs.{ OwlGlobalReferenceToAddress Describes the grt's mapping from a greffor an object to its address in the current context.{ OwlClusterIdentifier Describes the protocol for cluster identi�ers.

- object invocation
- network communication

LSRT LSRT

GRT
Interface

Object
Manager

Heap
Location
Service

Heap

Class
Register

Persistent Object
Store

(Eeyore)

GRT
Object

GRT
Object

Object
Manager

GRT
Interface

Location
ServiceFig. 4. The interactions between the major components of a grt.{ OwlClusterIdentifierToAddress Describes the grt's mapping from theidenti�er of a cluster to its address in the current context.{ OwlMarshalStream Provides methods for constructing messages includingroi request messages and replies.{ OwlRequestDescriptor,OwlRPCDescriptor, and OwlMigrationDescriptordescribe messages sent by grt components that are constructed by lsrts.{ OwlDirectory Describes the interface to an ns directory.{ OwlDirectoryEntry Describes an entry in an ns directory.{ OwlCode Describes objects used to store executable code.{ OwlClassDescriptor Describes a class descriptor.It should be understood that above list is not exhaustive and that otherclasses are required to implement a grt. Those presented typically use the ser-vices of other simpler classes describing their internal data structures or provid-ing "house-keeping" functionality.Interactions Between grt Components Figure 4 shows the main interac-tions that occur between the major components of a grt. For the sake of general-ity, the grt in question is assumed to support both distribution and persistenceand is hence distributed over multiple nodes and makes use of a pos instantiatedfrom Eeyore.The lsrts of supported languages usually invoke methods provided by thegrt interface. This will typically result in the grt interface invoking one ofthe other components of the grt, normally the ns interface or om. In the case

where the request from the lsrt is related to object management (for example,requests to create or delete objects and requests related to object faulting), thegrt interface calls the om. The om will typically use the services of the ls, theheap, or the pos to carry out the request. During object fault handling, therequest is typically forwarded to the ls. The ls may indicate that the objectshould be retrieved from the pos and mapped locally, return the object immedi-ately, forward the request to the om at the node where the object is located, orraise an extent fault if the object may belong to a di�erent extent. In handlingthe request, the ls will typically communicate with its remote peers who may, inturn, need to upcall their local oms. Thus, an om typically provides a downcallinterface for use by the grt interface and an upcall interface for use by the lsduring object fault handling. Like the interface to the grt, the interfaces to boththe om and ls must be specialised depending on the approach to object faultingsupported. In addition, as a heap manager, the om also provides an upcall inter-face for use by the heap when heap space is exhausted. This interface typicallycauses the om to try to unmap some objects. The om may use the cr to loadclass code for newly created objects or objects that have been mapped recentlyand is also the component that most commonly makes upcalls to grt objects.Finally, the om may upcall the grt interface { usually to convert a gref to anlref or vice versa.Both the cr and pos are potentially shared by di�erent grts in di�erent ex-tents including grts of di�erent types. Moreover, they are typically implementedby distributed objects and are accessible from multiple grts using location-transparent object invocation.Figure 5 shows the interactions that occur between the major components of agrt that supports application-directed clustering. Such a grt has an additionalcomponent, its clm, that is interposed between the om and other componentssuch as the heap, ls, and pos. Requests related to clusters (for example, requeststo create or delete clusters) are passed by the grt interface directly to the clmwhile requests related to objects are still passed to the om. A request concerningsome object might result in the om making a corresponding request to the clmfor that object's cluster. Since the unit of location, mapping, and unmapping isa cluster rather than an individual object, the clm is responsible for interactingwith the ls, pos, and heap to resolve the request in much the same way asthe the om is in a grt that does not support application-directed clustering.Resolving the request might require that a clm make an upcall to its local om.Like the interfaces to the grt interface, om, and ls, the interface to the clm isalso specialised depending on the approach to object faulting supported.8 StatusAt the current time, the design of the �rst complete version of the frameworkhas been completed and a number of instantiations are being implemented. [23]describes the �rst Tigger instantiation implemented. The so-called T1 instanti-ation supports an extension to C++ for distributed and persistent programming

- object invocation
- network communication

LSRT LSRT

GRT
Interface

Persistent Object
Store

(Eeyore)

GRT
Object

Object
Manager

Cluster
Manager

Location
Service

Heap

Class
Register

GRT
Object

HeapLocation
Service

Cluster
Manager

Object
Manager

GRT
Interface

Fig. 5. Interactions between parts of a grt supporting application-directed clustering.inspired by Panda/C++ [1]. T1 is a single-extent Tigger instantiation layeredabove Unix that implements a single distributed and persistent address spaceand supports dsm-style access to global and persistent objects. Object faultsare detected as memory protection faults. No swizzling is employed and vir-tual addresses are used as grefs. In addition, T1 supports application-directedclustering.Another Tigger instantiation is currently being implemented to support anovel object model providing application-consistent dsm [10].9 Summary and ConclusionsAn object-support operating system may be described as one that has been de-signed speci�cally to support object-oriented applications, especially distributedapplications or those that manipulate persistent data. Unfortunately, most ex-isting object-support operating systems can support only a single language orelse severely constrain the way in which di�erent languages can be supported,in particular, by supporting only a single object model. In contrast, the Tiggerproject undertook the design, not of a single object-support operating system,but of a family of object-support operating systems whose members can be cus-tomised for use in a variety of di�erent application domains. The two primary

goals of this design were to allow members of the family to support (a numberof) di�erent object models and to allow the same object model to be supportedin di�erent ways subject to di�ering non-functional requirements. This design iscaptured as a framework that can be instantiated to implement the individualmembers of the family.While framework technology is well-established and the use of frameworksto implement customised operating systems is not new, the use of a frameworkas the basis for implementing customised object-support operating systems isnovel. The Tigger framework provides a common basis for the implementationof both single and multi-user object-support operating systems that supporta range of object-oriented programming languages for distributed and persis-tent programming and encompass di�erent non-functional requirements such asheterogeneity or protection. While traditional operating system architecturesemphasise the distinction between the operating system kernel, which runs insupervisor mode, and user-level servers and applications, which do not, the de-sign of Tigger emphasises the orthogonality between protection and operatingsystem structure. Thus, the resulting framework encompasses both single-usersystems with no kernel and multi-user systems having a distinguished kernel.AcknowlegdementsThanks to Brendan Tangney, Neville Harris, Paul Taylor, and Alan Judge fortheir many and varied contributions to the work described in this paper.References1. Holger Assenmacher, Thomas Breitbach, Peter Buhler, Volker Huebsch, and Rein-hard Schwarz. PANDA - supporting distributed programming in C++. In Oscar M.Nierstrasz, editor, Proceedings of the 7th European Conference on Object-OrientedProgramming, volume 707 of Lecture Notes in Computer Science, pages 361{383.Springer-Verlag, 1993.2. Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-jamin/Cummings, Redwood City, CA, 1994.3. Vinny Cahill. On The Architecture of a Family of Object-Support Operating Sys-tems. Ph.D. thesis, Department of Computer Science, Trinity College Dublin,September 1996.4. Vinny Cahill, Se�an Baker, Gradimir Starovic, and Chris Horn. Generic runtimesupport for distributed persistent programming. In Paepcke [18], pages 144{161.5. Vinny Cahill, Roland Balter, Xavier Rousset de Pina, and Neville Harris, editors.The COMANDOS Distributed Application Platform. ESPRIT Research ReportsSeries. Springer-Verlag, 1993.6. Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, Frameworks andRe�nement. Computing Systems, 5(3):217{257, Summer 1992.7. Distributed Systems Group. C** programmer's guide (Amadeus v2.0). TechnicalReport TCD-CS-92-03, Department of Computer Science, Trinity College Dublin,February 1992.

8. Christine Hogan. The Tigger Cub Nucleus. Master's thesis, Department of Com-puter Science, Trinity College Dublin, September 1994.9. Chris Horn and Vinny Cahill. Supporting distributed applications in the Amadeusenvironment. Computer Communications, 14(6):358{365, July/August 1991.10. Alan Judge. Supporting Application-Consistent Distributed Shared Objects. PhDthesis, Department of Computer Science, Trinity College Dublin, 1996. In prepara-tion.11. Reinhold Kr�oeger, Michael Mock, Ralf Schumann, and Frank Lange. RelaX - anextensible architecture supporting reliable distributed applications. In Proceedingsof the 9th Symposium on Reliable Distributed Systems, pages 156{165. IEEE Com-puter Society Press, 1990.12. John McEvoy. E**: Porting the E database language to Amadeus. Master's thesis,Department of Computer Science, Trinity College Dublin, 1993.13. Colm McHugh and Vinny Cahill. Ei�el**: An implementation of Ei�el onAmadeus, a persistent, distributed applications support environment. In Boris Mag-nusson, Bertrand Meyer, and Jean-Francois Perot, editors, Technology of Object-Oriented Languages and Systems (TOOLS 10), pages 47{62. Prentice Hall, 1993.14. Michael Mock, Reinhold Kroeger, and Vinny Cahill. Implementing atomic objectswith the RelaX transaction facility. Computing Systems, 5(3):259{304, 1992.15. Karl O'Connell, Vinny Cahill, Andrew Condon, Stephen McGerty, GradimirStarovic, and Brendan Tangney. The VOID shell: A toolkit for the developmentof distributed video games and virtual worlds. In Proceedings of the Workshop onSimulation and Interaction in Virtual Environments, 1995.16. Darragh O'Grady. An extensible, high-performance, distributed persistent storefor Amadeus. Master's thesis, Department of Computer Science, Trinity CollegeDublin, September 1994.17. Joo Li Ooi. Access control for an object-oriented distributed platform. Master'sthesis, Department of Computer Science, Trinity College Dublin, August 1993.18. Andreas Paepcke, editor. Proceedings of the 1993Conference on Object-OrientedProgramming Systems, Languages and Applications. ACM Press, September 1993.Also SIGPLAN Notices 28(10), October 1993.19. Wolfgang Schr�oder-Preikschat. The Logical Design of Parallel Operating Systems.Prentice Hall, London, 1994.20. Marc Shapiro. Object-support operating systems. IEEE Technical Committeeon Operating Systems and Application Environments Newsletter, 5(1):39{42, Spring1991.21. Marc Shapiro. Soul: An object-oriented OS framework for object support. InA. Karshmer and J. Nehmer, editors, Operating Systems of the 90s and Beyond,volume 563 of Lecture Notes in Computer Science. Springer-Verlag, July 1991.22. Pedro Sousa, Manuel Sequeira, Andr�e Z�uquete, Paulo Ferreira, Cristina Lopes,Jos�e Pereira, Paulo Guedes, and Jos�e Alves Marques. Distribution and persistencein the IK platform: Overview and evaluation. Computing Systems, 6(4):391{424,Fall 1993.23. Paul Taylor. The T1 cub. Tigger document T16-94, Distributed Systems Group,Department of Computer Science, Trinity College Dublin, November 1994.24. Paul Taylor, Vinny Cahill, and Michael Mock. Combining object-oriented systemsand open transaction processing. The Computer Journal, 37(6), August 1994.This article was processed using the LaTEX macro package with LLNCS style

