An Overview of the Tigger Object-Support
Operating System Framework

Vinny Cahill*

Distributed Systems Group
Department of Computer Science
Trinity College Dublin
Ireland
http://www.dsg.cs.tcd.ie/

Abstract. This paper describes the motivations for and main features
of Tigger — a framework for the construction of a family of object-support
operating systems that can be tailored for use in a variety of different
application domains. An important goal of the design of Tigger is that
instantiations of the framework should be able to support (a number
of) different object models in order to allow a range of object-oriented
languages for distributed or persistent programming to be supported
without unnecessary duplication of effort. A further goal of the design
is that instantiations of the framework should be able to support the
same object model in different ways depending on the requirements of
the applications to be supported by those instantiations. This paper
describes the main features of the Tigger framework that allow these
goals to be realised.

1 Introduction

While the use of object-support operating systems — supporting distributed or
persistent objects — has been advocated for many application domains [5], re-
search within the Distributed Systems Group (Dsa) at Trinity College has re-
cently been considering their deployment in two specific areas: support for Con-
current Engineering (CE) environments!; and support for the development and
execution environments of next-generation, multi-user/distributed, arcade and
personal-computer (Pc) video games [15].

These application domains are similar at one level in that they are funda-
mentally concerned with multiple distributed users interacting via shared dis-
tributed and persistent objects. Moreover, these two application domains are
not necessarily distinct; game development 1s inherently a CE activity involving
game designers, artists, musicians, and software developers. Furthermore, the

* Email: vinny.cahill@dsg.cs.tcd.ie

! By “environment” is really meant what is known in the CE community as a “frame-
work” | i.e., a system encapsulating a set of tools, together with the data used by
those tools, under a common design management protocol.

technologies being deployed in both domains, for example, real-time video and
audio or three-dimensional graphics, overlap.

Despite these similarities, there are many differences that must be accommo-
dated. At the highest level, the object models appropriate to each application
domain differ. CE environments often employ what may be described as a shared
data object model in which objects are passive and accessed by active threads of
control. In contrast, the game execution environment described in [15] employs a
reactive object model with event-based communication,i.e., objects representing
game entities are autonomous but react to events raised by other objects. Objects
receive notifications of events of interest determined by reference to parameters
of those events. While these particular models represent different positions along
a continuum of possible object models, the key observation is that an important
feature of any flexible object-support operating system should be the ability to
support a number of different object models without duplication of effort, if not
necessarily simultaneously.

While these application domains exhibit similar functional requirements,
their non-functional requirements vary considerably from application to applica-
tion and installation to installation. Requirements in areas such as support for
security, heterogeneity, reliability and fault tolerance, allowable memory usage,
and real-time behaviour vary considerably. For example, the requirements for
supporting the same video game on a stand-alone arcade machine or PC, in a
private network of arcade machines, or across the public telephone network vary
considerable but must be supported by a common system interface. Likewise the
requirements imposed by supporting a concurrent software engineering environ-
ment in a traditional workstation/server environment are different from those
of any of the above scenarios. Nevertheless, the game developer still needs easy
access to the game execution system during testing and debugging and, more
importantly, the game designer needs immediate access to the execution system
during the game tuning phase when the “playability” of the game is being im-
proved. The key observation here is that any flexible object-support operating
system should be capable of supporting the same object model in different ways
depending on the way in which the applications supported by the system are to
be deployed.

In keeping with these observations, the Tigger project? undertook the design,
not of a single object-support operating system, but of a family of object-support
operating systems whose members can be customised for use in a variety of
different application domains. The two primary goals of this design were:

1. to allow members of the family to support (a number of) different object
models in order to allow a range of different object-oriented programming
languages for distributed and persistent programming to be supported with-
out unnecessary duplication of effort; and

2. to allow the same object model to be supported in different ways subject to
differing non-functional requirements.

2 which was named after A.A. Milne’s famously bouncy character!

To support customisability, the design is captured as a framework that can
be instantiated to implement the individual members of the family. The Tigger
framework can be instantiated to implement particular object-support operating
systems meeting particular functional and non-functional requirements. Instan-
tiations of the Tigger framework can be layered above bare hardware, (real-time)
microkernels, or conventional operating systems. The Tigger framework is suf-
ficiently general so as to allow a set of possible instantiations that is capable
of supporting a wide range of object-oriented programming languages for dis-
tributed or persistent programming and that is suitable for use in a wide range of
application areas exhibiting different non-functional requirements. In addition,
the Tigger framework has been designed to be extensible so that new function-
ality can be supported when required.

The major abstractions supported by the Tigger framework are distributed
or persistent objects, threads, and extents (i.e., protected collections of ob-
jects). A given Tigger instantiation may support only distributed objects, only
persistent objects, or both. Of course, different instantiations will support these
abstractions in different ways (for example, in order to accommodate different
object models) by employing different mechanisms and policies.

Individual Tigger instantiations may support additional abstractions, such as
activities (i.e., distributed threads) and object clusters as required. Moreover,
all of these abstractions are based on lower-level abstractions such as contexts
(i.e., address spaces) and endpoints (i.e., communication channels) that are
not normally expected to be used directly by supported languages or individual
applications.

The simplest object-support operating system that can be instantiated from
the framework is one supporting a single user and a single object model providing
either distributed or persistent objects. Other instantiations of the framework
may support additional abstractions, multiple users, or multiple object models.

The remaider of this paper gives an overview of the Tigger framework, con-
centrating on the way in which it provides support for distributed and persistent
programming languages. For a complete description of the framework see [3].

2 Related Work

This section introduces a number of previous systems that have particularly
influenced Tigger: the Amadeus object-support operating system, which was de-
veloped by DsG, and the Choices and PEACE object-oriented operating systems.

Amadeus [9] was a general-purpose object-support operating system that
supported distributed and persistent programming in multi-user distributed sys-
tems. Amadeus was targeted for use in what may broadly be described as co-
operative applications concerned with access to shared data in domains such as
computer-aided design (caD), office automation, and software engineering.

A major feature of Amadeus was that it was designed to support the use of
a range of existing object-oriented programming languages. A language could
be extended to support a set of (inter-related) properties including distribution,

persistence, and atomicity for its objects by using the services of the Amad-
eus Generic Runtime Library (GRT), while maintaining its own native object
reference format and invocation mechanism [4]. The Amadeus GRT provided
a range of mechanisms from which the language designer could choose those
appropriate for the intended use of the extended language. Extended versions of
C++ and Eiffel, which were known as C#* [7] and Eiffel## [13] respectively, and an
implementation of the E persistent programming language [12] were supported
by Amadeus.

Other major features of Amadeus included language-independent support
for atomic objects and transactions [14, 24] based on the use of the RELAX
transaction manager and libraries [11], and a novel security model supporting
access control for objects at the level of individual operations as well as 1solation
of untrustworthy code [17].

Experience with the design and implementation of Amadeus has obviously
had a major influence on Tigger. Tigger shares the goal of language independence
and has adopted several of the key features of Amadeus including the idea of a
GRT and the basic security model. However, the goal of Tigger is to allow the
implementation of a variety of object-support operating systems providing more
or less functionality as required, rather than a single general-purpose system as
was the goal of Amadeus.

Apart from Amadeus, Tigger has been most influenced by Choices [6], which
developed a C++ framework for the construction of operating systems for dis-
tributed and shared memory multiprocessors, and PEACE [19], which addressed
the use of object-oriented techniques in the construction of a family of operat-
ing systems for massively parallel computers. The PEACE family encompasses
a number of different members ranging from one supporting a single thread of
control per node to one supporting multiple processes per node.

In some sense, Tigger may be seen as combining these two research areas to
develop a family of object-oriented object-support operating systems. The devel-
opment of an object-oriented object-support operating system, to be known as
Soul, was proposed previously by Shapiro in [20]. Shapiro envisaged developing
a “hierarchy of object-support object types and classes” that could “be re-used,
parameterized, and combined together, in order to build specific object-support
functions”. This is indeed a reasonable description of the Tigger framework! A
later paper on Soul, [21], elaborated on the original proposal and described a
“preliminary design” for the interface that should be provided by a microkernel
suitable for hosting the Soul class hierarchy. However, no other description of
the Soul object-oriented object-support operating system appears to be avail-
able in the literature. The Soul project has apparently instead concentrated on
the development of specific mechanisms for object reference management and
garbage collection in distributed systems.

3 Overview

Tigger is a framework for the construction of a family of object-support operating
systems. Every instantiation of the framework is an object-support operating
system to which one or more object-oriented programming languages are bound
in order to provide an application programming interface. Like other object-
support operating systems, Tigger instantiations will typically provide support
for features such as creation of distributed or persistent objects; access to remote
objects; object migration; access to stored persistent objects; dynamic loading
of objects on demand; dynamic loading and linking of class code; and protection
of objects.

In fact, the heart of any Tigger instantiation is a generalised object-access
mechanism that allows local, remote, stored, protected, or unprotected objects
to be accessed in a uniform manner. This mechanism provides support for all
aspects of locating the target object, mapping the object and its class into mem-
ory, and forwarding the access request to the object as required. In fact, this
basic mechanism subsumes much of the functionality provided by the Tigger
framework and provides the basis for supporting a high degree of network trans-
parency for object access. Of course, the details of what this mechanism does,
and how it does it, are subject to customisation and will differ from one Tigger
instantiation to another.

It is important to understand two points about the nature of the functionality
provided by a Tigger instantiation. First, a Tigger instantiation, in cooperation
with the runtime libraries of supported languages, only provides the necessary
support for the use of objects by applications, i.e., a Tigger instantiation is an
object-support system. The semantics and function of the objects that they sup-
port are opaque to Tigger instantiations. A particular object might implement
a spreadsheet, one cell in a spreadsheet, a file, or a file server. The distinction
is not visible to Tigger instantiations. While some objects will implement (parts
of) particular applications (such as the “spreadsheet cell” object above), other
objects may provide common services including those that are usually thought
of as being part of an operating system (such as the “file server” object above).

The second major point to be understood is that a Tigger instantiation is a
language-support system — the functionality provided by a Tigger instantiation
is intended to be used by object-oriented programming languages to provide
programming models based on distributed or persistent objects to their applica-
tion programmers. Thus, the main interface provided by a Tigger instantiation
is that provided for the language implementer. The interface used by an appli-
cation developer is that provided by a supported language. Moreover, a Tigger
instantiation provides only basic support for distribution or persistence that is
intended to be supplemented by each language’s runtime library in order to
implement the programming model of the language. How support for distribu-
tion or persistence is made available in any language — whether transparently
to application programmers, via a class library, or even via the use of particular
language constructs — is not mandated by the Tigger framework. Likewise, the
degree of network transparency provided by the language is a function of the

programming model supported by the language. Of course, the Tigger framework
has been designed to support languages that provide a high degree of network
transparency.

4 Software Architecture

Tigger instantiations are intended to support both conventional object-oriented
programming languages that have been extended to support distributed or per-
sistent programming as well as object-oriented languages originally designed for
that purpose. Moreover, this is intended to be done in a way that does not im-
pose particular constructs and models on the language and, where an existing
language 1s being extended, that does not necessarily require changes to its com-
piler nor to its native object reference format or local invocation mechanism. In
this way, the language designer is free to choose the object model to be provided
to application programmers independently. Supporting existing (local) object
reference formats and invocation mechanisms allows the common case of local
object invocation to be optimised. Finally, where an existing language is to be
supported, this approach facilitates the reuse and porting of its existing compiler
and runtime libraries.

In order to achieve these goals, every Tigger instantiation provides one or
more GRTs providing common runtime support for one or more languages sup-
porting distributed or persistent programming that have similar requirements
on their runtime support. A more precise characterisation of a GRT is given in
[3]. Suffice it to say here that a GRT is generic in the sense that it provides only
that part of the support for distribution or persistence that is independent of any
language. Every GRT is bound to a Language Specific Runtime Library (LsrT) for
each language to be supported. The LSRT provides language-dependent runtime
support. Each GRT provides an interface to the language implementer that has
been designed to interface directly and easily to an LSRT. Thus, the interface to
a Tigger instantiation seen by a language implementer is that of one of the GRTs
that it provides.

This basic approach to language support is derived from the Amadeus project.
Unlike Amadeus, which provided a single GRT supporting a (fairly limited) range
of mechanisms that could be used by supported languages, the Tigger framework
allows GRTs to be customised depending on the object model and intended use
of the language(s) to be supported. For example, GRTs supporting remote object
invocation (RoO1) and/or distributed shared memory (DsM) style access to dis-
tributed objects, GRTs supporting the use of different object fault detection or
avoidance schemes, and GRTs supporting the use of eager, lazy, or no swizzling
can all be instantiated from the framework. A given Tigger instantiation can
support one language or several similar languages with one GRT, or a number
of different languages with several GRTs. For example, figure 1 shows one possi-
ble scenario in which one Tigger instantiation provides two different GRTs: one
GRT is being used to support the C+* and Eiffel** programming languages while
the other is being used to support the E programming language. Both C#* and

Eiffel*#* support distributed and persistent objects using ROI and eager swizzling
respectively, while E is a non-swizzling persistent programming language. The
figure depicts a scenario in which one application is written using some combi-
nation of two supported languages. While such interworking between languages
may be facilitated when the languages involved have some of their runtime sup-
port in common, it should be noted that it cannot be implemented completely
at this level — additional mechanisms are still required at higher levels to, for
example, support inter-language type checking.

Application Application
Eiffel** C**
LSRT LSRT ELSRT
Eager Swizzling Non-swizzling
GRT GRT

Tigger Instantiation

Fig.1. A Tigger instantiation.

Amadeus supported exactly the set of languages depicted in figure 1 but with
a single GRT. However, the Amadeus GRT was both complex and large, and hence
penalised languages and applications that typically only required a subset of the
features that 1t provided. The Tigger approach allows the GRT to be customised
according to the specific requirements of the language implementer.

4.1 Logical Model

The classes making up the Tigger framework are divided into five main class cat-
egories [2]. Essentially, each of these class categories is responsible for supporting
some subset of the fundamental abstractions provided by the Tigger framework
as follows:

— the GRT class category — known as Owl® — supports distributed and persistent
objects and optionally clusters, and provides the main interface to supported
languages. An instantiation of Owl corresponds to a GRT as described above
and, a single Tigger instantiation may include multiple Owl instantiations.

? Yes, you’ve guessed it! All the class categories are called after characters from A.A.

Milne’s books.

— the threads class category — known as Roo — supports threads and related
synchronisation mechanisms, and may support activities and jobs. Supported
languages (i.e., their LsRTs) and applications may use Roo directly.

— the communications class category — known as Kanga — supports endpoints.
Again, supported languages and applications may use Kanga directly.

— the storage class category — known as Eeyore — supports containers and
storage objects. Supported languages are not expected to use Eeyore directly
and hence its main client is Owl.

— the protection class category — known as Robin — supports extents and re-
lated abstractions.

OWL
(global/ Egj
persistent objects) (threads)
global .

ROBIN /U
(extents)

EEYORE KANGA

(containers _

storage objects) (endpoints)

Fig. 2. Tigger class categories.

Figure 2 is a top-level class diagram for the Tigger framework showing the
class categories introduced above and their using relationships. Note that both
Owl and Roo are labelled as global meaning that they may be used by all
the other class categories. In the case of Roo, this reflects the fact that all the
components of a Tigger instantiation are expected to be thread-aware. In the
case of Owl, this reflects the fact that components of a Tigger instantiation may
use distributed or persistent objects.

While Owl is specialised depending primarily on the needs of the language(s)
to be supported, the other class categories can also be specialised to support dif-
ferent mechanisms and policies. In particular, different instantiations of Robin
determine whether the Tigger instantiation of which it is a part supports only
a single extent or multiple extents, as well as whether it supports one or more
contexts. Other responsibilities of Robin include supporting cross-extent object
invocation and unique object identification. Decisions made about the implemen-

tation of Robin are therefore of fundamental importance for the overall structure
of a Tigger instantiation.

The Robin and Owl class categories are described in detail in [3]. For descrip-
tions of early versions of Roo and Kanga see [8]. Eeyore is based on the Amadeus
persistent object store (Pos) framework described in [16]. The remainder of this
paper gives an overview of the Owl class category.

5 Object-Support Functionality

This section considers how the functionality required to support distributed
and persistent objects can be divided between an LSRT and a GRT. Given this
separation of responsibilities; the major services supported by Owl, as well as the
main options for implementing those services, are then identified. An important
goal of Tigger was that Owl should provide as much of the required functionality
as possible. Only where a service is clearly language-specific or is intimately
connected with the code that is generated by the language’s compilation system
is that service assigned to the LSRT.

In reading the following sections, it should be borne in mind that a partic-
ular Owl instantiation (i.e., GRT) might support only persistent objects, only
distributed objects, or both. Hence, not all of these services will need to be
supported by all Owl instantiations. Furthermore, the list presented here is not
exhaustive; Owl can be extended to support other services.

Object layout and naming: Unless the compilation system is to be seri-
ously constrained by the use of a GRT, the LSRT should be able to dictate the
layout of objects in memory, the format of internal /local references used by such
objects, and the mapping from such an object reference to the address of a col-
located object. To reflect this fact, internal/local references are referred to as
language references or IREFs from here on.

A GRT, on the other hand, should be responsible for the provision of glob-
ally unique object identifiers (01Ds) suitable for identifying every object in the
system* A GRT should also be responsible for the provision of external/global
references (referred to simply as global references or gREFs from here on). A GRT
should also implement the mapping from a grREF for an object to the location of
that object in the system.

Where the language to be supported already supports distribution or persis-
tence, its LSRT will already support its own form of oID and gREF. Moreover,
its IREFs and grREFs may be the same. Owl does not support all possible ex-
isting grREF formats but only those that support an Owl-defined protocol. Owl
instantiations may however use (virtual) addresses as gREFs. Owl also supports
languages in which gREFs and IREFs are the same as long as the grREFs support
the appropriate protocol.

Object access, binding, and dispatching: Each language is free to de-
termine how objects may be accessed by their clients. However, it is important

* In the Tigger framework, responsibility for the format and allocation of oms actually
rests with Robin rather than Owl.

to realise that this decision has important repercussions for the choice of object
fault avoidance or detection mechanisms that are available and for the ways in
which object faults can be resolved. Typically, the choice of possible object fault
avoidance, detection, or resolution mechanisms i1s constrained by the form of
access to objects allowed. For example, the use of proxies to represent absent
objects is not appropriate where direct access to the instance data of an object
by its clients is allowed.

Since the means of binding code to objects and of dispatching invocations
(including the layout of parameter frames) is usually intrinsic to the compilation
system, these must continue to be implemented in the LSRT. Thus, a GRT need not
be involved in local object invocation. However, this also means that when rROI
1s used to access remote distributed objects, the marshalling and unmarshalling
of ROI requests, as well as the dispatching of incoming requests to their target
objects, must be done by or in cooperation with the LSRT.

Object allocation and garbage collection: Owl only supports allocation
of objects on the heap or embedded in other (heap-allocated) objects. Moreover,
Owl is responsible for management of the heap and hence provides the routines
to allocate (and where supported, deallocate) objects.

When necessary, Owl supports garbage collection of distributed or persistent
objects both within memory and within the Pos as required.

Object fault detection and avoidance: Detection or avoidance of object
faults is the responsibility of the LSRT since it depends on the type of access to
objects supported and the mechanisms used may need to be tightly integrated
with the compilation system. For example, if presence tests are used to detect
absent objects, the language compiler or preprocessor will usually be required
to generate the code necessary to perform these tests before any access to an
object proceeds.

Owl does however provide underlying support for a number of common object
fault detection mechanisms (for example, presence tests and proxies) as well as
support for object fault avoidance. Other object fault detection mechanisms may
be implemented entirely at the language level.

Object fault resolution: Where object fault detection is used, Owl provides
the underlying means of resolving object faults including locating the target
objects, mapping objects, transferring ROI requests to objects, and/or migrating
threads as appropriate. The choice of object fault resolution policy is however
constrained by the LSRT.

In the case of ROI requests, the formatting of the request must however be
carried out by the LSRT since only 1t understands the format of parameter frames.
Owl does however support the marshalling and unmarshalling of IREFs and values
of basic types. The translation of IREFs to the corresponding gREFs and vice
versa must be carried out in cooperation with the LSRT. Similar comments apply
to migration of objects. On the remote side, the LSRT must be prepared to
accept incoming ROI requests from the GRT, unmarshal the parameters, dispatch
the request in the language-specific manner, and, once the request has been
completed, to marshal the reply. Note that the dispatching of the request must

be carried out by the LSRT since only it understands the dispatching mechanism
to be used.

Mapping, unmapping, and migration: Owl provides the basic support
for the mapping and unmapping of persistent objects as well as the migration
of distributed objects.

During mapping or migration, Owl supports the conversion of objects to
local format where heterogeneity is supported; no, lazy, and eager swizzling of
references as required; and binding of code to mapped objects. In each case,
these actions require language- (and indeed type-) specific information. Hence,
while Owl supports each of these, it does so in cooperation with the LSRTs of
supported languages.

Where swizzling is used, the GRT must be able to translate a grREF to the
appropriate IREF (whether or not the target object is mapped into the current
address space). This again requires cooperation with the LSRT depending on the
object faulting strategy in use.

Likewise, binding of code to a recently-mapped object must be done in a
language-specific way. However, Owl provides the underlying support for dy-
namic linking where this is required including supporting the storage and re-
trieval of class code.

Determining which objects can be unmapped or migrated also depends on
the object faulting strategy in use. Nevertheless, Owl supports both anchored
and non-anchored code.

Clustering: Owl supports the use of both application-directed and trans-
parent clustering as required.

Directory Services: Finally, Owl provides a (persistent) name service (Ns)
that can be used to attach symbolic names to object references.

6 An Overview of the Owl Class Category

Just as the overall Tigger framework describes the architecture of a family of
object-support operating systems, Owl may be said to describe the architecture
of a family of GRTs. A GRT supporting one or more specific languages is instanti-
ated by providing appropriate implementations of (a subset of) the classes that
constitute the Owl class category. The process of instantiating a GRT from Owl
is obviously driven by the requirements of the language(s) to be supported but
1s also constrained by the model of a GRT and of GRT-LSRT interaction embodied
in the design of Owl. This section describes the abstract model of a GRT, and of
its interaction with an LSRT, that underpins the design of Owl. The next section
describes the organisation of the Owl class category in more detail.

6.1 GRT Model

A GRT provides runtime support for distribution or persistence in cooperation
with the LSRTs of the languages that it supports and the other components of the
Tigger instantiation of which it is a part. Some GRTs support only distributed

objects, others only persistent objects, while some support both. Whether a GrT
supports distributed or persistent objects is determined by the way in which it is
instantiated. Thus, distributed or persistent objects can be seen as specialisations
of abstract GRT objects supported by Owl. Every GRT supports at least the
following services for GRT objects’:

— object creation;

— location-independent object naming;
object faulting;

object mapping and unmapping;
directory services.

Together these services constitute the basic runtime support that must be pro-
vided for any distributed or persistent programming language. Depending on
how each is implemented, the resulting GRT can support distributed or persis-
tent objects using various policies and mechanisms. A given GRT can also provide
additional services such as object deletion or garbage collection, object cluster-
ing, or marshalling and unmarshalling of ROT requests. The Owl class category
described in the remainder of this paper includes classes providing a number of
these additional services. Moreover, Owl has been designed to be extensible so
that support for further services, for example, transaction management, can be
provided in the future.

Typically, each of these services is invoked by a downcall from the LSRT to the
GRT and makes use of upcalls from the GRT to the LSRT when a language-specific
action has to be performed or language-specific information obtained.

Every GRT provides exactly one form of grREF and one swizzling policy as
dictated by the language(s) to be supported. A GRT may support either object
fault avoidance or object fault detection. In the case of object fault detection,
the actual detection of object faults 1s the responsibility of the LSRT. A given
GRT may support the LSRT in using a number of different techniques for object
fault detection or the object fault detection technique used may be completely
transparent to the GRT. A GRT supporting object fault detection may provide a
number of different interfaces for object fault reporting. Each object fault report-
ing interface implies a set of allowable object fault resolution techniques that the
GRT can apply. In addition, a GRT for use in a multi-extent Tigger instantiation
always provides interfaces supporting cross-extent object invocation and object
migration between extents.

6.2 Object Model

Abstractly, at the language level, an object is an entity with identity, state, and
behaviour [2]. Every language object is assumed to have an associated type that
specifies the interface to the object available to its clients.

® In the following, the term “object” is used as a synonym for “GRT object” unless
otherwise noted.

On the other hand, a GRT object can be viewed as being essentially a con-
tainer for one or more language objects that can be uniquely identified and to
which code implementing the interface to the contained object(s) can be bound
dynamically by the appropriate LSRT. Distributed or persistent language ob-
jects must be mapped, in a way specific to their language, onto appropriate
GRT objects. The most obvious mapping is to use a single GRT object for each
dynamically allocated language object. Other mappings are also possible. For
example, an array of language objects could be contained within a single GRT
object or a language object might be embedded within another language object
that is contained within a GRT object. The main consequence of supporting ar-
rays of language objects or embedded language objects is that IREFs may map
to arbitrary addresses within a GRT object rather than just the start address of
the object.

In any case, both the internal structure of a particular GRT object and the
semantics implemented by the contained language objects are dictated by the
language level. Such information can be acquired by the GRT if necessary only
by making upcalls to the LSRT. In particular, a set of upcall methods, which are
implemented by the appropriate LSRT and which the GRT can call when required,
must be bound to every GRT object in a way defined by Owl.

Object Allocation and Layout New GRT objects are created dynamically in
the GRT’s heap by explicitly calling the GRT. Neither static allocation of GRT
objects in some per-context data segment nor stack allocation of GRT objects is
supported.

Every GRT object has a header that is used to store information required by
the GRT to manage the object. Depending on the GRT instantiation, this header
may be allocated contiguously with the GRT object in memory or separately
(perhaps to allow GRT objects to be moved within memory while mapped). In
normal operation, an object’s GRT header is transparent to the language level
although it may be accessed by upcall code provided by the LSRT.

Language objects are expected to be contiguous in memory but may have
contiguous or non-contiguous headers containing information required by their
LSRTs. In order to support LSRTs that use non-contiguous object headers, a GRT
may be specialised to allow GRT objects to be split into (at most) two memory
regions resulting in the four possible GRT object layouts being supported

Object Naming GRT objects are uniquely identified by Robin oIDs. GRTs may
assign OIDs to objects either eagerly, 1.e., when they are created, or lazily, 1.e.,
at least some time before they become visible outside of their cradle extent, 1.e.,
the extent in which they were created. A GRT that supports lazy oiD allocation
may for example allocate 0IDs to objects only when they become known outside
of their cradle extent, when they become known outside of the context in which
they were created, or, if clustering is supported, when they become known outside
of their initial cluster.

Supporting lazy 01D allocation requires that the GRT can detect when an
object reference is about to be exported from an extent, context, or cluster as
appropriate. This means that lazy oID allocation is only possible if the GRT
supports swizzling and may additionally require an address space scan [22].

A GRT object to which no 01D has been allocated 1s known as an immature
object. By definition immature objects exist and are known only within the
extent in which they were created. When allocated an 01D, an object is said to
be promoted to being a mature object.

The grEFs provided by a GRT serve not only to allow the referenced object
to be located but are also used to support object fault handling mechanisms.
For example, as well as providing the target object’s 0ID or storage identifier,
a gREF might contain information to allow a proxy for the object to be created
when required.

In addition, since most GRTs will support embedded language objects within
a GRT object, a gREF may refer to a particular offset within a GRT object. This is
useful where a gREF is to be converted to an IREF referring to such an embedded
language object rather than its enclosing language object.

Code Management The code to be bound to each language object is provided
by its LSRT as a class. A given type may be represented by one or more classes.
For example, if the LSRT uses proxies for object fault detection, then every type
may be represented by a real class bound to language objects of that type and
a proxy class bound to proxies for objects of that type. Each class consists of
application code, which implements the methods required by the object’s type,
and wupcall code, which implements the upcall methods to be bound to GRT
objects containing objects of that type®. As mentioned previously, the upcall
code is bound to the appropriate GRT object by the GRT while the application
code is bound to the language object in a language-specific way by its LSRT,
usually in response to an upcall from the GRT. Note however that only a single
set of upcall methods can be associated with each GRT object.

Each class is represented by a class descriptor and named by a class identifier
that acts as an index for the class descriptor in the GRT’s class register (CR).

Objects and Representatives A distributed or persistent language object
can have representatives in many contexts. The representatives of an object
might be used to implement an object and its proxies, the replicas of a replicated
object, or the fragments of a fragmented object. The mapping of a distributed
or persistent language object onto a set of representatives is thus language-
specific. Moreover, depending on the object model supported by the language,
the existence of multiple representatives of an object in the system may or may
not be transparent to application programmers.

To support this model, a GRT object can likewise have representatives in
many contexts. The representatives of a GRT object share its identity. However,

6 Upcall code may be specific to one type or shared between different types, for ex-
ample, Eiffel** uses the same upcall code for all types.

the representatives may be different sizes and may or may not have application
code bound to them. Moreover, the code bound to each representative may be
the same or different. All representatives of a GRT object do however have GRT
object headers and all have (possibly different) upcall code bound to them. If,
when, and how representatives for GRT objects are created depends on the GRT
instantiation. For example, to support a language that uses proxies for object
fault detection, a GRT might be instantiated that creates representatives for
absent GRT objects that are the same size as the real object and have proxy
application code bound to them. If the language uses descriptors to represent
absent objects, the GRT instantiation might create representatives for absent
objects that are smaller that the actual object and have no application code
bound to them.

When the GRT creates or maps an object or a representative for an object,
such as a proxy, the GRT will ask the LSRT to prepare the object /representative for
possible accesses by its clients by making an upcall to the object /representative.
This upcall allows the LSRT to carry out any appropriate language-specific ac-
tions necessary to make the object/representative ready to be accessed. Typi-
cally, this will include binding application code to the object/representative but
may also involve initiating swizzling or doing other format conversions which
are necessary prior to the object/representative being accessed. Thus, initiating
swizzling is the responsibility of the LSRT and not the GRT. When exactly the
GRT makes this upcall depends on the particular GRT instantiation.

7 The Organisation of the Owl Class Category

A GRT consists of a number of major functional components that can be indi-
vidually customised to implement a GRT providing some required set of object-
support mechanisms and policies. The seven major components of all GRTs are
illustrated in figure 3 along with one optional component. These major com-
ponents are implemented by instances of classes derived from the major class
hierarchies that make up the Owl class category. Other Owl class hierarchies
describe GRT objects, clusters, and various support classes used by the major
components of a GRT.

The main interface between an LSRT and a GRT is provided by an instance
of OW1GRT,.”. Subclasses of OW1GRT provide the major GRT methods related to
object (and cluster) management callable from LsRTs and are also responsible
for the translation between IREFs and gREFs that takes place at the LSRT/GRT
interface.

Every GRT has a heap in which objects are created and mapped as required.
A GRT’s heap is implemented by an instance of OwlHeapy. that provides the
methods to allocate and deallocate memory from the heap. Higher-level meth-
ods, such as those to create objects and clusters within the heap or those to
map and unmap objects and clusters into and out of the heap, are provided by

”

" The notation “ClassName..” is used to denote subclasses of ClassName,i.e., “Class-—

Name;.” can be read as “one of the subclasses of ClassName”.

LSRT

Downcalls
-~ ’
/ SN -
4 7

'
’ GRT Interface 1

o (OWIGRT) \
\

1 - ~ -
\ i (\
-~ -) -
4 S v - /’\\.// \‘\
/
s Name Service ! a4 . 7 Cluster Manager

’ Object Manager
/ 1
N (”I\Tterfacewce) (OWIObjectM) (OwlClusterManager)
\ OwlINameSer \ ¢

1
\ -
~ -
-
/ -
/ AN
-, \/ BREN

Class Register ,

4 / f
s (OwiClassRegister) e Location Service ,
\ \ < (OwlGlobal Reference \ - (OWIHeap) .
1 4 \ TolLocation) \ \ \
\"’/ ’—\—l 1 f-\—l
.7 v__ .7
~ -
/7 s S _ 7N 4
_ 7 Extent Fault Handler /
/ Proxy /
S~ (OwlExtentFault
HandlerProxy)
=
\ Phd

~ -

Fig. 3. The major components of a GRT and their main using relationships.

a heap manager — an instance of OwlManagers.. Heap managers come in two
varieties: object managers (oMs) and cluster managers (CLMs). OMs — instances
of OwlObjectManager,. — provide methods related to the creation, mapping,
and unmapping of objects, while ¢LMs — instances of OwlClusterManagery. —
provide methods related to the creation, mapping, and unmapping of clusters.
Every GRT has an oM. A GRT that supports application-directed clustering will
also have a cuMm. Thus, as indicated by the shaded lines in figure 3, a CLM 1s an
optional component of a GRT. The oM or CLM is also the component of the GRT
that interacts with Eeyore — the storage class category — to store and retrieve
objects or clusters respectively when required.

While heap managers are responsible for control of the heap, the location of,

and, where necessary, forwarding of access requests to absent objects (be they
persistent objects stored in the Pos, distributed objects located on another node,
or objects belonging to a different extent) is encapsulated within the location
service (Ls) component of the GRT, which is implemented by an instance of Owl-
GlobalReferenceToLocationg. The Ls implements the GRT’s mapping from the
gREF for an object to its current location in the (possibly distributed) system.
Since an absent object reported to the LS may actually be non-existent or, in
a multi-extent Tigger instantiation, belong to a different extent, the Ls is also
responsible for raising extent faults. In a GRT supporting distribution, the LS is
a distributed component and uses Kanga — the communications class category
— for communication between its distributed parts.

Every GRT has a proxy for its local EFH, which is an instance of OwlExtent—
FaultHandlerProxyy.. Thus, instances of OwlExtentFaultHandlerProxy,. are
kernel-aware objects that allow cross-extent object invocation to be implemented.

A CR is a repository for class descriptors and code. Every GRT uses a CR
— an instance of OwlClassRegisterg. — to obtain the class code for new and
recently mapped objects when required. A CR is normally persistent and may
also be remotely accessible. Likewise, the objects that it uses to store classes and
their code would normally be expected to be persistent. Thus, a CR represents
a good example of a service provided by the Tigger framework that is itself
implemented using distributed and persistent objects. The design of the Tigger
framework assumes that there is a single CR in each system, which is shared
between all the GRTs (and all the extents) in that system. It is worth noting
that although the CR is a trusted service, it can belong to any desired extent.

Finally, every GRT also provides a NS to supported languages via an instance
of OwlNameServiceg.. Although instances of OwlNameService,, are local volatile
objects that are private to one GRT, the directories to which they refer are
typically implemented by distributed persistent objects. Thus the Ns as a whole
can be seen as another example of a service provided by the Tigger framework
that is itself implemented using distributed and persistent objects. Moreover,
individual directories may belong to different extents.

In addition to the class hierarchies describing the main components of the
GRT, further class hierarchies describe objects and clusters. The Owl0bject class
hierarchy describes the methods supported by GRT objects and the structure of
GRT object headers. The OwlObject hierarchy also describes the upcalls that
must be provided for each object by the LSRT and provides the means of binding
the upcall code to a GRT object/representative. Similarly, the OwlCluster class
hierarchy describes the methods supported by clusters. In addition, Owl includes
a number of other important class hierarchies that are introduced briefly here.

— OwlLanguageReference Describes the protocol to be supported by IREFs.
— OwlGlobalReference Describes the protocols supported by grREFs.

— OwlGlobalReferenceToAddress Describes the GRT’s mapping from a grREF
for an object to its address in the current context.

— OwlClusterIdentifier Describes the protocol for cluster identifiers.

Persistent Object
Store

(Eeyore) /
W’ Location
Service

> object invocation

==2-% - network communication

Location
Service

Fig.4. The interactions between the major components of a GRT.

— OwlClusterIdentifierToAddress Describes the GRT’s mapping from the
identifier of a cluster to its address in the current context.

— OwlMarshalStream Provides methods for constructing messages including
ROI request messages and replies.

— OwlRequestDescriptor, OwlRPCDescriptor, and OwlMigrationDescriptor
describe messages sent by GRT components that are constructed by LSRTs.

— OwlDirectory Describes the interface to an Ns directory.

— OwlDirectoryEntry Describes an entry in an NS directory.

— OwlCode Describes objects used to store executable code.

— OwlClassDescriptor Describes a class descriptor.

It should be understood that above list is not exhaustive and that other
classes are required to implement a GRT. Those presented typically use the ser-
vices of other simpler classes describing their internal data structures or provid-
ing ”house-keeping” functionality.

Interactions Between GRT Components Figure 4 shows the main interac-
tions that occur between the major components of a GRT. For the sake of general-
ity, the GRT in question is assumed to support both distribution and persistence
and 1s hence distributed over multiple nodes and makes use of a POs instantiated
from Eeyore.

The LSRTs of supported languages usually invoke methods provided by the
GRT interface. This will typically result in the GRT interface invoking one of
the other components of the GRT, normally the Ns interface or oM. In the case

where the request from the LSRT is related to object management (for example,
requests to create or delete objects and requests related to object faulting), the
GRT interface calls the oM. The oM will typically use the services of the Ls, the
heap, or the POS to carry out the request. During object fault handling, the
request is typically forwarded to the Ls. The Ls may indicate that the object
should be retrieved from the Pos and mapped locally, return the object immedi-
ately, forward the request to the oM at the node where the object 1s located, or
raise an extent fault if the object may belong to a different extent. In handling
the request, the Ls will typically communicate with its remote peers who may, in
turn, need to upcall their local omMs. Thus, an oM typically provides a downcall
interface for use by the GRT interface and an upcall interface for use by the Ls
during object fault handling. Like the interface to the GRT, the interfaces to both
the oM and LS must be specialised depending on the approach to object faulting
supported. In addition, as a heap manager, the oM also provides an upcall inter-
face for use by the heap when heap space is exhausted. This interface typically
causes the oM to try to unmap some objects. The oM may use the CR to load
class code for newly created objects or objects that have been mapped recently
and 1s also the component that most commonly makes upcalls to GRT objects.
Finally, the oM may upcall the GRT interface — usually to convert a grREF to an
IREF or vice versa.

Both the cr and POs are potentially shared by different GRTs in different ex-
tents including GRTs of different types. Moreover, they are typically implemented
by distributed objects and are accessible from multiple GRTs using location-
transparent object invocation.

Figure b shows the interactions that occur between the major components of a
GRT that supports application-directed clustering. Such a GRT has an additional
component, its CLM, that is interposed between the oM and other components
such as the heap, Ls, and Pos. Requests related to clusters (for example, requests
to create or delete clusters) are passed by the GRT interface directly to the cim
while requests related to objects are still passed to the oM. A request concerning
some object might result in the oM making a corresponding request to the cLM
for that object’s cluster. Since the unit of location, mapping, and unmapping is
a cluster rather than an individual object, the CLM is responsible for interacting
with the Ls, Pos, and heap to resolve the request in much the same way as
the the oM is in a GRT that does not support application-directed clustering.
Resolving the request might require that a ¢LM make an upcall to its local om.
Like the interfaces to the GRT interface, oM, and LS, the interface to the cLM 1s
also specialised depending on the approach to object faulting supported.

& Status

At the current time, the design of the first complete version of the framework
has been completed and a number of instantiations are being implemented. [23]
describes the first Tigger instantiation implemented. The so-called T1 instanti-
ation supports an extension to C++ for distributed and persistent programming

GRT
Interface

Location
Service

H Locatl on
W
e SerV| ce

—> - object invocation
=2 W - network communication

Fig. 5. Interactions between parts of a GRT supporting application-directed clustering.

inspired by PanDa/C++ [1]. T1 is a single-extent Tigger instantiation layered
above UNIX that implements a single distributed and persistent address space
and supports DsM-style access to global and persistent objects. Object faults
are detected as memory protection faults. No swizzling is employed and vir-
tual addresses are used as grREFs. In addition, T1 supports application-directed
clustering.

Another Tigger instantiation is currently being implemented to support a
novel object model providing application-consistent DsM [10].

9 Summary and Conclusions

An object-support operating system may be described as one that has been de-
signed specifically to support object-oriented applications, especially distributed
applications or those that manipulate persistent data. Unfortunately, most ex-
isting object-support operating systems can support only a single language or
else severely constrain the way in which different languages can be supported,
in particular, by supporting only a single object model. In contrast, the Tigger
project undertook the design, not of a single object-support operating system,
but of a family of object-support operating systems whose members can be cus-
tomised for use in a variety of different application domains. The two primary

goals of this design were to allow members of the family to support (a number
of) different object models and to allow the same object model to be supported
in different ways subject to differing non-functional requirements. This design is
captured as a framework that can be instantiated to implement the individual
members of the family.

While framework technology is well-established and the use of frameworks
to implement customised operating systems is not new, the use of a framework
as the basis for implementing customised object-support operating systems is
novel. The Tigger framework provides a common basis for the implementation
of both single and multi-user object-support operating systems that support
a range of object-oriented programming languages for distributed and persis-
tent programming and encompass different non-functional requirements such as
heterogeneity or protection. While traditional operating system architectures
emphasise the distinction between the operating system kernel, which runs in
supervisor mode, and user-level servers and applications, which do not, the de-
sign of Tigger emphasises the orthogonality between protection and operating
system structure. Thus, the resulting framework encompasses both single-user
systems with no kernel and multi-user systems having a distinguished kernel.

Acknowlegdements

Thanks to Brendan Tangney, Neville Harris, Paul Taylor, and Alan Judge for
their many and varied contributions to the work described in this paper.

References

1. Holger Assenmacher, Thomas Breitbach, Peter Buhler, Volker Huebsch, and Rein-
hard Schwarz. PANDA - supporting distributed programming in C++. In Oscar M.
Nierstrasz, editor, Proceedings of the 7" European Conference on Object-Oriented
Programming, volume 707 of Lecture Notes in Computer Science, pages 361-383.
Springer-Verlag, 1993.

2. Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, Redwood City, CA, 1994.

3. Vinny Cahill. On The Architecture of a Family of Object-Support Operating Sys-
tems. Ph.D. thesis, Department of Computer Science, Trinity College Dublin,
September 1996.

4. Vinny Cabhill, Sedn Baker, Gradimir Starovic, and Chris Horn. Generic runtime
support for distributed persistent programming. In Paepcke [18], pages 144-161.

5. Vinny Cahill, Roland Balter, Xavier Rousset de Pina, and Neville Harris, editors.
The COMANDOS Distributed Application Platform. ESPRIT Research Reports
Series. Springer-Verlag, 1993.

6. Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, Frameworks and
Refinement. Computing Systems, 5(3):217-257, Summer 1992.

7. Distributed Systems Group. C** programmer’s guide (Amadeus v2.0). Technical
Report TCD-CS-92-03, Department of Computer Science, Trinity College Dublin,
February 1992.

8. Christine Hogan. The Tigger Cub Nucleus. Master’s thesis, Department of Com-
puter Science, Trinity College Dublin, September 1994.

9. Chris Horn and Vinny Cahill. Supporting distributed applications in the Amadeus
environment. Computer Communications, 14(6):358-365, July/August 1991.

10. Alan Judge. Supporting Application-Consistent Distributed Shared Objects. PhD
thesis, Department of Computer Science, Trinity College Dublin, 1996. In prepara-
tion.

11. Reinhold Kroeger, Michael Mock, Ralf Schumann, and Frank Lange. RelaX - an
extensible architecture supporting reliable distributed applications. In Proceedings
of the 9™ Symposium on Reliable Distributed Systems, pages 156-165. IEEE Com-
puter Society Press, 1990.

12. John McEvoy. E**: Porting the E database language to Amadeus. Master’s thesis,
Department of Computer Science, Trinity College Dublin, 1993.

13. Colm McHugh and Vinny Cahill. Eiffel**: An implementation of Eiffel on
Amadeus, a persistent, distributed applications support environment. In Boris Mag-
nusson, Bertrand Meyer, and Jean-Francois Perot, editors, Technology of Object-
Oriented Languages and Systems (TOOLS 10), pages 47-62. Prentice Hall, 1993.

14. Michael Mock, Reinhold Kroeger, and Vinny Cahill. Implementing atomic objects
with the RelaX transaction facility. Computing Systems, 5(3):259-304, 1992.

15. Karl O’Connell, Vinny Cahill, Andrew Condon, Stephen McGerty, Gradimir
Starovic, and Brendan Tangney. The VOID shell: A toolkit for the development
of distributed video games and virtual worlds. In Proceedings of the Workshop on
Stmulation and Interaction in Virtual Environments, 1995.

16. Darragh O’Grady. An extensible, high-performance, distributed persistent store
for Amadeus. Master’s thesis, Department of Computer Science, Trinity College
Dublin, September 1994.

17. Joo Li Ooi. Access control for an object-oriented distributed platform. Master’s
thesis, Department of Computer Science, Trinity College Dublin, August 1993.

18. Andreas Paepcke, editor. Proceedings of the 1993 Conference on Object-Oriented
Programming Systems, Languages and Applications. ACM Press, September 1993.
Also SIGPLAN Notices 28(10), October 1993.

19. Wolfgang Schroder-Preikschat. The Logical Design of Parallel Operating Systems.
Prentice Hall, London, 1994.

20. Marc Shapiro. Object-support operating systems. [FEF Technical Committee
on Operating Systems and Application Environments Newsletter, 5(1):39-42, Spring
1991.

21. Marc Shapiro. Soul: An object-oriented OS framework for object support. In
A. Karshmer and J. Nehmer, editors, Operating Systems of the 90s and Beyond,
volume 563 of Lecture Notes in Computer Science. Springer-Verlag, July 1991.

22. Pedro Sousa, Manuel Sequeira, André Ziquete, Paulo Ferreira, Cristina Lopes,
José Pereira, Paulo Guedes, and José Alves Marques. Distribution and persistence
in the IK platform: Overview and evaluation. Computing Systems, 6(4):391-424,
Fall 1993.

23. Paul Taylor. The T1 cub. Tigger document T16-94, Distributed Systems Group,
Department of Computer Science, Trinity College Dublin, November 1994.

24. Paul Taylor, Vinny Cahill, and Michael Mock. Combining object-oriented systems
and open transaction processing. The Computer Journal, 37(6), August 1994.

This article was processed using the INTpX macro package with LLNCS style

