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Abstract

Augmented reality and group communication in wire-
less ad-hoc networks form relatively new fields of research.
When using group communication ordering and timeliness
requirements are important. Moreover, when using wire-
less ad-hoc networks, the possibility of network partition
is a serious consideration. In this paper we explore these
three issues in the context of using group communication
to support mobile augmented reality applications. We de-
scribe a policy that enables us to handle partitions and fail-
ures, while allowing the members in a partition to make
progress, although limited by the application’s consistency
requirements. We introduce an approach to determining the
message ordering requirements needed to maintain a de-
sired level of consistency and timeliness requirements that
should be met in order to have the application state corre-
spond to the sequence of events perceived in the real world.

1 Introduction

“Shoot ’em up” style games like Doom and Quake have
become popular in recent years. Paintball, a real world out-
door “Shoot ’em up” game using paint-filled bullets, and
Quasar, an indoor game, which uses laser beams and sen-
sors on the players’ suits, have also become very popular.
This paper presents a summary of [8] in which we present
Flare, a framework for building augmented reality applica-
tions. The first application that we will build using Flare
will be a Doom-like game called Quazoom. It combines the
Doom experience with Quasar play to make an augmented
reality game where players move around in the real world,
while interacting with virtual and real players. Players will
see a Doom-like game on their screen, providing a virtual
representation of the real world. Their location in the game
will correspond to their real world position, determined

using Differential Global Positioning System (DGPS) and
possibly other sensors. Players can shoot other players and
pick up things like ammunition or medikits as in a normal
Doom game.
Quazoom will be run on wearable computers. A wireless ad
hoc network will be used for communication. This means,
in particular, that there is a higher probability of the network
becoming partitioned than in traditional networks. Players
may move in and out of network range. When this happens
we don’t want them to be dropped from the game, but to
allow them to make limited progress in the game. We de-
scribe our policy for handling these partitions in Section 4.
Players will communicate using a group communication
service providing reliable and timely message delivery and
offering several ordering primitives. They broadcast infor-
mation like their new position, or the fact that they have
fired their guns. In Section 3 we describe our approach to
determine the requirements on message ordering to main-
tain consistency in the design chosen for Flare. Finally,
Section 5 describes the timeliness requirements that must
be met to have the game state consistent with the events
perceived in the real world.

1.1 Quazoom game rules

Since Quazoom will be a Doom-like game, the function-
ality we will provide will be a subset of the functionality of
this kind of game. The rules here were chosen to explore
different sorts of consistency guarantees, not to make a fun
game. There are 3 different game objects: players, medik-
its, and flags. Players can move and shoot. Players move
around in the game by moving around in the real world.
When a player shoots, the first player in their line of fire gets
hit, and loses 50% of their health. When a player’s health
reaches 0, he is killed and the player that shot him gets a
point. The first player to reach a score of 3 points wins the
game. A dead player cannot do anything, or be shot, for 15
seconds. After 15 seconds, his health is reset to 100% and
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he can continue in the game.
There are medikits in the game. A player can pick these up
using a keyboard command, but only if he is within 2 me-
ters of the kit. Only one player is allowed to pickup a kit
at a time, after which it disappears for 30 seconds. The kit
replenishes the player’s health to 100%. Players can pick
up medikits even if their health is already at 100%. There
is a flag which the player can pick up or drop for a capture
the flag type game. The flag has an initial position. When
a player carrying the flag dies or leaves the game, it is reset
to its original position.

Partitions When a partition occurs some actions may be-
come impossible or limited. Players should always be able
to move around freely. They will also be able to shoot other
players in their partition, but not players outside of their
partition. Players in a partition will see a different graphical
representation for the players outside of their partition. Ob-
viously the position of those players will be frozen.
Two players in different partitions may pickup the same
medikit, but only one player may pickup a flag. We want
all players to agree on who won the game because this sig-
nals the end of the game. Therefore we cannot decide on
the winner when there is a partition. When a player reaches
three points in a partition, the other players in that partition
will not be able to win the game. When partitions merge
there may be more potential winners and we will use the
time on the local system clocks at which they were declared
winner of their partition to decide who won first.

1.2 Related work

Most publications on augmented reality address tracking
and display problems. An overview is given in [1]. The
communication problems involved get much less attention
from an augmented reality perspective. Related work on
group membership and proximity in mobile networks can
be found in [6, 9]. A survey of other group communica-
tion services, and a formal specification of their properties
is given in [3]. Other work on partitionable group commu-
nication can be found in [4, 2]. Much work has also been
done in the context of the Transis system, for instance in
[5]. Work addressing similar timeliness requirements using
timestamps is reported in [10] and on causal ordering and
timeliness in [11].

2 Flare design

Since Quazoom is a game application, users are bound to
disconnect suddenly if they get bored with the game. The
use of mobile computers and wireless networks also makes
failures and network partitions likely. To allow the game
to progress as much as possible in this environment, the

Poap 1 Poap 2 Poap 3

Game rule A Game rule B

Group communication

Input

Broadcast events

Figure 1. Flare design

game state will be fully replicated on all nodes, and the
game will use producer/consumer communication instead
of the client-server model that is common for these games.
A client-server model would be unsuitable because nodes
that lose contact with the server cannot make progress and
if the server failed the whole game would stop.
The three main concepts in the design of Flare are messages
that are broadcast in the group, game rules that respond
to messages, and the application state, which we split into
things we call poaps (Part Of APlication state).
Whenever an event occurs at some node, that node sends a
message to the group to notify the other nodes. Poaps will
only be updated as a result of receiving messages from the
network. So even the node that generates the event will wait
until it receives its own message before updating the appli-
cation state. This is shown in Figure 1.

2.1 Consistency

To allow the players to make progress the group com-
munication API will support non-blocking communication
even when the network is partitioned, delivering messages
to the partition in which the sender is located instead of the
whole group. The group communication service will also
inform the members of the state of the group, providing
them with new group views which contain a list of members
in the current partition and a boolean indicating whether
there may be other members outside of the current group
view. So when a member receives a message, it knows
which other members will also receive that message and can
use this information to maintain consistency.
When a member receives a message and a game rule de-
cides that based on the group status and poap consistency
requirements it cannot perform the associated update, it will
discard the message. Because all members have the same
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Poap Consistency

Player position, health, score Primary copy
Bot position, health Primary copy
Medikit status Inconsistent
Flag location Primary copy
Winner Consistent

Table 1. Consistency levels for poaps in Flare

group view (we assume same view delivery [3]), all mem-
bers in that partition will discard the message.
Having replicated data means that we need to formulate
consistency requirements. The easiest choice would be to
require all nodes to have a consistent view of the game, but
this cannot be guaranteed in a partitioned network without
blocking the game. Since we want to make progress in the
presence of partitions, we will define different levels of con-
sistency. We will decide whether we can update a part of the
game state based on the group status and that part’s consis-
tency requirement.

Consistency requirements Because the group communi-
cation service provides different ordering guarantees two
members may receive messages in a different order. When
two members in a single partition haven’t yet received the
same set of messages, we don’t mind if their states are dif-
ferent. We want the copies of a poap on members that have
received the same set of messages to be consistent.
For copies in different partitions we may want to forfeit
some consistency for some poaps to allow the application
to make progress, while other poaps will have strict consis-
tency requirements. When partitions merge, all copies will
be made consistent again. We have identified three different
levels of consistency we want to allow between partitions:

1. Inconsistent: we will allow the state in partitions to
diverge. When partitions merge again, this will require
a poap-specific merge function.

2. Primary copy: we will allow writes in the partition
containing some primary copy (defined by the appli-
cation) of the poap, so copies in other partitions may
be outdated. For some poaps it may be allowed to read
old data, for others this may not be allowed. Members
that have access to the primary copy can always read
and write. When partitions merge, the primary copy is
simply copied over the outdated ones.

3. Consistent: we want every copy to always have the
same state. When partitions merge the state will still
be the same, so no action is necessary.

Poap 1 Poap 2 Poap 3

Game rule A Game rule B

Group communication

message_type

message_type

message_type:Poap1(O)        Poap2, Poap3

Figure 2. Message type signature example

Now that we have established the different consistency
levels, we need to associate a consistency level with each
poap in Quazoom. From the rules in Section 1.1, we de-
duced a set of poaps and their consistency requirements as
shown in Table 1.

3 Message ordering

In this section we examine the message ordering require-
ments we need to guarantee the consistency requirements
described previously.

3.1 Definitions

Upon receiving a message, the game rules may update
a number of poaps. For deciding if and how to update a
poap it may use other poaps as input. A game rule may
also decide to send another message in response to the one
it received.

Message signature We introduce a notation for writing
the effects of a message:

msgT (data) : msgTIn! msgTOut

with

msgTIn = fpk; :::; plg and msgTOut = fpn; :::; pmg

Which means that as a result of a message of type msgT ,
the game rules may update poaps pn; :::pm, basing the value
for the update on poaps pk; :::; pl and on the data in the
message. This is illustrated in Figure 2. The illustration
shows a message which is associated with two game rules.
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Message types Using this signature, we can split the mes-
sages into 3 types:

� msgT (data) : ; ! msgTOut: Unconditional up-
dates. Messages that don’t require any input poaps.

� msgT (data) : msgTIn ! ;: Conditions. Messages
that don’t update any poaps, but may cause another
message to be sent.

� msgT (data) : msgTIn ! msgTOut: Conditional
updates. Messages that have input, and update poaps.

3.2 General consistency rules

Output For output consistency, we are only concerned
with update type messages, since these are the only ones
that write to poaps. Now for each poap px, we can define a
set of message types that write to this poap:

update(px) = fmsgT : px 2 msgTOutg

To maintain the required consistency all messages in such
an update set must be delivered in the same order every-
where.
It is easy to see why. If there are two nodes who receive
messages from an update set in different orders, then at
some point, they may have received the same set, but since
the last message they have received could be different, they
can have different values for some poaps, thus violating our
consistency requirement.

Input When the messages of an update set arrive in the
same order at every member, we still need to make sure
they actually write the same values, which was assumed in
the previous paragraph. To do this, we need to look at the
different input types. There are 3 types of data the members
could use as input:

� Data contained in the message’s data part.

� Poaps

� Local data: anything not in the message or in a poap
(for instance a randomly generated number)

Which message type can use which input types? The data
in the message will be the same for every member, so all
types can use this data. We do not enfore the consistency of
local data, so updating poaps based on local data can lead
to inconsistency. We therefore restrict the use of local data
to condition type messages. Poaps are, by definition, only
used by conditions and conditional updates.
Now, since conditions don’t update poaps, and uncondi-
tional updates only use data in the message, we have no

consistency concerns for these messages. But the condi-
tional update type message can cause problems if the input
poaps are not in a consistent state when the conditional up-
date is processed. This can be the case given our consis-
tency requirements, if some nodes have and others haven’t
yet received some update for a poap when a message that
reads that poap is delivered.
We define a read set for poap px, similar to the update set:

read(px) = fmsgT : px 2 msgTIn^msgTOut 6= ;g

This is the set of all conditional update message types that
use px as input.
To ensure that members use the same input values when the
message is processed, and therefore write the same output,
we require that any message of a type in update(px) is de-
livered to all or none of the members when a message of a
type in read(px) is delivered.

Rule specific relaxing of requirements When we know
the semantics of the application rules the message will trig-
ger, we may be able to relax these requirements. For in-
stance, if we know the message type msgRel(data) :
fpxg ! fpxg just takes the current value of px and in-
creases or decreases it by a given amount, it is clear that the
result of a given set of messages in any order will be the
same.

3.3 Relation to ordering primitives

If we forget about the rule specific optimizations, we
can say that the set of messages update(px) should be to-
tally ordered to ensure output consistency, and if the set
update(px)[read(px) is totally ordered, input consistency
is guaranteed. Note that this is a stronger than strictly re-
quired because a set of messages in read(px) may be deliv-
ered in any order as long as no message from update(px)
is delivered in between.
If we use total ordering, all members receive exactly the
same set of messages and will therefore always be consis-
tent. The interesting question is, in which cases we can use
the cheaper FIFO ordering.
We count the number of members that can send messages
from update(px)[read(px). If this is 1, we call px a local
poap, if it is greater than 1, we call px a global poap.
Using this, it is easy to see that for global poaps, using total
ordering for update(px) [ read(px) makes sure the set is
totally ordered, but for local poaps, using FIFO ordering
will also make sure the set is totally ordered.
There is actually no ordering requirement on the mes-
sages in read(px), it is sufficient that if a message x from
read(px) is delivered at some node, and the last message to
be delivered there from update(px)was y, then everywhere
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y should be the last message delivered from update(px) be-
fore x is delivered. So for global poaps we could also use
FIFO or no ordering for read(px) if we use a flush proto-
col, flushing all messages from read(px), before a message
from update(px) is delivered. It will depend on the output
ordering requirements of the messages in read(px) and the
ratio between reads and writes if this is advantageous. In
most cases it won’t be.
Things get a bit more complicated when a message type is
in different sets. For instance a message type T that reads a
local poap pn, writes to a global poap pm. FIFO ordering
would suffice for pn, but we need total ordering for pm. In
this case the message should be both totally ordered with
the other totally ordered messages in the system and FIFO
ordered with the other FIFO messages the member sends. If
such a totally and FIFO ordered primitive is not available,
we either need to think of different messages to achieve
the same effect, or use total ordering on all messages in
update(pn) [ read(pn) as well.

3.4 Ways to eliminate conditional updates

The previous section shows that conditional update types
can lead to expensive ordering requirements. There are two
ways to eliminate the conditional update type messages:

1. Packing the input poaps’ values in the message. This
makes it an unconditional update type message, but
this may not be possible because of the application
rules.

2. Making a single node responsible for making the de-
cision. This results in a condition type message, after
which the responsible node may send an unconditional
update type message.

Which of these types is appropriate depends on the message
signature and the application rules. For instance, if the mes-
sage signature has the same poap in the input and output set,
although the first method would ensure consistency, it may
result in incorrect behaviour.

An example of this is picking up the medikit:
medikitP ickup(playerPos) : fmedikitStatusg !
fmedikitStatus; playerHealthg, where if we would pack
the medikit status in the message, two players could pickup
the same kit.

3.5 Example

We give a short example to see how this works in Qua-
zoom. In this example we only consider player movement
and players picking up a medikit. First let’s just consider
player movement. There will be a move message type with

the following signature:

move(newPosition) : ; ! fplayerXposg

This is an unconditional update type. The
read(playerXpos) set now contains this message type and
the update set is empty. Since players only send updates
of their own position, there is only one member sending
messages in update(playerXpos) [ read(playerXpos),
and playerXpos is a local poap. This means we can use
FIFO ordering for this message.
Things get more complicated when we add the medikit
pickup message. This message is sent whenever a player
tries to pickup the medikit, and depends on the status of
the medikit and the player’s position. A message like the
following seems appropriate:

medikitP ickup()fplayerXpos;medikitStatusg!

fplayerXhealth;medikitStatusg

The poap playerXhealth is a local poap like the
position poap, but since any player can pickup the
kit, medikitStatus is global, which means we
need to use total ordering. With this new message
update(playerXpos) [ read(playerXpos) becomes
fmove;medikitP ickupg and we need to make sure this
set is totally ordered. If medikitP ickup is sent using total
ordering and move using FIFO, this depends on whether
we have a total ordering that respects FIFO as well. If it
does, there is no problem, if it doesn’t we have to use total
ordering for the movement as well, which is expensive.
We can use one of the techniques in the previous section
and change the message to

medikitP ickup(playerXpos)fmedikitStatusg!

fplayerXhealth;medikitStatusg

Now there is only one message in update(playerXpos) [
read(playerXpos), and we can safely use FIFO for the
movement message.

4 Partition and failure handling

This section describes the policy we developed to handle
partitions and failures in Flare. We will allow both failures
and partitions occurring at the same time (failure will be a
likely cause of partitions) and the splitting and merging of
partitions may also occur at the same time (for instance a
node moving from one partition to the other).
When we allow both partitions and failures, we encounter
two problems.

1. When a group becomes partitioned, all nodes in a par-
tition may fail, which makes it very hard to determine
whether there may still be members outside of the cur-
rent partition.
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Figure 3. Preemptive partition anticipation

2. When we lose contact with a node, it is impossible to
tell if this is because of a partition or because it has
failed.

4.1 Partition anticipation

We will handle partitions and failures in Flare using a
combination of partition anticipation and traditional major-
ity methods. In [9] a method is described to anticipate par-
titions in wireless networks using a safe distance based on
network card range and the speed of the user. Several other
concepts like coverage estimation, network topology, signal
strength information and battery life could also be used to
predict partitions.
We assume to have a partition detector that will inform the
group communication service that a partition is likely to oc-
cur. We will then preemptively partition the network. We
call a preemtive partition a logical partition. The applica-
tion will not be able to communicate when there is a logical
partition, but when there is a logical, but no physical par-
tition, the group communication layer will be able to com-
municate. When the partition anticipation function deter-
mines the risk of partition is gone, the partitions will merge.
The preemtive partitioning is illustrated in Figure 3, merg-
ing works in a similar way.

Limitations Note that this anticipation function can never
be sure that the partition will really occur. In Figure 3, par-
tition B might turn around and in that case the preemptive
partition was unnecessary. So we sacrifice some connectiv-
ity for time to have all nodes agree on the partition. The
number of unnecessary partitions will be a measure of how
well our anticipation function performs.
The anticipation function will never be able to anticipate
all partitions, so there will be unanticipated partitions. We
expect the majority of these partitions to be partitions of
types that occur in fixed networks as well, instead of par-
titions caused by mobility. However the tuning of the par-
tition anticipation function may cause more unanticipated
partitions. We can probably (depending on how it is im-
plemented) make the anticipation more optimistic or pes-
simistic, resulting in either more unanticipated partitions,

or more unnecessary logical partitions. How unanticipated
partitions are handled is described in Section 4.4.

4.2 Timeout

Because all nodes in an anticipated partition may leave
the group or fail, which can cause the members in the group
be stuck in the partitioned state forever, we set a timeout on
the anticipated partitions. When the anticipated partition is
formed, there is some negotiation going on, and during this
phase, we will assign a ’main partition’. When a member
doesn’t merge with the main partition within a certain time-
out period, it is considered to have failed by the main parti-
tion. Both the main partition and the member can time this
themselves, and with reasonably accurate clocks will draw
the conclusion at more or less the same time. We set the
timeout on the non-main partition sufficiently shorter than
in the main partition, so we know the members will declare
themselves failed before the main partition does.
When the main partition is split again, the nodes that split
off will have the same timeout period, and will therefore
timeout at a later point in time. There will only be one
main partition and the only way for a non-main partition to
avoid the timeout is to reestablish contact with the main par-
tition. If partitions never meet again, the membership will
eventually be reduced to the main partition. The main par-
tition should therefore be chosen in such a way as to ensure
maximum probability of survival for the group. This will
probably mean selecting the partition containing the most
nodes, although other factors like battery life and connec-
tivity could be included in the decision as well.
Note that this solves the first problem we identified above,
at the cost of having members leave the group because of a
timeout. The timeout period is a parameter of the policy and
can be set to anything from 0 to1 according to application
requirements.

4.3 Joining the group

To join the group a node must be in a partition with at
least one member of the group. It can join whether the group
is in a partitioned state or not.
When a node joins at a non main partition it needs a timeout
time. This will be the latest timeout time of all members
in the partition where it joins. A shorter time is pointless
because the main partition will not be able to determine the
group is unpartitioned before this time, and a later time isn’t
safe because then the main partition may decide the group
is unpartitioned while the new node is still a member.

4.4 Unanticipated partitions

Although we hope the partition anticipation will take
care of most partitions, there will still be unanticipated par-

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02) 
0-7695-1558-4/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 7, 2009 at 03:59 from IEEE Xplore.  Restrictions apply. 



Player A

a

Normal communication channel

Hidden channel

Wireless network

Player BPlayer C

b

d d a d

cc
b

c

Figure 4. A hidden channel

titions and failures. In both of these cases the only thing we
notice is that contact is lost with the nodes. When we unex-
pectedly lose contact with one or more nodes, we call this
an unanticipated partition. In this case, neither partition has
a way of knowing if the other is still alive.
When an unanticipated partition occurs, the majority parti-
tion, based on the number of nodes, assumes the other nodes
have failed, and they are dropped from the group. Since all
partitions can determine with how many nodes they can still
communicate, they can independently decide if they are the
majority partition or not. If they are not, they know the ma-
jority will have dropped them from the group, if they are,
they will drop the minority from the group.
Note that regarding any unanticipated partition as a failure
for the minority partition has ’solved’ the second problem
we identified. We no longer need to determine whether a
partition has occured or a failure, because our only notion
of partitions are anticipated partitions. The price we pay for
this is dropping some nodes when an unanticipated partition
occurs. Again, the better our partition anticipater functions,
the less this will happen.

5 Timeliness

This section discusses what the timeliness requirements
are to ensure the order of events in the game matches what
is observed in the real world. Events in the real world are
observed through a ’hidden channel’, which is a channel
through which information about events is sent outside of
the system.
In the case of Quazoom, this will probably be vision. In
Figure 4, we see two players shooting at each other. When
a player physically shoots, this information is registered by
his computer (a), and sent over the network (b). When it is

received back (c), the outcome of the shooting is determined
and rendered, and the player sees this on the screen (d). This
is the normal communication channel. The players can also
see other players through the hidden channel. For example,
they will see A shooting at C first, then B. They will visu-
ally see other players pull their triggers, in some sequence of
events. From this they form an expectation of what should
happen in the game. If something different happens in the
game, for example, B gets the point for killing C, the game
will seem to be malfunctioning.
We want the events that are observed in the real world to
match those in the game. The important thing to realize here
is that we are only interested in how the events are observed,
not in the sequence in which they actually took place. Given
infinitely precise observation, an observer could always tell
the sequence in which two events occur, but since such ob-
servations cannot be made, we should examine how the ac-
curacy of the observation is related to the timeliness require-
ment.

5.1 Definitions

The four main measures that will be of importance are:

T hc
min

, T hc
max The minimum and maximum time before an

event can be perceived through the hidden channel.

Tnet
min

, Tnet
max

The minimum and maximum time before in-
formation about an event can be delivered through the
network.

�o The minimum time between two events being perceived
through the hidden channel required for an observer to
be able to tell the sequence in which they occurred.

�r The minimum time for a player between perceiving an
event through the hidden channel and responding to
that event.

We derive two uncertainty measures from this

�hc = T hc
max � T hc

min The uncertainty of the delivery time
through the hidden channel.

�net = Tnet
max � Tnet

min
The uncertainty of the delivery time

through the network.

And we define symbols for important points in time

tn The time at which event n occurred.

thcn The time at which information about event n was per-
ceived through the hidden channel.

tnetn The time at which information about event n was de-
livered through the network.
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Finaly, lets define what we consider the ’correct’ delivery
order:

� Events which are perceived in a certain sequence by
any observer, must be delivered in the same sequence
on the network.

� Events which are perceived to be concurrent can be
delivered in any order.

5.2 Temporal ordering

For Quazoom, the hidden channel will most likely be
vision, so the speed of light determines the propagation time
and we can assume �hc = 0. We will first examine this
case, and then look at the more general case when�hc > 0.

5.2.1 Case 1: �hc = 0

Our goal here is to determine the criteria that must be met
in order to assure that two events perceived in sequence
through the hidden channel are processed in the same se-
quence on the normal network. First lets introduce a defini-
tion from [10]:

Æt-precedence order(
Æt!): An event a is said to Æt-precede

an event b, a
Æt! b, if tb � ta > Æt.

Assume two events a and b with thca < thc
b

. We only care
about the case when thc

b
�thca > �o, which implies tb�ta >

�o when �hc = 0. So the message delivery should respect

the a
Æt! b ordering, with Æt = �o. This is shown in Figure

6 .

Criteria for Æt-precedence What are the criteria for mes-
sage delivery times in order to guarantee that the delivery
will respect Æt-precedence? Obviously the more time be-
tween events, the easier it is to order them properly, so from
here on we will examine the worst case. This is when the
time between events is Æt, tb � ta = Æt, the first messages
takes T net

max to deliver and the second T net
min. This is illus-

trated in Figure 6. In this case

tneta = ta + Tnet

max

tnetb = tb + Tnet

min

tb = ta + Æt

) tnetb = ta + Æt + Tnet

min

we want tneta < tnetb

) ta + Tnet

max < ta + Æt + Tnet

min

) Tnet

max � Tnet

min < Æt

) �net < Æt

thc
bta

hc

ta tb

µ
o

µ
o

δt =

Observer

Figure 5. tb � ta = thc
b
� thca when �hc = 0

ta
net

tnet
b

Tnet
min

Tnet
max

ta tb

t
δ  , Θhc

Observer

Figure 6. Worst case for delivery of messages

So if the uncertainty in the message delivery time is smaller
than Æt, the delivery will respect Æt-precedence. Since in
this case Æt = �o, the timeliness requirement becomes
�net < �o. The uncertainty in the message delivery time
needs to be smaller than the observer accuracy.

5.2.2 Case 2: �hc > 0

Now lets examine what happens when the propagation de-
lay on the hidden channel is not constant. Again the worst
case is when the two events occur with the minimal amount
of time such that an observer may be able to tell the order.

thc
bta

hc

Thc
min Thc

max

tbta

µ
o

δ
t

Observer

Figure 7. Worst case for temporal ordering
with �hc > 0
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From Figure 7 it is clear that the time between events so that
an observer may see the order is now smaller. It is small-
est when the first event is propagated in T hc

min
time through

the hidden channel and the second event with T hc
max time,

since this maximizes the period between delivery times on
the hidden channel. In that case

thc
b

= thc
a
+ �o

thca = ta + T hc

min

thcb = tb + T hc

max

) tb + T hc

max = ta + T hc

min + �o

) tb = ta + �o ��hc

We only care about the case when thc
b
� thc

a
> �o, which

implies tb�ta > �o��hc. So the messages should respect

the a
Æt! b ordering, with Æt = �o��hc. From our previous

result we know that this is the case when �net < �o��hc.
So the result is that the limit on the uncertainty of delivery
time on the network has been brought down by the uncer-
tainty on the hidden channel.

5.2.3 Case 3: �hc > �o

The previous result implies that if �hc > �o, proper or-
dering cannot be guaranteed. This makes sense, because
it implies Æt-precedence should be respected with Æt =
�o��hc < 0. Æt-precedence doesn’t make sence for a neg-
ative Æt: two events a and b, could now have tb � ta > Æt

and ta � tb > Æt, implying a
Æt! b and b

Æt! a!
It is also intuitively correct because the uncertainty of de-
livery times on the hidden channel is now greater than the
observers accuracy. This means that two events may be seen
in reverse order, while this couldn’t happen in the case when
�hc � �o. Clearly, if the events may be delivered out of or-
der on the hidden channel, and the system has no knowledge
of the channel, it can never guarantee the messages on the
network are delivered in the correct order.

General effect of �hc on the perceived order: Events
may be delivered in the wrong order on the hidden chan-
nel if they are less that �hc apart (ta > tb � �hc, Figure
8.a). Whether they are perceived in the wrong order on the
hidden channel depends on the arrival time. The maximum
difference in arrival times of two events a and b arriving
in the wrong order, with tb = ta + Æ, is at most �hc � Æ.
This happens when the first event, a; is delivered with max-
imum delay T hc

max, and the second event with minumum de-
lay T hc

min
(Figure 8.b).

So it is easy to see that if�hc < �o, then the maximum time
between events arriving out of order on the hidden channel
�hc�Æ is also smaller than �o, and the events are perceived
to be concurrent. This means that with enough certainty on

ta
hc

ta

tb

δ
t

µ
r

Thc
min

Observer

Figure 9. Minimum time between events
needed for a causal relation.

the delivery delay on the network, we can make sure that
the events are processed in the correct order.
For any two messages perceived with� time inbetween, we
can say that they occurred with � ��hc to �+ �hc time
in between.

5.3 Causality

To ensure causality, we can take the same approach
again. Two events a and b, with ta < tb, can be causaly
related when a was perceived by the player sending b at
least �r time before tb. From Figure 9 it is clear that the
minimum time between a and b for a causal relationship is
T hc
min

+�r. So if we apply our result for Æt-precedence with
Æt = T hc

min
+ �r, we see that causality is respected when

�net < T hc
min

+ �r.

6 Summary and conclusions

In this paper we explored three issues that arise when
building augmented reality applications supported by group
communication on a wireless ad-hoc network. A policy was
presented that allows members to make progress in a par-
titioned network while maintaining a certain level of con-
sistency. It does not need to distinguish between physical
partitions and failures to do this, and will eventually re-
cover from its partitioned state. We also described an ap-
proach to determine the requirements on message ordering
to maintain consistency and on timeliness to have the appli-
cation state reflect the perceived sequence of events in the
real world.
Using the formal method employed in [3], we have com-
pleted a formal specification of our group communication
service [7]. At this stage, we are beginning our implemen-
tation of the various parts described in this paper. An algo-
rithm for deciding whether the group may be partitioned or
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ta
hc

thc
b

Thc
max

Thc
min

hcΘ

thc
b ta

hc

Thc
min

hcΘ    − δ

Thc
max

tbta ta tb

(a)

Observer

(b)

δ

Figure 8. Events happening more than �hc time apart are delivered in order, events perceived less
than �hc time apart may be perceived in the wrong order.

not can be found in [8]. As mentioned before, the partition
anticipator forms a vital part of our policy. There is much
work to be done in the area of partition anticipation. Many
potentially useful sources of information need to be evalu-
ated in order to build a reliable anticipator. This should be
configurable to be more optimistic or pessimistic depending
on application requirements.
Once Quazoom has been implemented, other applications
should be examined to see how well our policy suits them.
Although we think the requirements we identified and the
policy we developed are quite general, this should be tested
by looking at other applications.
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