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Abstract

This paper presents YABS, a novel domain-specific language f
defining entity behavior in pervasive computing environteefhe
programming model of YABS is inspired by nature and, in garti
ular, the observations made by the French biologist Grass®w
social insects coordinate their actions using indirect momica-

tion via the environment, a phenomenon that has become known

as stigmergy. Following this approach yields a simple ygires-
sive language that abstracts the complexities of dealing thie
variety of underlying technologies typical of pervasivenmuting
environments and that facilitates the incremental conttrm and
improvement of solutions while providing high-level cansts for
defining the behavior of entities and their coordination. $lew

how YABS has been used to program a number of pervasive com-

puting applications both deployed and simulated.

Categories and Subject Descriptors D.3.2 [Programming Lan-

dinate their actions using indirect communication via their®n-
ment. Holland et al. [22] showed that this phenomenon, wiich
known asstigmergy{20], provides a mechanism that allows the en-
vironment to structure itself through the activities ofiges within
the environment. The state of the environment and the cudien
tribution of the entities within it, determines how the eviment
and the entities will change in the future. The result is dlyigle-
centralised mechanism for coordinating the behavior dfieathat

is both robust and extensible.

YABS provides high-level abstractions designed to allowetle
opers harness the same coordination mechanisms used bliseci
sects to develop pervasive computing environments. Thevapp
is encapsulated in a framework that is designed to both stippd
complement the use of stigmergy, allowing for the increrakcan-
struction and improvement of solutions and aiding the acldwon-
position of pervasive computing environments. It employdisa
tributed event-based architecture organised in a pepe¢o-fash-

guage§ Language Classifications—Specialized application lan- ion so that individual entities are decoupled from eachroif#sBS

guages
General Terms Design, Languages.

Keywords Pervasive Computing, Stigmergy.

1. Introduction

The physical integration of computers into the real worldrig of
the main challenges of pervasive computing. Kindberg ef2al]
argue that to address such a challenge requires the pnowigio
high-level abstractions that allow components to senserdachct
with the physical environment without the difficulties ofatiag
with low-level devices such as sensors and actuators. $rptgper
we present one such abstraction in the form of a domainfpeci
language, called YABS. YABS abstracts the complexitiesexld
ing with the underlying technologies to provide a mechanism
defining the behavior of autonomous entities in a pervasbra-c
puting environment and their coordination.

is used as a meta-level language to define the behavior efdidi
entities and, implicitly, to specify how they are to coorati& their
behavior within the environment. A base language is useéfioel
the sensors and actuators used in the framework. In thig pape
focus on the design of YABS. A more detailed description @& th
framework, which is called Cocoa, and the low-level abstoas
that it provides can be found in [3, 4].

As a domain-specific language YABS provides a simple yet
expressive language for defining and coordinating entibabmr
that would otherwise be more difficult to express with a geher
purpose language. Specifying such a language ensureshihat t
right level of abstraction can be found between the undaglyi
technologies and the high-level abstractions sought fopttysical
integration of computers into the real world. The approalsio a
assists in the rapid development and the reuse of components

The paper is organised as follows: in section 2, we outlige th
domain of pervasive computing, describing the challendedee
veloping such environments and how using stigmergy canreid i

The inspiration for the approach stems from the observation their development. The YABS language is described in se@io
made by the French biologist Grassé on how social insects coo Section 4 provides details of a number of pervasive comguejm
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plications, both deployed and simulated, that have beeelojesd
with YABS. Section 5 looks at some of the related work in thilfie
Finally, section 6 presents conclusions and future work.

2. A Stigmergic Approach

In this section we outline some of the challenges of devalppi
future pervasive computing environments and consider hewise
of stigmergy can aid in their construction.



2.1 Pervasive Computing

Technology for pervasive computing is reaching a point wher
it is becoming possible to convert many everyday envirortmen
into interactive spaces. For example, in education it isduse
support students attending lectures [1], in offices to tagiskers
in meetings [24] or in group collaboration sessions [36hds also
been used in scientific laboratories to support the work iehgists
[21], and in the home to ensure the efficient usage of rese(2Tg.
In addition, pervasive computing has also been used to suhm
elderly in the home [28].

Typically, these types of interactive spaces have beemydedi
from the ground up to support the anticipated needs of thesrau
and to evaluate the technology deployed in the space. Thwanv
ments are usually preinstalled and maintained over thegbeni
which they are in use. However, as Edwards et al. [17] poifitibu
is unrealistic to expect all pervasive computing environta¢o be
constructed in this manner. They believe that physical epace
more likely to evolve accidentally into pervasive compgtenvi-
ronments as technology is incorporated into the space.b¢irgdet
al. express a similar view in [25] where they argue that pEvea
computing systems will tend to form accidentally over theliam-
to-long term. A recent study [37] also draws the same coiahss

This would suggest that pervasive computing environments

need to be assembled in a more ad-hoc fashion than has psigviou
been the case. Current approaches to pervasive compusteyrsy
design do not readily apply themselves to this form of dgwelent.
They appear to be more conceptually centralised approabhes
focus their efforts around coordinating the resources etiic
geographical locations. For instance, in the Stanfordréatése
Workspaces project [24] all interactions for the iRoom eowi
ment are mediated through the iROS system, which is redplensi
for managing the resources at that particular locationoésdnot
allow the ad-hoc interaction and coordination of composanto-
cations other than those that have been predetermined agic wh
the system has already been installed. While this methodwosayy
well for developing pervasive computing environments frtm
ground up it would be less appropriate to composing enviemm
in the more ad-hoc manner anticipated by Edwards et al. [17].

In this form of development pervasive computing environtaen

emerge from spaces through the migration and accumulafion o

technology at a particular location. There is no master [ttt
guides the development or any expert overlooking the cocistn

of the environment. It evolves through ordinary people mgwand
integrating new technology into a space. Where an envirotme
emerges depends totally on how the occupants arrange theotec
ogy. Unlike, for instance, Aura [18] or Gaia [33] the ins&ibn

of a pervasive computing system into a physical locationotsan
prerequisite for the environment to form or to operate as¢hio-
cations. For these types of environments devices and apipls

need to be able to spontaneously interact at any time andyat an

place without having to mediate their behavior through are¢n
authority at each specific location.

In allowing environments evolve in an ad-hoc fashion it nsake
it possible for them to emerge at hotspots of activity whesersi

require and want to use them and so give an illusion that they tions.

are always available. Kindberg et al. [25] observe thatugio

The system software for managing such an environment needs
to take a different approach than has otherwise been deeated n
essary. In these types of environments the components eefgvi
physical artifacts, software components, and serviceat-dbm-
prise the system must be organised in a highly decentratised
ner. Unlike many other systems [18, 24, 33] there should beene
tral component in the environment to manage access to @sour
or coordinate how different components in the environmeteract
with each other or with those using the environment. The eaemp
nents are in fact the system and as such have to be able to spon-
taneously interact with each other to coordinate their biehan
a distributed manner. The environment can be though of a$a co
lection of interacting components that through their ad-imter-
actions can form a pervasive computing environment capable
providing services for those occupying the environment.

In order to support the ad-hoc composition of pervasive com-
puting environments in this manner we have identified a nurobe
requirements necessary for development.

R1: Support the physical integration of components into the en-
vironment. It is important to abstract the complexities of dealing
with the real world to ensure that components can easily tee in
grated into the physical environment.

R2: Support the autonomy of components. Each component
should be an independent entity with the ability to move tigio

the environment unrestricted. It does not depend on oth@apoe

nents to operate and is responsible for managing and cauirain
its own behavior within the environment.

R3: Support spontaneousinteroperability between arbitrary com-
ponents. It has be to assumed, due to the accidental manner in
which these environments form and the heterogeneous rettire
components that comprise them, that components will hatte li
prior knowledge of the other parts of the environment withialih
they will interact. Consequently, it is important that camnpnts be
able to discover and spontaneously interact with each .other

R4: Support the decentralised coordination of component behav-

ior. To ensure that a large collection of autonomous components
can form a coherent environment it is necessary to be able-to ¢
ordinate their behavior. As a centralised approach is rasilie it

is necessary to provide a decentralised mechanism for ic@irty

the behavior of components within the environment.

R5: Provide a scalable solution.  With the expected large num-
ber of components it can be assumed that, as these envirtmmen
grow, the intensity of interactions will increase with thenmber of
components and users inhabiting the space. Thus, scalabibf
particular concern for these types of systems.

R6: Ensuretherobust behavior of the system.  In pervasive com-
puting failure is considered to be a norm and not an excepitias
therefore necessary for a system to be able to absorb thelyinde
changes to ensure the environment can behave in a robustrfash

R7: Support incremental construction and improvement of solu-
In developing the environments described above it has to be
expected that they will evolve incrementally over a peribtiroe.

the inclusion of new technology or the rearrangement of what It cannot be assumed that an environment of this nature cde-be
is already there that new usage models can be adopted by theveloped or installed in one go. Itis therefore necessarjldavahe

occupants. The environment continuously changes and sdapt

how those in the space use it and rearrange the technology. It
is not bounded by the same constraints normally imposed on a

system specifically designed to operate at a particulartimta

it changes as users move technology into or out off the space.

Changes may occur slowly over a period of time or at a muclkeffast
rate depending on how the space is being used.

incremental construction and improvement of solutions.

R8: Mohility. With the expected migration of technology and the
anticipated movement of users it has to be assumed thatuliére
be a high degree of mobility.

R9: Adaptability. It must be assumed that the mobility of users
and technology will lead to a situation where the environtign



continuously changing. To overcome this situation it isessary
for components to adapt their behavior to use whatever itaia
in the immediate environment.

2.2 Stigmergy

In 1959, the French biologist, Grassé observed that satsakcis
could coordinate their actions through the environmentaeuit
having to directly communicate with each other. They do tisis
ing a phenomenon known asigmergy[20]. He also noticed that
the local interactions between insects resulted in the ganee of
colony-wide behavior. Holland et al. [22] showed that stiygy
provides a mechanism that allows the environment to streiétu
self through the activities of the entities within the eoviment.
The state of the environment, and the current distributibers
tities within it, determines how the environment and theitierst
will change in the future. This approach provides a robusif; s
organising environment, which allows entities to coorténgneir
behavior in a highly decentralised manner. It is importangttess
that individual entities have no particular problem sofyvkmowl-
edge, and that coordinated behavior emerges due to theactio
the society. It also worth noting that while no direct comiication
is used between individual entities, communication id stéin-
tained through the medium of the environment.
The trail-laying and trail-following used by many specids o

The constant interaction between components of a pervasive

puting environment also ties in neatly with how social irisen-

teract with each other. A colony of social insects are in maays

very similar to a pervasive computing system where largiecol
tions of interacting entities roam across the environment.

By applying the principles of stigmergy to such a large alle
tion of interacting components it should be possible to éssrthe
same mechanisms of coordinating large collections of aatérg
entities as social insects utilise, and in so doing, provigeedom-
inately decentralised method of organising and contmliroups
of autonomous components in a pervasive computing envieohm
This is achieved by components moving through the enviranme
and using local interactions, mediated via the environrterttoor-
dinate their actions with other parts of the system. As withgo-
cial insects the components of a pervasive computing systed:
ify their local environment to influence the subsequent freinaf
other components.

It should also be noted that in a stigmergic system the emviro
ment acts as a shared medium through which entities communi-
cate. Each entity manipulates the local environment in a tivay
is recognisable to other entities in the surrounding arée dl-
terations performed by the entities are universally uridets by
all entities involved making it possible for them to sporgansly
interact with each with little or no prior knowledge of thehet

ants [7] when foraging for food is a classic example of the use ©ntities. Used in pervasive computing the environment ishaiso
of stigmergy in nature. Ants deposit pheromones on their way Provide @ common interoperation model capable of allowiog-c
back from a food source. Foraging ants follow such trailse Th POnents to interact in a spontaneous manner. The envirdranen
process has been shown to be self-organising [13] and capéabl @S @ common .shared service tp all components .maklngllt pessm
optimizing on the shortest path to the food source [19]. Tegtn (0 Seamlessly integrate any arbitrary component into ttezantive
building of social wasps [38] is another example of stigrgerged environment. It allows for the impromptu interoperabilibat Ed-
in nature. Nests are built up from wood fibers and plant haics a  Wards etal. [17] advocates is necessary for the succegséuaton
cemented together with salivary secretions. These arentetded of a pervasive computing environment. , ,
by the wasp to form the different parts of the nest. Waspsdioate Another advantage of using techniques based on stigmergy in
the construction of a nest by each individual observing tall pervasive computing is that it allows a system to hamessahes
structure of the nest and deciding where to build the nextgfar ~ robust behavior as that seen in colonies of social inse¢ts fis
the nest. Another example is the corpse gathering behastar is |s.partly due to the |nd[rept communication that allows tlagcm-
some species of ants. Worker ants pick up corpses in the nést a Pling of components within the system. Applied to pervasioe-
drop them in locations of higher corpse concentrationsm failes puting it leads to fewer dependencies between componerkinga
of corpses in a process which acts to clean the nest. the overall system less fragile and more stable to distudmin
The potential of social insects has not gone unnoticed.rakve ~the environment. Such an approach also provides a very Itexib
research initiatives have looked to harness the coordinatiecha- ~ @Pproach to adapting to a changing environment. This camisee
nisms used by these types of natural systems to developigeetsn ~ Other projects that have used stigmergy, such as the aelaptiting
and algorithms for solving a range of computer-related jerois. protocols developed by Caro et al. [11], or in particulagrsiergic
The ant foraging behavior has inspired a problem-solvinhrigue models [7, 8] based on task allocation or the division of fatin
called ant colony optimization (ACO) [16]. It has been apglio served in some species of social insects. i
the traveling salesman problem [15], routing in communicahet- A very evident charactgrlstlc of blologlpal systems usitig-s
works [11], and vehicle routing [10]. The concept of stiggyer mergy is the scale at which these organisms work. A swarm of
has also had a significant influence on the area of behavimeba ~raiding army ants (Eciton burchelli) may contain up to 200,0
robotics, where Beckers et al. believe that the "fit betwet s Wor|_<ers [7]_. A key to their ablllt_y to scale is that all inteteons in
mergy and behavior-based robotics is excellent" [6]. Bknec et a stigmergic process are mediated through the local ermiean
al. [9] has also used stigmergy in agent-based systems tdinate By using this fact in pervasive computing it should be pdssib
the actions of agents to find global patterns across spatih obtaln_a system that scales. In these cases entities aremmi_y
tributed real-time data sources. Mamei and Zambonelli [26]e ested in observing the state of the environment local to thsr
also relied on the concept of stigmergy to coordinate ctbias of is only this part of the environment that influences theiravédr.

interacting agents in an interactive environment. Applying the same process to pervasive computing wouldregye
reduce interactions with distant locations, thereformwahg the

system to scale more gracefully. Both Satyanarayanan ¢34l
and Kindberg et al. [25] have identified the usefulness ofyapgp
such an approach.

It can also be argued that the autonomous nature of indilgdua
allows such systems to be totally extensible, in that, netities
can always be added and updated when necessary. This iblpossi
due to the loose coupling associated with entities of stigimeys-
tems and their ability to adapt to a changing environmenpliéd
to pervasive computing the autonomous nature of individoah-

2.3 Using Stigmergy in a Pervasive Computing Environment

The mechanisms used to organise these types of systemsend th
collective behavior that emerges from them is also an appgeal
construct for pervasive computing.

The idea of simple insects, with little memory or ability to-e
hibit any real intelligence, maps well to pervasive compgitivhere
devices with limited resources are spread across the emuent.

The large number of devices expected to be deployed intoamin s
ety matches the scale at which these colonies of socialtgaeck.



ponents and the loose coupling between them ensures aipervas
computing system can always grow and decay with the addition
of new components and the upgrade or removal of old ones. Har-
nessing these properties makes it possible to develop awent®
separately and for them to be installed into the environradren
ready, hence making it feasible to construct a pervasivepoting
environment incrementally over a period of time.

It would appear in principle that the concept of stigmergg ca
be used to address the majority of the requirements statettion
2.1. R1 - physical integration - is the only requirement tteinot
be directly satisfied via the use of stigmergy. This is adskdsn
section 3 by providing a high-level programming abstractior
defining entity behavior. The next section presents a moastd
on the principle of stigmergy that can be used to developgsare
computing environments.

2.4 A Stigmergic Model for Pervasive Computing

In modeling a system based on stigmergy there are threesthing
that need to be determined, the first is the environment thiketoe
tions of interacting entities will use to coordinate theahlavior,
secondly, are the entities that will use the environmerd,taidly,

the means for the individual entities to sense this enviemnde-
termine how they react to it, and manipulate it.

In this case we propose to use the general principles of stig-
mergy to create a model for pervasive computing where contex
information from environmental sensors provides the comemo
vironment for the indirect communication between entitidse so-
cial insects observed by Grassé [20] are represented diegiti
the model. An entity can represent a person, place, or oagede-
fined by Dey [14]. Entities roam across the environment and ac
on it by changing their behavior to modify the local enviramh
The changes in the environment are subsequently reflectda in
context information derived from the environmental seas@oor-
dinated behavior arises from entities observing theirlleosiron-
ment and reacting to the resulting context information ediog to
some rules.

2.4.1 The Local Environment

Context information derived from local sensors is used srdbe
the situation of each entity. The context of an entifyn the envi-
ronment at time is represented by, (¢). Figure 1(a) represents
the context of every entity in the pervasive computing envinent
at a particular time, i.e., the global conteXt; (¢) of the environ-
ment and is defined by equation 1, whetét) is the set of all
entities that exist at time

Ca(t) ={Ce;(t) : eieE(t)} @)

Crucially however all the information contained @iz (¢) is
not required by each individual entity, as the behavior oéatity
is only dictated by the context of its local environment. U¥iy
1(b) illustrates a subset of the context information raiva an
entity. It represents the local environment and defines gyt
contextual viewCy, (t), as defined in equation 2. It holds all
context information inC¢(¢) that is relevant to the situation of
entity e,, at timet. An entity’s contextC,, (¢) is included in entity
en's contextual view if the entity is within a certain proximiof
en. The notion of proximity is used to define what is local to the
entity. This is captured in equation 2 where the functid;, ., )
is used to determine proximity and retutms.e if entity e; is within
the required proximity of entity,,.

Cv,, (t) ={C¢,(t) : Cc,(1)eCa(t) A L(ei,en) = true} (2)

2.4.2 Defining Entity Behavior

The behavioral seB, shown in figure 1(c) and defined in equation
3, represents a finite set of behaviors that entities canus@ainge
their local environment. For example, a light can eithen titself
on or off, or a jukebox can play music, pause, or stop playTig
behavioral set defines how entities can change their beh&wio
modify the environment.

B = {b: bis a behavior of an entily

3
2.4.3 Reacting to the Local Environment

The last stage manages how each individual entity adapteits
havior to reflect changes in the local environment. Equaiiate-
fines the functionM! for mappingCl,, () onto P(B)*. Cv, (1),
defined in equation 4, represents the collection of all cdnté
views. The function maps the entity’s context informatioonfi the
local environment onto a behavior, thus initiating a stiggiere-
sponse to the environment. For example, if Bas defined by fig-
ure 1(c) andCl,, (¢) is the contextual view ok- at timet then
function M could possibly mapC'y,, () onto P(B) as follows

M(Cv., (t)) = {bs}

Cv.(t) = {Cv,, (t) : escE(t)} (4)

M :Cv, — P(B) (5)
The proximity functionL, the behavioral seB, and theM

function provide three primitives that define how indiviteati-
ties behave in response to changes in the local contextcdtéte
environment. Over time system-level behaviors may emesghfa
ferent entities change their behavior in response to thegihg
state of their local environment. In order to define the thyem-
itives - L, B, and M - in the framework that we have designed, a
domain-specific language, called YABS is provided.

3. YABS - Defining Entity Behavior

YABS is a meta-level language, in that, it defines how indrad
entities in a pervasive computing environment coordinlagdr te-
havior. A base language, Java in this case, is used to defne th
sensors and actuators used in the Cocoa framework [3, 4]. The
foundations of the language are built upon the stigmergideho

in particular the three primitives defined in section 24, B, and

M - form the basis of the language. Together, they define how an
entity is to behave and how it is to coordinate its activitigthin a
pervasive computing environment.

3.1 Overview

The language uses an interpreter that takes a script corgan
description of the desired behaviors and translates thaririter-
mediate objects that the framework uses to represent trevioeh
of individual entities. The behaviors described in thepgtarharac-
terise how a particular type of entity behaves in an enviremnand
can be reused for all entities of that type.

desklight extends light{...}

For instance, the code shown above defines an entity of type
desklight. Any entity that can be categorised as a deskligy
use the behaviors described in the script to regulate hoahiabes.
The script defines these behaviors in terms of the three fivexi-
L, B, andM - outlined in section 2.4, as described in more detail
in the coming sections.

There is also a requirement to be able to tailor the behaviors
defined in a script for different sub-types of entity. Formyéde, a

1The power set of behavioral sBt
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Figure 1. Using Stigmergy in an Pervasive Computing Environment

desklight can be categorised as a light but may behave intysub 3.1.2 Behavioral Set

differ(_ent manner. To manage thes‘? aspects the Ianguag/a_sallo B, thebehavioral setdefines the set of possible behaviors that can
a script to inherit from another script. This allows the gtiio be performed by the entity. The actual implementation oftzalse
inherit behaviors and adjust them to meet the requiremeonts f ior is not provided in the script but in Java following a pefar

that sub-type of entity. In the example above, desklightinherits API defined by the framework [3, 4]. The script specifies bétrav
from light. The approach helps to promote the reuse of code but that a particular type of entity can perform by declaring hawor

also aids in rapid development and incremental constmiatdo it 4 corresponding reference to the implementation of iea
pervasive computing environments, in that, it |s_p055|t_)!eeljse havior. For example, in the sample code below behaworand
existing functionality and extend it. The semantics of mitamce off are declared with reference to the classes that implement th
are described in later sections. L _ behavior for the entity. In this case, it is the behaviorstfmning
The hierarchical structure formed by the inheritance iatat a light on and off. When the behavior is invoked it executes th

ships are influenced by the presence of four predefined sc_:-ript Java code that defines the specific behavior that allows tiity &mn
entity, object, person, place - which enforce a structuré¢henhi- manipulate the environment

erarchy. The latter threeobject person andplace- represent the behavior on = "ie .tcd.cs. lighton®

entities in the stigmergic model witentity being the base script behavior off = "ie.tcd.cs.lightoff"
for these. These scripts define functionality common toethoede- The declaration of a behavior for an entity can also be inderi
gories of entity. . . . from a base script. For instance, the desklight could intleeion
The following sections describe the structures used to @efin - 5 off behaviors from light. It could then use them along with

entity behavior, in so doing, focuses on how the three pivest- the behaviors it declares to define how desklight entitiestar
L, B andM -are defined in a script and on the semantics used for pepaye. Itis also possible, if a particular inherited bédravoes not
inheritance from a script. suit, to associate the behavior with a different implemiéma This

o . may be required if a sub-type of an entity uses differentatons
3.1.1 Proximity Function to manipulate the environment. An example of how this can be

In the languagel., the proximity function can be defined as either ~achieved is shown in the sample code below wherettgehavior
a radius, a polygon, or a symbolic area around an entity. Any is defined to use a different implementation for some script.
context emanating from this region will be inserted into¢néty’s on = "ie.tcd.cs.desklighton"

contextual view as described in section 2.4. An exampleipribx

function specification can be seen in the sample code belavevh ~ 3:1.3 M Function

the proximity is set to be a 5 meter radius around the curnetitye The primary function of the language is to identify the setoifi-
proximity (5) textual stimuli that influence an entity and to map them oree b
In the next example pairs of coordinates are used to define ahaviors that allow entities to modify the local environmelntthe

polygon: the unit of measurement is meters, and the refeneoint ~ Stigmergic model, defined in section 2.4, thefunction provides

for the polygon is the position of the entity. the means of mapping an entity’s local environment oBtdhe

behavioral set. To use the function in the language it is first nec-
essary to identify the parts of the environment that actiazusitto
the entity. This is achieved by defining a set of predicatesifp
ing the context information that is of interest to the entithese
are true when matched by information in the entity’s curieon-
textual view and can be used to determine the entity’s behavi

proximity (-5,-5,-10,5,-10,20,10,20,10,5,5+5)

The code below shows the use of symbolic proximity, where
a predefined area can be used to specify the proximity around
an entity. This type of proximity is useful when there is aoBty
definable boundary, such as a room or building.

proximity ("F32") An example of one such predicate can be seen in the sample code
Using this type of proximity function helps filter out interf below.

ence from entities which are nearby, but are not relevartaatir- context bobperson

rent situation, i.e. are outside the boundary. Typicallgymbolic bobperson.person = "Bob”

proximity is mapped to an absolute location, or relativeatam pobperson.location = ~Bab House, F32"

which is specified beforehand (in the base language). bobperson time = *lunch time®
The proximity function,L, must be defined for each entity so bobperson.job = "teacher"

that it can determine the scope of its local environments §yp- bobperson.music = "rock"

ically achieved in the language by declaring a proximityction In this example the context calldzbbpersonis declared. The

in each script to specify. for entities of that type. However, itmay  keyword persondefines the predicateobpersonas identifying a
also be inherited from a base script if not defined in the el¢dn person with the name odBob. It is also possible to identify a
script. A sub script can also, if the current definitionlofin the place or anobjectand by using theany operator to specify any
base script is not compatible, redefine the proximity fuorcti person, any object, or any place. Tibeation keyword indicates a



position or area that is of interest to the predicate. It issfine to
use GPS coordinates, relative coordinates, or symbolicrimdtion
such as théBob House, F32"as used in this example. Thetivity
keyword defines what the target entity is doing. This couldabe
person walking to work, a desklight turned on, or a printéntprg.

In this example the predicate is interested in Bob doing atiyity.
Thetimekeyword indicates a period, or point in time. This can be
specified as an absolute time suchBsu Mar 18 21:58:36 GMT
2004”, or symbolic time such adunch time”. It must be noted
that while symbolic context information can be used the botary
needs to be agreed upon beforehand to the extent that symboli
information is matched exactly by the framework.

YABS uses Dey'’s [14] concept of primary and secondary con-
text information. Primary context information being theaimdity,
location, activity and time of the entity, while secondagntext
information describes any other information which helpfraean
entity’s situation. In the script secondary context infatian is de-
clared by specifying any key/value pairing. In the codinghpke
above theébobpersorpredicate specifies two such pieces of context
information. The first describing what job Bob does and ttoead
specifying what music he likes to listen to.

Once the required context predicates have been declared it i
necessary to map the entity’s contextual view on the behaab
by identifying the stimuli in the local environment that et the
entity’s behavior and determining how the entity should ifyoitis
behavior in response. How this is achieved in the languagéea
seen below.

map[bobperson,
on()

}

darkroomdnto{

halfon This is specified by using the same context predicates in the
mapping statement as in the inherited mapping.

map[bobperson, darkroomdnto{
halfon ()
}

3.2 Mapping

The previous sections outlined the basic structure of YARS a
have demonstrated how to trigger a behavior for an entityren e
countering specific stimuli described by fragments of cxiritefor-
mation. Since the recognition of what is happening at ontqoga.r
instance in time is often not sufficient to capture the broadase
of what has occurred, YABS also provides a more expressianme
of performing the mappings that can also take into accourdtwh
has been observed beforehand. Influenced by the work of [dlen
and that of Pinhanez et al.’s interval scripts [31] the sectooks
at another method that models the relationships betweervais
of time to capture these observations and define entity ehav
An interval is a length of time marked off by two distinct
points in time representing the start and end of the interval
[2], Allen introduced a model that made it possible to désethe
relationship between two intervals of time. He showed thate
are 13 possible such relationships, as summarised in figure 2
Given any two intervals of time it is possible to use one of the
relationships illustrated in figure 2 to describe how theyratated.
For instance, in taking a story such as the one below:

John was not in the room when | touched the switch to turn
on the light.

it is possible to use Allen’s interval temporal logic to déise the

In this case, the mapping is accomplished when the context above story as:

predicatedobpersoranddarkroomare found to be matched in the
entity’s current contextual view. This would indicate tiath is in

a place calledBob Institute, F32'with little light. On obtaining a
match for this predicate the behavior can then be triggesethe
entity, which in this case is then behavior for a light. The general
structure of the mapping statement allows the developgpdoify
one or more context predicates that must all hold in the yétit
current contextual view for the mapping to be successful.

The declaration of context predicates and the definitiona-m
pings for an entity can also be inherited from base scripts. F
instance, a script could inherit context predicatedpersonand
darkroomand use them along with other context predicates it has
declared to define mappings. It is also possible, if a pdaicn-
herited predicate does not suit, to redefine a predicate xAmple
of how this can be achieved is shown below, where the location
context on theébobpersoris changed froniBob Institute, F32'to
"Bob Institute, F35"

bobperson.location ="Bob House, F35"

It should be noted that reassigning values of inheritedecdnt
predicates also effects how the mappings defined in the leipéss
are performed. While this is a desirable attribute whiclovedl a
script to modify how mappings are triggered in the base &rip
care needs to taken to avoid unwanted behaviors.

S overlap or meet L

S is before, meet, is imeet, or ibefore R

where S is the time of touching the switcH, is the time the
light was on, andR is the time that John was in the room.

A ) Ae——
A before B s———= AlbeforeB s——
Ne—— ) Ae———
A meetB s———— AimeetB B———
A ) Ae———
Aoverlap B s———— Aloverlap B s/——
) Ae——— o Ne——————
AduringB s— = Aiiduring B s—
Ne——— ) Ae———
AstatB sc—— AistatB s——m
—_— —_—
AfinishB s=—=_—""o AffinishB " —
Aequal B 5

Figure 2. Interval relationships

The importance of Allen’s work stems from its ability to pide
a means of describing the relationships between intervalout
having to explicitly mention the interval duration or sggtig the
relationships between the interval’s extremities. Théseacteris-
tics are of value when it comes to capturing the broader sehse
what is happening in an environment. It is used by the languag
to describe the temporal relationships between obsensasio that
when the described relationship is satisfied the mappin@earig-

Mappings are also inherited from base scripts in the same way gered to modify the behavior of the entity. The method is eisyiiy
as behaviors and context predicates and can be used by the exuseful when you also consider the imprecise nature of thieanv

tended script to dictate how the entity is to behave along e
other mappings defined in the script. Tailoring how the iitedr
mappings operate is achieved either by modifying the vadfitise
predicates or by overwriting the mappings to change thevietsa

ments in which the entities are anticipated to operate.

Thus, YABS uses the primitive relationships defined by Allen
to describe temporal relationships between intervalawé tiEntity
behavior is then triggered on observing the intervals incitreect

that are mapped. The sample code shown below provides an extemporal sequence. The context predicates described tiorsec

ample of how to overwrite a mapping to change the behaviats th
are triggered. In this case, the mapping shown in the previou
ample is overwritten to change the behavior it triggers framto

3.1.3 are used to define the duration of the interval. The efar
an interval is determined when the context predicate besdrme,
and the end is denoted on it becoming invalid. The interval is



deemed active between these two distinct points in time Sthpt
specifies the relationships between intervals by definiregaence
of context predicates. Once the intervals have occurréddasated
by the script, the appropriate behavior is triggered.

For the purpose of illustration an example is used to explain
in more detail the use of interval temporal logic. The santolgée
shown below demonstrates the use of intervals in a mappatg-st
ment.

map[contextA, contextB][contextBdnto{...}

It uses the context predicatesntextfandcontextBto describe
two different intervals of time. The relationship betweba tnter-
vals can be defined @®ntextA start contexts per Allen’s inter-
val temporal logic. The square brackets demarcate thesstdrend
of the intervals, and the sequence defines the relationgtipelen
them.

In determining whether a mapping has been triggered thesfram
work investigates each subsequent contextual view to miéter
what intervals are active. An interval is deemed active wtien
context predicate is found to hold true in the entity’s cotreon-
textual view. The interval becomes inactive when the pagdican
no longer be found to be true. When the intervals are founéve h
been active in the correct temporal sequence, as describibg i
script, the behavior is triggered. In the example aboverdlztion-
ship is satisfied when bottontextAandcontextBhave been active
in the same period withontextBremaining active for a period af-
ter contextAbecomes inactive at which point the mapping can be
triggered.

It is also feasible to use the other 12 relationships defined b
Allen in the mapping statement. For instance, in the exarbple
low contextA is before contextBhe symbol[ ] indicates that no
interval is active for this period of time.

map[contextA ][][ contextB]onto{...}

The use of Allen’s interval temporal logic provides YABS it
a more expressive means of performing mappings that takes in

guage. To use a particular embedded function it must firstebe d
clared in the script or within one of the base scripts of thipsc
An example of how an embedded function is declared can be seen
below. In this example the embedded functioajority is declared
with a reference to the Java classes that implement theifumnct
efunction majority = "ie.tcd.cs.dsg.cocoa.Majority"
The sample code shown below illustrates how such an embed-
ded function is used in a script.

context someperson
someperson.location =
someperson . musiany

"Bob Institute , F32"

play (majority (someperson))

The majority function, in this case, allows a developer to de-
termine the value of a piece of context information that isstno
prevalent in the entity’s current contextual view. In thismple
the contexsomepersoacts as a filter for thenajority function ex-
cluding any entities in the current contextual view that o€ in
the location Bob Institute, F32or do not have any music prefer-
ence. From the remaining context thmajority function is used to
determine the majority value of the secondary contexsicwhich
is then passed thglay behavior.

A number of embedded functions are currently supported.
These include thenajority function mentioned above, and also
the minimum random minority, andaverageembedded functions.
These functions are declared in thetity script so that they may
be accessed by all scripts. Developers can still extendutiaibn-
ality of the language by either implementing their own endseti
functions or changing the behavior of an embedded functipn b
selecting a different implementation of that function as ba seen
in the code below.

majority = "ie.tcd.cs.dsg.cocoa.MajorityNewImpl"

Themaximunmandminimumfunctions allow the developer to re-
trieve the maximum or minimum values for context informatio
the entity’s current contextual view. Thendomfunction randomly

account what has occurred beforehand and not just what has oc selects a piece of the context information in the entityisent con-

curred at a single point in time. While it does increase the-co
plexity of the script, the increased expressiveness gaigagsing
Allen’s temporal logic outweighs the additional difficulty defin-
ing the behavior of entities. It should also be noted thatthpping
statements described in this section use the same sentantins
heritance as those described in section 3.1.3.

3.3 Passing Context Information

The parameters for the behaviors are constructed from thiexio
information which has been defined beforehand within petdie
declared in the script, or from context information that elch
in the entity’s current contextual view. The sample codeolel
demonstrates how parameters are passed in behaviors.

context peter
peter.music="folk"

play (peter.music)

The context informatiorpeter.musids passed to thelay be-
havior when invoked. For context information to be passedo
havior must first be implemented to take a parameter. Theegbnt
information passed must also match what is expected by thevbe
ior otherwise the invocation will fail. It is, of course, alpossible
to pass multiple parameters if required.

3.4 Using Embedded Functions

To access information held in the entity’s contextual view an-
guage uses embedded functions that allow the data in thexcont
tual view to be analysed and context information deducetowit
having to directly manipulate the view. The implementagiofithe
embedded functions are not provided by YABS but in the base la

textual view. Theminority function provides opposite functionality
to that of the majority function. Thaveragefunction determines
the average value for a particular context.

Currently the embedded functions are restricted to beirgl us
to derive the parameters to be passed to behaviors. It slatsdd
be noted that an embedded function can be called within andth
required.

3.5 RedefiningL

While the proximity function,L, is usually set for the lifetime of

an entity it can, if the circumstances require it, be moditiadng

an entity’s lifetime. Modification of the proximity functiois, for
example, sometimes required by entities when moving from on
environment to another. For example, when a PDA moves from a
busy street to an office it may redefiieto take into account its
new environment. The sample code provides one such exarhple o
the proximity function being redefined. Typically, redefigithe
proximity function is done within the mapping statement las t
example illustrates.

map[contextB][contextA,contextBdnto{
displayPicture ()
proximity (8) //8 meter radius around entity.

4. Developing Entities with YABS

To demonstrate how the high-level abstractions providedABS

can be use to define and coordinate entity behavior in a peevas
computing environment a prototype implementation [3] & ldn-
guage was used in combination with the Cocoa framework to de-
velop a series of application scenarios.



4.1 Westland Row

Westland Row is a street located near our laboratory. Tleetstr
is about 250 meters long, and accommodates a number of cafes
news agents, shops, bars, and a train station. It is a busgt,str
with commuters, shoppers, cars, and buses using it on alzislyg.
A wireless ad-hoc network has been deployed on Westland Row,
with a number of nodes placed along the street. The nodes form
a sparse population of wireless network nodes and can begeonfi
ured to create a variety of network models. The network is glar
a project [5] investigating the use ad-hoc networks in uri@as.
Westland Row provides both a challenging, and an intergéist-
ing ground for developing pervasive computing applicatiamd
for determining the effectiveness of YABS to develop andpsup
the incremental construction and improvement of solutionan
urban environment.

Over a period of time we developed and deployed a small
number of entities along the street. The following is a desion
of the current society:

JukeBoxStop . activity = "stop"

// Defining mappings.

map [JukeBoxStop] [JukeBoxStop,
play (majority (SomePerson))

SomePersam}o{

}
map[JukeBoxPlay ,
stop ()

SomePerson] [JukeBoxPlagnto{

}

Punterpresents a person on the street, whether they are shop-
ping, having coffee, or commuting to work. While the script f
this entity is quite simple, due to the requirements of ttenacio,
itis still necessary to represent the pedestrian to allbwmgntities
absorb their context.

In all we deployed two punters entities, five shop’s repréagn
some of the shops and cafes on the street, two shoppingasmsist
entities associated with each person, and a jukebox lodated
one of the cafes halfway down the street. The shop entit@wal
Westland Row remained passive to changes in their envirohme
which was as expected due to their limited implementatidre T

Shopis used to represent the different shops and cafes along theshopping assistant, sometimes carried around by peopleldwo

street. It was one of the first entities to be deployed. Theecur
implementation is quite simple, having no defined behawior.
would of course be possible to define a greater range of batfavi
this type of entity but for now it serves only as a source ofterin
information concerning the presence of a shop at some @otati
The shop entities ran on embedded PCs (using PC-104 tegyholo
placed along the street.

Shopping assistanprovides information about the different
shops on the street. The implementation is based on theokiref
browser which ran on a laptop. The browser was used to display
information provided by the shops. One behavior has beefeimp
mented for the shopping assistant entity, catiézsplay, it opens a
web page on the Firefox browser. The behavior is triggereenvh
someone is nearby and when information is available to alspl
The script defining this behavior is shown below.

shoppingassistantextends firefox{

proximity (100) //Set L to radius of 100 meters.

/I Declaring context predicates.

context SomePerson

SomePerson. person any

context SomeShop

SomePlace. place =any

SomePlace. deals =any

/I Define mapping.

map[ SomePerson, SomeShophto{
display(SomeShop.deals)

}

Jukebox,as the name might suggest, is an mp3 player. The
script, shown below, defines the behavior of the jukeboxyerithe
play behavior is triggered when a person is near the jukebox. The
genre of music played depends on what the majority of peagle p
fer to listen to. This is determined by observing the conbafdr-
mation from punter entities, in particular the musical prehces
of the entities. Thetopbehavior is triggered when there is no one
in the vicinity of the jukebox entity. The jukebox entity ion a
laptop using the xmms multimedia player.

jukebox extends object{
proximity (10) //Set L to radius of 10 meters
/I Declare behaviors for
behavior play "ie.tcd.PlayBehavior"
behavior stop ="ie.tcd.StopBehavior"
/I Declaring context predicates.
context SomePerson
SomePerson. person any
SomePerson . music any
context JukeBoxPlay
JukeBoxPlay .object =this.object
JukeBoxPlay . activity "play"
context JukeBoxStop
JukeBoxStop.object =this.object

display information about the shops as they walk by. Thekoke
entity, with its collection of music, would tailor the setem played
depending on the users in it's vicinity.

While the scenario is simple, it serves to demonstrate tieat t
high-level abstractions provided by YABS made it possibladd
new entities, and remove or upgrade old ones from Westland Ro
without adversely effecting the rest of the street. Thisrisnpr-
ily due to YABS supporting the autonomy and loose coupling be
tween entities which allowed entities to be developed sephyr
and to be installed into the environment when ready. Thesp-pr
erties facilitated the incremental construction and improent of
solutions over the lifetime of the environment. Entitiepegring
and disappearing effect the behavior of other entities buthreir
correct operation. Moreover, no preinstallation of anywsafe sup-
port is required. It should also be noted that the abstrastro-
vided manage to separate the underlying low-level teclyydimm
the compositional side of developing pervasive computjpgiea-
tions. The clear separation allows developers using YAB&to
centrate on implementing the behavior of individual eesitiThe
approach aids the rapid development of environments anolienc
ages the reuse of the underlying components - sensor arat@stu
- and of the scripts through the reuse and ability to exterddtt
fined behavior.

4.2 Street Lights

The street-light application scenario demonstrates hatesy be-
havior can emerge from the local interactions of entitigse ap-
plication is based on a set of street lights that you might dilothg
the side of a road. The lights coordinate their activityptigh ob-
serving their local environment, to ensure the street icseritly
well lit for pedestrians to walk safely along the path. Byaléf the
lights are off to save energy but turn on in the presence afsuse
or half on when the street light beside is fully on. The effisdio
have the light follow the person along the street. Figured®igies
an illustration of the scenario.

The implementation of the street-light scenario requites t
development of two entities; one to represent the strebt, lmnd
another to present a pedestrian walking along the street.

Punter entityrepresents the pedestrian walking along the street.
The implementation of the entity is based on the punter ieatit
used in the previous scenario.

Streetlight entityepresents the street lights along the walkway.
The script defining the behavior of the street-light entign de
seen below. Then behavior is triggered when a person enters the
local environment of the street-light entity. Thalfon behavior is
triggered when other street lights in the vicinity of theigrareon.
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Figure 3. An illustration of the streetlight scenario.

The off behavior of the entity is triggered when the person leaves
the local environment when no other street lights in thervigiare
on.

streetlight extends object{
proximity (200) /I Set L to radius of 200 meters.
/I Declaring behaviors for streetlight entity.
behavior on "ie.tcd. StreetLightOnBehavior"
behavior halfon "ie.tcd. StreetLightHalfOnBehavior"
behavior off "ie.tcd. StreetLightOffBehavior™"
/I Declaring context predicates
context Walker
Walker . person =any
context SomeLightOn
SomeLightOn. activity
context LightOn
LightOn.object =this.object
LightOn. activity = "On"
context LightOff
LightOff. object = this.object
LightOff. activity "Off"
context LightHalfOn
LightHalfOn.object =this.object
LightHalfOn. activity "HalfOn"
/1 Defining mappings for streetlight entity.
map[LightOff][LightOff , SomeLightOn]onto{

halfon ()

“On"

}
map[LightOff][LightOff , Walker] onto{
on ()

}
map[LightHalfOn , SomeLightOn][LightHalfOnpnto{
off ()

}
map[LightHalfOn ][ LightHalfOn , Walker] onto {
on ()

}
map[LightOn , Walker, SomeLightOn][LightOn , SomeLightOnhto{
halfon ()

r}nap[LightOn ,
off ()
}

}

This scenario was deployed in a simulated environment with a
single punter entity and ten street light entities placazhglthe
street as illustrated in figure 3. While the script for theestrlight
entity is quite simile it still provides an expressive apmb to
defining its behavior that allows a meaningful environmerfotm.

The scenario illustrates how emergent behavior, a bubbliguf
appearing to follow a pedestrian, arises from the individictions
of a collection of simple entities. Moreover, the scenatioves
reuse of behavior, for the punter entity, in a different exen
environment where its location is provided by a locationidator
rather than the GPS sensor used in the Westland Row deploymen

Walker][LightOnJonto{

5. Related Work

Domain-specific languages have already been used in pezvasi
computing to both define the behavior of components and to-spe

ify how those components are composed to build pervasive com
puting environments. Their use in these roles has helpadgige
computing systems to abstract the complexities of the Uyidgr
system, and aided the rapid development of applicationthfese
types of environments.

The TEA [35] project have designed a language that defines
the behavior of small devices such as mobile phones. Actians
be performed when entering a context, when leaving a cantext
and while in a certain context. In [32], Pinhanez has defined a
interval scripting language that can define the temporaatieh
of components. Based on PNF-networks [29] Pinhanez et at ha
used the interval scripting language to create story-bagedac-
tive environments such as It/l [30]. The interval scriptatéses the
temporal relationships between different states of th&é@mment,
defining when to stop and to start other actions. PinhandtB-P
networks are based on Allen [2] temporal intervals.

RCSM [39] have define a language to control the behavior of
components. RCSM is an object-based framework that uses an
IDL-based language called CA-IDL to generate context-itgas
objects. These objects run on a customised ORB that supperts
communication and context-awareness between objecteldev
ers use the CA-IDL language to define context variables tteat a
used in temporal expressions within the script to triggtregilocal
or remote method invocations on objects in the pervasivepabm
ing environment.

Gaia [33] uses high-level languages in a different mannér¢o
above, in that, it uses scripts to compose the componentgat/a-
sive computing system into applications that can be usethdset
in the environment. They use scripts, based on the intagian-
guage Lua [23], to describe how to combine the various compo-
nents in the environment to form an application. In [12], EAR
have taken a different approach where they have defined egmeg
ming abstraction based on the physical environment. Thetieg
programming model allows applications to be driven by thetisp
orientation of objects in the environment.

The language defined in this paper applies some of the tech-
nigues used in the above projects to define entity behavidtan
facilitate the emergence of pervasive computing envirantegom
collections of autonomous entities. In particular, theglzage uses
similar methods to RCSM [39] in declaring context and trigog
actions but extends the approach to include the full rangerof
poral relationships used by Pinhanez [32] and defined byn4#l¢
However, the approach also includes a number of novel tqabsi
for extending entity behavior and for facilitating the iaorental
development of pervasive computing environments. Thecambr
also includes methods for tailoring the behavior of ergitiy the
passing of context to the actions.

6. Conclusions and Future Work

This paper has introduced a novel domain-specific languadied
YABS, for defining entity behavior in pervasive computingrien
ronments. Based on the stigmergic model outlined in se&ithre
language provides high-level programming abstractioas ¢hm-
bines expressiveness and simplicity with the ability totins the
complexities of dealing with the underlying technologiBy. fo-
cusing on defining entity behavior the language allows dgvel
ers to concentrate their efforts on characterising the \behaf a
pervasive computing environment rather than system dpxetat
while also aiding the incremental construction and impnoget of
solutions over the lifetime of the environment.

Further work is still required to prove the approach. A major
concern at the present time is the manner in which contegt-inf
mation is defined. For one entity to understand anotheryénsiit-
uation it must understand the meaning of the context inftiona
that it provides. Currently YABS provides the concept ofary



context information, which is well understood and define, sec-
ondary context information which consists of key/valuerpanat
are open to interpretation. To tackle the problem we areifmpét
using alternative approaches to defining context inforomattiased
on common ontologies.
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