
YABS: A Domain-Specific Language for Pervasive Computing
based on Stigmergy

Peter Barron Vinny Cahill
Distributed Systems Group,

School of Computer Science and Statistics,
Trinity College, Dublin 2,

Ireland.Peter.Barron, Vinny.Cahill�
s.t
d.ie
Abstract
This paper presents YABS, a novel domain-specific language for
defining entity behavior in pervasive computing environments. The
programming model of YABS is inspired by nature and, in partic-
ular, the observations made by the French biologist Grassé on how
social insects coordinate their actions using indirect communica-
tion via the environment, a phenomenon that has become known
as stigmergy. Following this approach yields a simple yet expres-
sive language that abstracts the complexities of dealing with the
variety of underlying technologies typical of pervasive computing
environments and that facilitates the incremental construction and
improvement of solutions while providing high-level constructs for
defining the behavior of entities and their coordination. Weshow
how YABS has been used to program a number of pervasive com-
puting applications both deployed and simulated.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Design, Languages.

Keywords Pervasive Computing, Stigmergy.

1. Introduction
The physical integration of computers into the real world isone of
the main challenges of pervasive computing. Kindberg et al.[25]
argue that to address such a challenge requires the provision of
high-level abstractions that allow components to sense andinteract
with the physical environment without the difficulties of dealing
with low-level devices such as sensors and actuators. In this paper
we present one such abstraction in the form of a domain-specific
language, called YABS. YABS abstracts the complexities of deal-
ing with the underlying technologies to provide a mechanismfor
defining the behavior of autonomous entities in a pervasive com-
puting environment and their coordination.

The inspiration for the approach stems from the observations
made by the French biologist Grassé on how social insects coor-

c© ACM, 2006. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in the proceedings of the 5th Conference Generative Programming and
Component Engineering (GPCE’06) http://doi.acm.org/10.1145/1173706.1173730.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

dinate their actions using indirect communication via the environ-
ment. Holland et al. [22] showed that this phenomenon, whichis
known asstigmergy[20], provides a mechanism that allows the en-
vironment to structure itself through the activities of entities within
the environment. The state of the environment and the current dis-
tribution of the entities within it, determines how the environment
and the entities will change in the future. The result is a highly de-
centralised mechanism for coordinating the behavior of entities that
is both robust and extensible.

YABS provides high-level abstractions designed to allow devel-
opers harness the same coordination mechanisms used by social in-
sects to develop pervasive computing environments. The approach
is encapsulated in a framework that is designed to both support and
complement the use of stigmergy, allowing for the incremental con-
struction and improvement of solutions and aiding the ad-hoc com-
position of pervasive computing environments. It employs adis-
tributed event-based architecture organised in a peer-to-peer fash-
ion so that individual entities are decoupled from each other. YABS
is used as a meta-level language to define the behavior of individual
entities and, implicitly, to specify how they are to coordinate their
behavior within the environment. A base language is used to define
the sensors and actuators used in the framework. In this paper we
focus on the design of YABS. A more detailed description of the
framework, which is called Cocoa, and the low-level abstractions
that it provides can be found in [3, 4].

As a domain-specific language YABS provides a simple yet
expressive language for defining and coordinating entity behavior
that would otherwise be more difficult to express with a general
purpose language. Specifying such a language ensures that the
right level of abstraction can be found between the underlying
technologies and the high-level abstractions sought for the physical
integration of computers into the real world. The approach also
assists in the rapid development and the reuse of components.

The paper is organised as follows: in section 2, we outline the
domain of pervasive computing, describing the challenges of de-
veloping such environments and how using stigmergy can aid in
their development. The YABS language is described in section 3.
Section 4 provides details of a number of pervasive computing ap-
plications, both deployed and simulated, that have been developed
with YABS. Section 5 looks at some of the related work in the field.
Finally, section 6 presents conclusions and future work.

2. A Stigmergic Approach
In this section we outline some of the challenges of developing
future pervasive computing environments and consider how the use
of stigmergy can aid in their construction.

2.1 Pervasive Computing

Technology for pervasive computing is reaching a point where
it is becoming possible to convert many everyday environments
into interactive spaces. For example, in education it is used to
support students attending lectures [1], in offices to assist workers
in meetings [24] or in group collaboration sessions [36]. Ithas also
been used in scientific laboratories to support the work of scientists
[21], and in the home to ensure the efficient usage of resources [27].
In addition, pervasive computing has also been used to support the
elderly in the home [28].

Typically, these types of interactive spaces have been designed
from the ground up to support the anticipated needs of their users
and to evaluate the technology deployed in the space. The environ-
ments are usually preinstalled and maintained over the period in
which they are in use. However, as Edwards et al. [17] point out, it
is unrealistic to expect all pervasive computing environments to be
constructed in this manner. They believe that physical spaces are
more likely to evolve accidentally into pervasive computing envi-
ronments as technology is incorporated into the space. Kindberg et
al. express a similar view in [25] where they argue that pervasive
computing systems will tend to form accidentally over the medium-
to-long term. A recent study [37] also draws the same conclusions.

This would suggest that pervasive computing environments
need to be assembled in a more ad-hoc fashion than has previously
been the case. Current approaches to pervasive computing system
design do not readily apply themselves to this form of development.
They appear to be more conceptually centralised approachesthat
focus their efforts around coordinating the resources of specific
geographical locations. For instance, in the Stanford Interactive
Workspaces project [24] all interactions for the iRoom environ-
ment are mediated through the iROS system, which is responsible
for managing the resources at that particular location. It does not
allow the ad-hoc interaction and coordination of components at lo-
cations other than those that have been predetermined and where
the system has already been installed. While this method maywork
well for developing pervasive computing environments fromthe
ground up it would be less appropriate to composing environments
in the more ad-hoc manner anticipated by Edwards et al. [17].

In this form of development pervasive computing environments
emerge from spaces through the migration and accumulation of
technology at a particular location. There is no master planthat
guides the development or any expert overlooking the construction
of the environment. It evolves through ordinary people moving and
integrating new technology into a space. Where an environment
emerges depends totally on how the occupants arrange the technol-
ogy. Unlike, for instance, Aura [18] or Gaia [33] the installation
of a pervasive computing system into a physical location is not a
prerequisite for the environment to form or to operate at those lo-
cations. For these types of environments devices and applications
need to be able to spontaneously interact at any time and at any
place without having to mediate their behavior through a central
authority at each specific location.

In allowing environments evolve in an ad-hoc fashion it makes
it possible for them to emerge at hotspots of activity where users
require and want to use them and so give an illusion that they
are always available. Kindberg et al. [25] observe that through
the inclusion of new technology or the rearrangement of what
is already there that new usage models can be adopted by the
occupants. The environment continuously changes and adapts to
how those in the space use it and rearrange the technology. It
is not bounded by the same constraints normally imposed on a
system specifically designed to operate at a particular location;
it changes as users move technology into or out off the space.
Changes may occur slowly over a period of time or at a much faster
rate depending on how the space is being used.

The system software for managing such an environment needs
to take a different approach than has otherwise been deemed nec-
essary. In these types of environments the components - devices,
physical artifacts, software components, and services - that com-
prise the system must be organised in a highly decentralisedman-
ner. Unlike many other systems [18, 24, 33] there should be nocen-
tral component in the environment to manage access to resources
or coordinate how different components in the environment interact
with each other or with those using the environment. The compo-
nents are in fact the system and as such have to be able to spon-
taneously interact with each other to coordinate their behavior in
a distributed manner. The environment can be though of as a col-
lection of interacting components that through their ad-hoc inter-
actions can form a pervasive computing environment capableof
providing services for those occupying the environment.

In order to support the ad-hoc composition of pervasive com-
puting environments in this manner we have identified a number of
requirements necessary for development.

R1: Support the physical integration of components into the en-
vironment. It is important to abstract the complexities of dealing
with the real world to ensure that components can easily be inte-
grated into the physical environment.

R2: Support the autonomy of components. Each component
should be an independent entity with the ability to move through
the environment unrestricted. It does not depend on other compo-
nents to operate and is responsible for managing and coordinating
its own behavior within the environment.

R3: Support spontaneous interoperability between arbitrary com-
ponents. It has be to assumed, due to the accidental manner in
which these environments form and the heterogeneous natureof the
components that comprise them, that components will have little
prior knowledge of the other parts of the environment with which
they will interact. Consequently, it is important that components be
able to discover and spontaneously interact with each other.

R4: Support the decentralised coordination of component behav-
ior. To ensure that a large collection of autonomous components
can form a coherent environment it is necessary to be able to co-
ordinate their behavior. As a centralised approach is not feasible it
is necessary to provide a decentralised mechanism for coordinating
the behavior of components within the environment.

R5: Provide a scalable solution. With the expected large num-
ber of components it can be assumed that, as these environments
grow, the intensity of interactions will increase with the number of
components and users inhabiting the space. Thus, scalability is of
particular concern for these types of systems.

R6: Ensure the robust behavior of the system. In pervasive com-
puting failure is considered to be a norm and not an exception. It is
therefore necessary for a system to be able to absorb the underlying
changes to ensure the environment can behave in a robust fashion.

R7: Support incremental construction and improvement of solu-
tions. In developing the environments described above it has to be
expected that they will evolve incrementally over a period of time.
It cannot be assumed that an environment of this nature can bede-
veloped or installed in one go. It is therefore necessary to allow the
incremental construction and improvement of solutions.

R8: Mobility. With the expected migration of technology and the
anticipated movement of users it has to be assumed that therewill
be a high degree of mobility.

R9: Adaptability. It must be assumed that the mobility of users
and technology will lead to a situation where the environment is

continuously changing. To overcome this situation it is necessary
for components to adapt their behavior to use whatever is available
in the immediate environment.

2.2 Stigmergy

In 1959, the French biologist, Grassé observed that social insects
could coordinate their actions through the environment without
having to directly communicate with each other. They do thisus-
ing a phenomenon known asstigmergy[20]. He also noticed that
the local interactions between insects resulted in the emergence of
colony-wide behavior. Holland et al. [22] showed that stigmergy
provides a mechanism that allows the environment to structure it-
self through the activities of the entities within the environment.
The state of the environment, and the current distribution of en-
tities within it, determines how the environment and the entities
will change in the future. This approach provides a robust, self-
organising environment, which allows entities to coordinate their
behavior in a highly decentralised manner. It is important to stress
that individual entities have no particular problem solving knowl-
edge, and that coordinated behavior emerges due to the actions of
the society. It also worth noting that while no direct communication
is used between individual entities, communication is still main-
tained through the medium of the environment.

The trail-laying and trail-following used by many species of
ants [7] when foraging for food is a classic example of the use
of stigmergy in nature. Ants deposit pheromones on their way
back from a food source. Foraging ants follow such trails. The
process has been shown to be self-organising [13] and capable of
optimizing on the shortest path to the food source [19]. The nest
building of social wasps [38] is another example of stigmergy used
in nature. Nests are built up from wood fibers and plant hairs and
cemented together with salivary secretions. These are thenmoulded
by the wasp to form the different parts of the nest. Wasps coordinate
the construction of a nest by each individual observing the local
structure of the nest and deciding where to build the next part of
the nest. Another example is the corpse gathering behavior seen in
some species of ants. Worker ants pick up corpses in the nest and
drop them in locations of higher corpse concentrations to form piles
of corpses in a process which acts to clean the nest.

The potential of social insects has not gone unnoticed. Several
research initiatives have looked to harness the coordination mecha-
nisms used by these types of natural systems to develop techniques
and algorithms for solving a range of computer-related problems.
The ant foraging behavior has inspired a problem-solving technique
called ant colony optimization (ACO) [16]. It has been applied to
the traveling salesman problem [15], routing in communication net-
works [11], and vehicle routing [10]. The concept of stigmergy
has also had a significant influence on the area of behavior-based
robotics, where Beckers et al. believe that the "fit between stig-
mergy and behavior-based robotics is excellent" [6]. Brueckner et
al. [9] has also used stigmergy in agent-based systems to coordinate
the actions of agents to find global patterns across spatially dis-
tributed real-time data sources. Mamei and Zambonelli [26]have
also relied on the concept of stigmergy to coordinate collections of
interacting agents in an interactive environment.

2.3 Using Stigmergy in a Pervasive Computing Environment

The mechanisms used to organise these types of systems and the
collective behavior that emerges from them is also an appealing
construct for pervasive computing.

The idea of simple insects, with little memory or ability to ex-
hibit any real intelligence, maps well to pervasive computing where
devices with limited resources are spread across the environment.
The large number of devices expected to be deployed into our soci-
ety matches the scale at which these colonies of social insects work.

The constant interaction between components of a pervasivecom-
puting environment also ties in neatly with how social insects in-
teract with each other. A colony of social insects are in manyways
very similar to a pervasive computing system where large collec-
tions of interacting entities roam across the environment.

By applying the principles of stigmergy to such a large collec-
tion of interacting components it should be possible to harness the
same mechanisms of coordinating large collections of interacting
entities as social insects utilise, and in so doing, providea predom-
inately decentralised method of organising and controlling groups
of autonomous components in a pervasive computing environment.
This is achieved by components moving through the environment
and using local interactions, mediated via the environment, to coor-
dinate their actions with other parts of the system. As with the so-
cial insects the components of a pervasive computing systemmod-
ify their local environment to influence the subsequent behavior of
other components.

It should also be noted that in a stigmergic system the environ-
ment acts as a shared medium through which entities communi-
cate. Each entity manipulates the local environment in a waythat
is recognisable to other entities in the surrounding area. The al-
terations performed by the entities are universally understood by
all entities involved making it possible for them to spontaneously
interact with each with little or no prior knowledge of the other
entities. Used in pervasive computing the environment should also
provide a common interoperation model capable of allowing com-
ponents to interact in a spontaneous manner. The environment acts
as a common shared service to all components making it possible
to seamlessly integrate any arbitrary component into the interactive
environment. It allows for the impromptu interoperabilitythat Ed-
wards et al. [17] advocates is necessary for the successful operation
of a pervasive computing environment.

Another advantage of using techniques based on stigmergy in
pervasive computing is that it allows a system to harness thesame
robust behavior as that seen in colonies of social insects [6]. This
is partly due to the indirect communication that allows the decou-
pling of components within the system. Applied to pervasivecom-
puting it leads to fewer dependencies between components making
the overall system less fragile and more stable to disturbances in
the environment. Such an approach also provides a very flexible
approach to adapting to a changing environment. This can seen in
other projects that have used stigmergy, such as the adaptive routing
protocols developed by Caro et al. [11], or in particular stigmergic
models [7, 8] based on task allocation or the division of labor ob-
served in some species of social insects.

A very evident characteristic of biological systems using stig-
mergy is the scale at which these organisms work. A swarm of
raiding army ants (Eciton burchelli) may contain up to 200,000
workers [7]. A key to their ability to scale is that all interactions in
a stigmergic process are mediated through the local environment.
By using this fact in pervasive computing it should be possible to
obtain a system that scales. In these cases entities are onlyinter-
ested in observing the state of the environment local to themas it
is only this part of the environment that influences their behavior.
Applying the same process to pervasive computing would severely
reduce interactions with distant locations, therefore, allowing the
system to scale more gracefully. Both Satyanarayanan et al.[34]
and Kindberg et al. [25] have identified the usefulness of applying
such an approach.

It can also be argued that the autonomous nature of individuals
allows such systems to be totally extensible, in that, new entities
can always be added and updated when necessary. This is possible
due to the loose coupling associated with entities of stigmergic sys-
tems and their ability to adapt to a changing environment. Applied
to pervasive computing the autonomous nature of individualcom-

ponents and the loose coupling between them ensures a pervasive
computing system can always grow and decay with the addition
of new components and the upgrade or removal of old ones. Har-
nessing these properties makes it possible to develop components
separately and for them to be installed into the environmentwhen
ready, hence making it feasible to construct a pervasive computing
environment incrementally over a period of time.

It would appear in principle that the concept of stigmergy can
be used to address the majority of the requirements stated insection
2.1. R1 - physical integration - is the only requirement thatcannot
be directly satisfied via the use of stigmergy. This is addressed in
section 3 by providing a high-level programming abstraction for
defining entity behavior. The next section presents a model based
on the principle of stigmergy that can be used to develop pervasive
computing environments.

2.4 A Stigmergic Model for Pervasive Computing

In modeling a system based on stigmergy there are three things
that need to be determined, the first is the environment that collec-
tions of interacting entities will use to coordinate their behavior,
secondly, are the entities that will use the environment, and thirdly,
the means for the individual entities to sense this environment, de-
termine how they react to it, and manipulate it.

In this case we propose to use the general principles of stig-
mergy to create a model for pervasive computing where context
information from environmental sensors provides the common en-
vironment for the indirect communication between entities. The so-
cial insects observed by Grassé [20] are represented as entities in
the model. An entity can represent a person, place, or objectas de-
fined by Dey [14]. Entities roam across the environment and act
on it by changing their behavior to modify the local environment.
The changes in the environment are subsequently reflected inthe
context information derived from the environmental sensors. Coor-
dinated behavior arises from entities observing their local environ-
ment and reacting to the resulting context information according to
some rules.

2.4.1 The Local Environment

Context information derived from local sensors is used to describe
the situation of each entity. The context of an entityei in the envi-
ronment at timet is represented byCei

(t). Figure 1(a) represents
the context of every entity in the pervasive computing environment
at a particular time, i.e., the global contextCG(t) of the environ-
ment and is defined by equation 1, whereE(t) is the set of all
entities that exist at timet.

CG(t) = {Cei
(t) : eiǫE(t)} (1)

Crucially however all the information contained inCG(t) is
not required by each individual entity, as the behavior of anentity
is only dictated by the context of its local environment. Figure
1(b) illustrates a subset of the context information relevant to an
entity. It represents the local environment and defines the entity’s
contextual viewCVen

(t), as defined in equation 2. It holds all
context information inCG(t) that is relevant to the situation of
entity en at timet. An entity’s contextCei

(t) is included in entity
en’s contextual view if the entity is within a certain proximity of
en. The notion of proximity is used to define what is local to the
entity. This is captured in equation 2 where the functionL(ei, en)
is used to determine proximity and returnstrue if entity ei is within
the required proximity of entityen.

CVen
(t) = {Cei

(t) : Cei
(t)ǫCG(t) ∧ L(ei, en) = true} (2)

2.4.2 Defining Entity Behavior

The behavioral setB, shown in figure 1(c) and defined in equation
3, represents a finite set of behaviors that entities can use to change
their local environment. For example, a light can either turn itself
on or off, or a jukebox can play music, pause, or stop playing.The
behavioral set defines how entities can change their behavior to
modify the environment.

B = {b : b is a behavior of an entity} (3)

2.4.3 Reacting to the Local Environment

The last stage manages how each individual entity adapts itsbe-
havior to reflect changes in the local environment. Equation5 de-
fines the functionM for mappingCVen

(t) ontoP(B)1. CVe
(t),

defined in equation 4, represents the collection of all contextual
views. The function maps the entity’s context information from the
local environment onto a behavior, thus initiating a stigmergic re-
sponse to the environment. For example, if setB is defined by fig-
ure 1(c) andCVe2

(t) is the contextual view ofe2 at time t then
function M could possibly mapCVe2

(t) onto P(B) as follows
M(CVe2

(t)) = {b3}

CVe
(t) = {CVei

(t) : eiǫE(t)} (4)

M : CVe
→ P(B) (5)

The proximity functionL, the behavioral setB, and theM
function provide three primitives that define how individual enti-
ties behave in response to changes in the local context stateof the
environment. Over time system-level behaviors may emerge as dif-
ferent entities change their behavior in response to the changing
state of their local environment. In order to define the threeprim-
itives - L, B, andM - in the framework that we have designed, a
domain-specific language, called YABS is provided.

3. YABS - Defining Entity Behavior
YABS is a meta-level language, in that, it defines how individual
entities in a pervasive computing environment coordinate their be-
havior. A base language, Java in this case, is used to define the
sensors and actuators used in the Cocoa framework [3, 4]. The
foundations of the language are built upon the stigmergic model,
in particular the three primitives defined in section 2.4 -L, B, and
M - form the basis of the language. Together, they define how an
entity is to behave and how it is to coordinate its activitieswithin a
pervasive computing environment.

3.1 Overview

The language uses an interpreter that takes a script containing a
description of the desired behaviors and translates them into inter-
mediate objects that the framework uses to represent the behavior
of individual entities. The behaviors described in the script charac-
terise how a particular type of entity behaves in an environment and
can be reused for all entities of that type.

d e s k l i g h t extends l i g h t { . . . }

For instance, the code shown above defines an entity of type
desklight. Any entity that can be categorised as a desklightmay
use the behaviors described in the script to regulate how it behaves.
The script defines these behaviors in terms of the three primitives -
L, B, andM - outlined in section 2.4, as described in more detail
in the coming sections.

There is also a requirement to be able to tailor the behaviors
defined in a script for different sub-types of entity. For example, a

1 The power set of behavioral setB.

C
e
i
(t)

C
e
4

(t)

C
e
2

(t)

C
e
3

(t)

C
e
1

(t)

C
G
(t)

(a) Global context

C
e
4

(t)

C
G
(t)

C
e
i
(t)

C
e
3

(t)

C
e
1

(t)

C
e
2

(t)

C
e
n

(t)

C
e

(t)
V

n

(b) Contextual view

B

b
1

b
4

b
3

b
2

b
q

(c) Behavioral set

Figure 1. Using Stigmergy in an Pervasive Computing Environment

desklight can be categorised as a light but may behave in a subtly
different manner. To manage these aspects the language allows
a script to inherit from another script. This allows the script to
inherit behaviors and adjust them to meet the requirements for
that sub-type of entity. In the example above, thedesklightinherits
from light. The approach helps to promote the reuse of code but
also aids in rapid development and incremental construction of
pervasive computing environments, in that, it is possible to reuse
existing functionality and extend it. The semantics of inheritance
are described in later sections.

The hierarchical structure formed by the inheritance relation-
ships are influenced by the presence of four predefined scripts -
entity, object, person, place - which enforce a structure onthe hi-
erarchy. The latter three -object, person, andplace- represent the
entities in the stigmergic model withentity being the base script
for these. These scripts define functionality common to these cate-
gories of entity.

The following sections describe the structures used to define
entity behavior, in so doing, focuses on how the three primitives -
L, B andM - are defined in a script and on the semantics used for
inheritance from a script.

3.1.1 Proximity Function

In the language,L, the proximity function can be defined as either
a radius, a polygon, or a symbolic area around an entity. Any
context emanating from this region will be inserted into theentity’s
contextual view as described in section 2.4. An example proximity
function specification can be seen in the sample code below where
the proximity is set to be a 5 meter radius around the current entity.

prox imi ty (5)

In the next example pairs of coordinates are used to define a
polygon: the unit of measurement is meters, and the reference point
for the polygon is the position of the entity.

prox imi ty (−5 ,−5 ,−10 ,5 ,−10 ,20 ,10 ,20 ,10 ,5 ,5 ,−5)

The code below shows the use of symbolic proximity, where
a predefined area can be used to specify the proximity around
an entity. This type of proximity is useful when there is a strong
definable boundary, such as a room or building.

prox imi ty (" F32 ")

Using this type of proximity function helps filter out interfer-
ence from entities which are nearby, but are not relevant to the cur-
rent situation, i.e. are outside the boundary. Typically, asymbolic
proximity is mapped to an absolute location, or relative location
which is specified beforehand (in the base language).

The proximity function,L, must be defined for each entity so
that it can determine the scope of its local environment. This is typ-
ically achieved in the language by declaring a proximity function
in each script to specifyL for entities of that type. However, it may
also be inherited from a base script if not defined in the extended
script. A sub script can also, if the current definition ofL in the
base script is not compatible, redefine the proximity function.

3.1.2 Behavioral Set

B, thebehavioral set,defines the set of possible behaviors that can
be performed by the entity. The actual implementation of a behav-
ior is not provided in the script but in Java following a particular
API defined by the framework [3, 4]. The script specifies behaviors
that a particular type of entity can perform by declaring a behavior
with a corresponding reference to the implementation of that be-
havior. For example, in the sample code below behaviorson and
off are declared with reference to the classes that implement the
behavior for the entity. In this case, it is the behaviors forturning
a light on and off. When the behavior is invoked it executes the
Java code that defines the specific behavior that allows the entity to
manipulate the environment.

behav ior on = " i e . t c d . cs . l i g h t o n "
behav ior o f f = " i e . t c d . cs . l i g h t o f f "

The declaration of a behavior for an entity can also be inherited
from a base script. For instance, the desklight could inherit theon
and off behaviors from light. It could then use them along with
the behaviors it declares to define how desklight entities are to
behave. It is also possible, if a particular inherited behavior does not
suit, to associate the behavior with a different implementation. This
may be required if a sub-type of an entity uses different actuators
to manipulate the environment. An example of how this can be
achieved is shown in the sample code below where theonbehavior
is defined to use a different implementation for some script.

on = " i e . t c d . cs . d e s k l i g h t o n "

3.1.3 M Function

The primary function of the language is to identify the set ofcon-
textual stimuli that influence an entity and to map them onto be-
haviors that allow entities to modify the local environment. In the
stigmergic model, defined in section 2.4, theM function provides
the means of mapping an entity’s local environment ontoB the
behavioral set. To use theM function in the language it is first nec-
essary to identify the parts of the environment that act as stimuli to
the entity. This is achieved by defining a set of predicates specify-
ing the context information that is of interest to the entity. These
are true when matched by information in the entity’s currentcon-
textual view and can be used to determine the entity’s behavior.
An example of one such predicate can be seen in the sample code
below.

c on te x t bobperson
bobperson . pe rs on = "Bob"
bobperson . l o c a t i o n = "Bob House , F32 "
bobperson . a c t i v i t y =any
bobperson . t ime = " l unc h t ime "
bobperson . j ob = " t e a c h e r "
bobperson . music = " rock "

In this example the context calledbobpersonis declared. The
keyword persondefines the predicatebobpersonas identifying a
person with the name ofBob. It is also possible to identify a
place or an object and by using theany operator to specify any
person, any object, or any place. Thelocationkeyword indicates a

position or area that is of interest to the predicate. It is possible to
use GPS coordinates, relative coordinates, or symbolic information
such as the"Bob House, F32",as used in this example. Theactivity
keyword defines what the target entity is doing. This could bea
person walking to work, a desklight turned on, or a printer printing.
In this example the predicate is interested in Bob doing any activity.
The timekeyword indicates a period, or point in time. This can be
specified as an absolute time such as“Thu Mar 18 21:58:36 GMT
2004”, or symbolic time such as“lunch time”. It must be noted
that while symbolic context information can be used the vocabulary
needs to be agreed upon beforehand to the extent that symbolic
information is matched exactly by the framework.

YABS uses Dey’s [14] concept of primary and secondary con-
text information. Primary context information being the identity,
location, activity and time of the entity, while secondary context
information describes any other information which helps define an
entity’s situation. In the script secondary context information is de-
clared by specifying any key/value pairing. In the coding sample
above thebobpersonpredicate specifies two such pieces of context
information. The first describing what job Bob does and the second
specifying what music he likes to listen to.

Once the required context predicates have been declared it is
necessary to map the entity’s contextual view on the behavior set
by identifying the stimuli in the local environment that effect the
entity’s behavior and determining how the entity should modify its
behavior in response. How this is achieved in the language can be
seen below.

map[bobperson , darkroom]onto {
on ()

}

In this case, the mapping is accomplished when the context
predicatesbobpersonanddarkroomare found to be matched in the
entity’s current contextual view. This would indicate thatBob is in
a place called"Bob Institute, F32"with little light. On obtaining a
match for this predicate the behavior can then be triggered for the
entity, which in this case is theon behavior for a light. The general
structure of the mapping statement allows the developer to specify
one or more context predicates that must all hold in the entity’s
current contextual view for the mapping to be successful.

The declaration of context predicates and the definition of map-
pings for an entity can also be inherited from base scripts. For
instance, a script could inherit context predicatesbobperson, and
darkroomand use them along with other context predicates it has
declared to define mappings. It is also possible, if a particular in-
herited predicate does not suit, to redefine a predicate. An example
of how this can be achieved is shown below, where the location
context on thebobpersonis changed from"Bob Institute, F32"to
"Bob Institute, F35".

bobperson . l o c a t i o n ="Bob House , F35 "

It should be noted that reassigning values of inherited context
predicates also effects how the mappings defined in the base scripts
are performed. While this is a desirable attribute which allows a
script to modify how mappings are triggered in the base scripts
care needs to taken to avoid unwanted behaviors.

Mappings are also inherited from base scripts in the same way
as behaviors and context predicates and can be used by the ex-
tended script to dictate how the entity is to behave along with the
other mappings defined in the script. Tailoring how the inherited
mappings operate is achieved either by modifying the valuesof the
predicates or by overwriting the mappings to change the behaviors
that are mapped. The sample code shown below provides an ex-
ample of how to overwrite a mapping to change the behaviors that
are triggered. In this case, the mapping shown in the previous ex-
ample is overwritten to change the behavior it triggers fromon to

halfon. This is specified by using the same context predicates in the
mapping statement as in the inherited mapping.

map[bobperson , darkroom]onto {
h a l f o n ()

}

3.2 Mapping

The previous sections outlined the basic structure of YABS and
have demonstrated how to trigger a behavior for an entity on en-
countering specific stimuli described by fragments of context infor-
mation. Since the recognition of what is happening at one particular
instance in time is often not sufficient to capture the broader sense
of what has occurred, YABS also provides a more expressive means
of performing the mappings that can also take into account what
has been observed beforehand. Influenced by the work of Allen[2]
and that of Pinhanez et al.’s interval scripts [31] the section looks
at another method that models the relationships between intervals
of time to capture these observations and define entity behavior.

An interval is a length of time marked off by two distinct
points in time representing the start and end of the interval. In
[2], Allen introduced a model that made it possible to describe the
relationship between two intervals of time. He showed that there
are 13 possible such relationships, as summarised in figure 2.

Given any two intervals of time it is possible to use one of the
relationships illustrated in figure 2 to describe how they are related.
For instance, in taking a story such as the one below:

John was not in the room when I touched the switch to turn
on the light.

it is possible to use Allen’s interval temporal logic to describe the
above story as:

S o v e r l a p or meet L
S i s be fo re , meet , i s imeet , o r i b e f o r e R

whereS is the time of touching the switch,L is the time the
light was on, andR is the time that John was in the room.

A equal B

A before B

A overlap B

A during B

A start B

A finish B

A ibefore B

A ioverlap B

A iduring B

A istart B

A ifinish B

A meet B
 A imeet B

A

B

A

B

A

B

A

B

B

A

B

A

B

A

A

B

A

B

A

B

B

A

B

A

B

A

Figure 2. Interval relationships

The importance of Allen’s work stems from its ability to provide
a means of describing the relationships between intervals without
having to explicitly mention the interval duration or specifying the
relationships between the interval’s extremities. These characteris-
tics are of value when it comes to capturing the broader senseof
what is happening in an environment. It is used by the language
to describe the temporal relationships between observations so that
when the described relationship is satisfied the mapping canbe trig-
gered to modify the behavior of the entity. The method is especially
useful when you also consider the imprecise nature of the environ-
ments in which the entities are anticipated to operate.

Thus, YABS uses the primitive relationships defined by Allen
to describe temporal relationships between intervals of time. Entity
behavior is then triggered on observing the intervals in thecorrect
temporal sequence. The context predicates described in section
3.1.3 are used to define the duration of the interval. The start of
an interval is determined when the context predicate becomes true,
and the end is denoted on it becoming invalid. The interval is

deemed active between these two distinct points in time. Thescript
specifies the relationships between intervals by defining a sequence
of context predicates. Once the intervals have occurred, asindicated
by the script, the appropriate behavior is triggered.

For the purpose of illustration an example is used to explain
in more detail the use of interval temporal logic. The samplecode
shown below demonstrates the use of intervals in a mapping state-
ment.

map[con tex tA , c on te x tB] [c on te x tB]onto { . . . }

It uses the context predicates,contextAandcontextB,to describe
two different intervals of time. The relationship between the inter-
vals can be defined ascontextA start contextB,as per Allen’s inter-
val temporal logic. The square brackets demarcate the startand end
of the intervals, and the sequence defines the relationship between
them.

In determining whether a mapping has been triggered the frame-
work investigates each subsequent contextual view to determine
what intervals are active. An interval is deemed active whenthe
context predicate is found to hold true in the entity’s current con-
textual view. The interval becomes inactive when the predicate can
no longer be found to be true. When the intervals are found to have
been active in the correct temporal sequence, as described in the
script, the behavior is triggered. In the example above, therelation-
ship is satisfied when bothcontextAandcontextBhave been active
in the same period withcontextBremaining active for a period af-
ter contextAbecomes inactive at which point the mapping can be
triggered.

It is also feasible to use the other 12 relationships defined by
Allen in the mapping statement. For instance, in the examplebe-
low contextA is before contextB. The symbol[] indicates that no
interval is active for this period of time.

map[con tex tA] [] [c on te x tB]onto { . . . }

The use of Allen’s interval temporal logic provides YABS with
a more expressive means of performing mappings that takes into
account what has occurred beforehand and not just what has oc-
curred at a single point in time. While it does increase the com-
plexity of the script, the increased expressiveness gainedby using
Allen’s temporal logic outweighs the additional difficultyin defin-
ing the behavior of entities. It should also be noted that themapping
statements described in this section use the same semanticsfor in-
heritance as those described in section 3.1.3.

3.3 Passing Context Information

The parameters for the behaviors are constructed from the context
information which has been defined beforehand within predicates
declared in the script, or from context information that is held
in the entity’s current contextual view. The sample code below
demonstrates how parameters are passed in behaviors.

c on te x t p e t e r
p e t e r . music=" f o l k "
. . .
p l a y (p e t e r . music)

The context informationpeter.musicis passed to theplay be-
havior when invoked. For context information to be passed the be-
havior must first be implemented to take a parameter. The context
information passed must also match what is expected by the behav-
ior otherwise the invocation will fail. It is, of course, also possible
to pass multiple parameters if required.

3.4 Using Embedded Functions

To access information held in the entity’s contextual view the lan-
guage uses embedded functions that allow the data in the contex-
tual view to be analysed and context information deduced without
having to directly manipulate the view. The implementations of the
embedded functions are not provided by YABS but in the base lan-

guage. To use a particular embedded function it must first be de-
clared in the script or within one of the base scripts of the script.
An example of how an embedded function is declared can be seen
below. In this example the embedded functionmajority is declared
with a reference to the Java classes that implement the function.

e f u n c t i o n m a j o r i t y = " i e . t c d . cs . dsg . cocoa . M a jo r i t y "

The sample code shown below illustrates how such an embed-
ded function is used in a script.

c on te x t someperson
someperson . l o c a t i o n = "Bob I n s t i t u t e , F32 "
someperson . music=any
. . .
p l a y (m a j o r i t y (someperson))

The majority function, in this case, allows a developer to de-
termine the value of a piece of context information that is most
prevalent in the entity’s current contextual view. In this example
the contextsomepersonacts as a filter for themajority function ex-
cluding any entities in the current contextual view that arenot in
the location "Bob Institute, F32" or do not have any music prefer-
ence. From the remaining context themajority function is used to
determine the majority value of the secondary contextmusicwhich
is then passed theplay behavior.

A number of embedded functions are currently supported.
These include themajority function mentioned above, and also
theminimum, random, minority, andaverageembedded functions.
These functions are declared in theentity script so that they may
be accessed by all scripts. Developers can still extend the function-
ality of the language by either implementing their own embedded
functions or changing the behavior of an embedded function by
selecting a different implementation of that function as can be seen
in the code below.

m a j o r i t y = " i e . t c d . cs . dsg . cocoa . Major i tyNewImpl "

Themaximumandminimumfunctions allow the developer to re-
trieve the maximum or minimum values for context information in
the entity’s current contextual view. Therandomfunction randomly
selects a piece of the context information in the entity’s current con-
textual view. Theminority function provides opposite functionality
to that of the majority function. Theaveragefunction determines
the average value for a particular context.

Currently the embedded functions are restricted to being used
to derive the parameters to be passed to behaviors. It shouldalso
be noted that an embedded function can be called within another if
required.

3.5 RedefiningL

While the proximity function,L, is usually set for the lifetime of
an entity it can, if the circumstances require it, be modifiedduring
an entity’s lifetime. Modification of the proximity function is, for
example, sometimes required by entities when moving from one
environment to another. For example, when a PDA moves from a
busy street to an office it may redefineL to take into account its
new environment. The sample code provides one such example of
the proximity function being redefined. Typically, redefining the
proximity function is done within the mapping statement as the
example illustrates.

map[c on te x tB] [contex tA , c on te x tB]onto {
d i s p l a y P i c t u r e ()
prox imi ty (8) / / 8 meter r a d i u s around e n t i t y .

}

4. Developing Entities with YABS
To demonstrate how the high-level abstractions provided byYABS
can be use to define and coordinate entity behavior in a pervasive
computing environment a prototype implementation [3] of the lan-
guage was used in combination with the Cocoa framework to de-
velop a series of application scenarios.

4.1 Westland Row

Westland Row is a street located near our laboratory. The street
is about 250 meters long, and accommodates a number of cafes,
news agents, shops, bars, and a train station. It is a busy street,
with commuters, shoppers, cars, and buses using it on a dailybasis.
A wireless ad-hoc network has been deployed on Westland Row,
with a number of nodes placed along the street. The nodes form
a sparse population of wireless network nodes and can be config-
ured to create a variety of network models. The network is part of
a project [5] investigating the use ad-hoc networks in urbanareas.
Westland Row provides both a challenging, and an interesting test-
ing ground for developing pervasive computing applications and
for determining the effectiveness of YABS to develop and support
the incremental construction and improvement of solutionsin an
urban environment.

Over a period of time we developed and deployed a small
number of entities along the street. The following is a description
of the current society:

Shopis used to represent the different shops and cafes along the
street. It was one of the first entities to be deployed. The current
implementation is quite simple, having no defined behavior.It
would of course be possible to define a greater range of behavior for
this type of entity but for now it serves only as a source of context
information concerning the presence of a shop at some location.
The shop entities ran on embedded PCs (using PC-104 technology)
placed along the street.

Shopping assistantprovides information about the different
shops on the street. The implementation is based on the Firefox
browser which ran on a laptop. The browser was used to display
information provided by the shops. One behavior has been imple-
mented for the shopping assistant entity, calleddisplay, it opens a
web page on the Firefox browser. The behavior is triggered when
someone is nearby and when information is available to display.
The script defining this behavior is shown below.

s h o p p i n g a s s i s t a n textends f i r e f o x {
prox imi ty (100) / / Se t L to r a d i u s o f 100 me te r s .

/ / De c la r i ng c o n t e x t p r e d i c a t e s .
c on te x t SomePerson
SomePerson . pe rs on =any
c on te x t SomeShop
SomePlace . p l a c e =any
SomePlace . d e a l s =any
/ / De f i ne mapping .
map[SomePerson , SomeShop]onto {

d i s p l a y (SomeShop . d e a l s)
}

}

Jukebox,as the name might suggest, is an mp3 player. The
script, shown below, defines the behavior of the jukebox entity. The
play behavior is triggered when a person is near the jukebox. The
genre of music played depends on what the majority of people pre-
fer to listen to. This is determined by observing the contextinfor-
mation from punter entities, in particular the musical preferences
of the entities. Thestopbehavior is triggered when there is no one
in the vicinity of the jukebox entity. The jukebox entity runs on a
laptop using the xmms multimedia player.

j ukebox extends o b j e c t {
prox imi ty (1 0) / / Se t L to r a d i u s o f 10 me te r s
/ / Dec lare be hav io r s f o r
behav ior p la y = " i e . t c d . P la yB e ha v io r "
behav ior s t o p =" i e . t c d . S topB e ha v io r "
/ / De c la r i ng c o n t e x t p r e d i c a t e s .
c on te x t SomePerson
SomePerson . pe rs on =any
SomePerson . music =any
c on te x t JukeBoxPlay
JukeBoxPlay . o b j e c t =t h i s . o b j e c t
JukeBoxPlay . a c t i v i t y = " p la y "
c on te x t JukeBoxStop
JukeBoxStop . o b j e c t =t h i s . o b j e c t

JukeBoxStop . a c t i v i t y = " s t o p "
/ / De f i n i ng mappings .
map [JukeBoxStop] [JukeBoxStop , SomePerson]onto {

p l a y (m a j o r i t y (SomePerson))
}
map[JukeBoxPlay , SomePerson] [JukeBoxPlay]onto {

s t o p ()
}

}

Punterpresents a person on the street, whether they are shop-
ping, having coffee, or commuting to work. While the script for
this entity is quite simple, due to the requirements of the scenario,
it is still necessary to represent the pedestrian to allow other entities
absorb their context.

In all we deployed two punters entities, five shop’s representing
some of the shops and cafes on the street, two shopping assistant
entities associated with each person, and a jukebox locatedin
one of the cafes halfway down the street. The shop entities along
Westland Row remained passive to changes in their environment,
which was as expected due to their limited implementation. The
shopping assistant, sometimes carried around by people, would
display information about the shops as they walk by. The jukebox
entity, with its collection of music, would tailor the selection played
depending on the users in it’s vicinity.

While the scenario is simple, it serves to demonstrate that the
high-level abstractions provided by YABS made it possible to add
new entities, and remove or upgrade old ones from Westland Row
without adversely effecting the rest of the street. This is primar-
ily due to YABS supporting the autonomy and loose coupling be-
tween entities which allowed entities to be developed separately
and to be installed into the environment when ready. These prop-
erties facilitated the incremental construction and improvement of
solutions over the lifetime of the environment. Entities appearing
and disappearing effect the behavior of other entities but not their
correct operation. Moreover, no preinstallation of any software sup-
port is required. It should also be noted that the abstractions pro-
vided manage to separate the underlying low-level technology from
the compositional side of developing pervasive computing applica-
tions. The clear separation allows developers using YABS tocon-
centrate on implementing the behavior of individual entities. The
approach aids the rapid development of environments and encour-
ages the reuse of the underlying components - sensor and actuators
- and of the scripts through the reuse and ability to extend the de-
fined behavior.

4.2 Street Lights

The street-light application scenario demonstrates how system be-
havior can emerge from the local interactions of entities. The ap-
plication is based on a set of street lights that you might findalong
the side of a road. The lights coordinate their activity, through ob-
serving their local environment, to ensure the street is sufficiently
well lit for pedestrians to walk safely along the path. By default the
lights are off to save energy but turn on in the presence of users,
or half on when the street light beside is fully on. The effectis to
have the light follow the person along the street. Figure 3 provides
an illustration of the scenario.

The implementation of the street-light scenario requires the
development of two entities; one to represent the street light, and
another to present a pedestrian walking along the street.

Punter entityrepresents the pedestrian walking along the street.
The implementation of the entity is based on the punter entities
used in the previous scenario.

Streetlight entityrepresents the street lights along the walkway.
The script defining the behavior of the street-light entity can be
seen below. Theon behavior is triggered when a person enters the
local environment of the street-light entity. Thehalfonbehavior is
triggered when other street lights in the vicinity of the entity areon.

Streetlight

Off
 Half On
 On

Extent of Local

Environment

Figure 3. An illustration of the streetlight scenario.

Theoff behavior of the entity is triggered when the person leaves
the local environment when no other street lights in the vicinity are
on.

s t r e e t l i g h t extends o b j e c t {
prox imi ty (200) / / Se t L to r a d i u s o f 200 me te r s .
/ / De c la r i ng be hav io r s f o r s t r e e t l i g h t e n t i t y .
behav ior on = " i e . t c d . S t re e tL igh tOn B e h a v io r "
behav ior h a l f o n = " i e . t c d . S t r e e t L i g h t H a l f On B e ha v i o r "
behav ior o f f = " i e . t c d . S t r e e t L i g h t O f f B e h a v i o r "
/ / De c la r i ng c o n t e x t p r e d i c a t e s
c on te x t Walker
Walker . pe rs on =any
c on te x t SomeLightOn
SomeLightOn . a c t i v i t y = "On"
c on te x t LightOn
LightOn . o b j e c t = t h i s . o b j e c t
L ightOn . a c t i v i t y = "On"
c on te x t L igh tO f f
L i gh tO f f . o b j e c t = t h i s . o b j e c t
L igh tO f f . a c t i v i t y = " Off "
c on te x t L igh tHa l fOn
L igh tHa l fOn . o b j e c t = t h i s . o b j e c t
L igh tHa l fOn . a c t i v i t y = " HalfOn "
/ / De f i n i ng mappings f o r s t r e e t l i g h t e n t i t y .
map[L i gh tO f f] [L igh tOf f , SomeLightOn]onto {

h a l f o n ()
}
map[L i gh tO f f] [L igh tOf f , Walker] onto {

on ()
}
map[L ightHal fOn , SomeLightOn] [L igh tHa l fOn]onto {

o f f ()
}
map[L igh tHa l fOn] [L ightHal fOn , Walker] onto {

on ()
}
map[LightOn , Walker , SomeLightOn] [LightOn , SomeLightOn]onto {

h a l f o n ()
}
map[LightOn , Walker] [L ightOn]onto {

o f f ()
}

}

This scenario was deployed in a simulated environment with a
single punter entity and ten street light entities placed along the
street as illustrated in figure 3. While the script for the street-light
entity is quite simile it still provides an expressive approach to
defining its behavior that allows a meaningful environment to form.
The scenario illustrates how emergent behavior, a bubble oflight
appearing to follow a pedestrian, arises from the individual actions
of a collection of simple entities. Moreover, the scenario shows
reuse of behavior, for the punter entity, in a different execution
environment where its location is provided by a location simulator
rather than the GPS sensor used in the Westland Row deployment.

5. Related Work
Domain-specific languages have already been used in pervasive
computing to both define the behavior of components and to spec-

ify how those components are composed to build pervasive com-
puting environments. Their use in these roles has helped pervasive
computing systems to abstract the complexities of the underlying
system, and aided the rapid development of applications forthese
types of environments.

The TEA [35] project have designed a language that defines
the behavior of small devices such as mobile phones. Actionscan
be performed when entering a context, when leaving a context,
and while in a certain context. In [32], Pinhanez has defined an
interval scripting language that can define the temporal behavior
of components. Based on PNF-networks [29] Pinhanez et al. have
used the interval scripting language to create story-basedinterac-
tive environments such as It/I [30]. The interval script describes the
temporal relationships between different states of the environment,
defining when to stop and to start other actions. Pinhanez’s PNF-
networks are based on Allen [2] temporal intervals.

RCSM [39] have define a language to control the behavior of
components. RCSM is an object-based framework that uses an
IDL-based language called CA-IDL to generate context-sensitive
objects. These objects run on a customised ORB that supportsthe
communication and context-awareness between objects. Develop-
ers use the CA-IDL language to define context variables that are
used in temporal expressions within the script to trigger either local
or remote method invocations on objects in the pervasive comput-
ing environment.

Gaia [33] uses high-level languages in a different manner tothe
above, in that, it uses scripts to compose the components of aperva-
sive computing system into applications that can be used by those
in the environment. They use scripts, based on the interpreted lan-
guage Lua [23], to describe how to combine the various compo-
nents in the environment to form an application. In [12], SPREAD
have taken a different approach where they have defined a program-
ming abstraction based on the physical environment. The resulting
programming model allows applications to be driven by the spatial
orientation of objects in the environment.

The language defined in this paper applies some of the tech-
niques used in the above projects to define entity behavior and to
facilitate the emergence of pervasive computing environments from
collections of autonomous entities. In particular, the language uses
similar methods to RCSM [39] in declaring context and triggering
actions but extends the approach to include the full range oftem-
poral relationships used by Pinhanez [32] and defined by Allen [2].
However, the approach also includes a number of novel techniques
for extending entity behavior and for facilitating the incremental
development of pervasive computing environments. The approach
also includes methods for tailoring the behavior of entities by the
passing of context to the actions.

6. Conclusions and Future Work
This paper has introduced a novel domain-specific language,called
YABS, for defining entity behavior in pervasive computing envi-
ronments. Based on the stigmergic model outlined in section3 the
language provides high-level programming abstractions that com-
bines expressiveness and simplicity with the ability to abstract the
complexities of dealing with the underlying technologies.By fo-
cusing on defining entity behavior the language allows develop-
ers to concentrate their efforts on characterising the behavior of a
pervasive computing environment rather than system development
while also aiding the incremental construction and improvement of
solutions over the lifetime of the environment.

Further work is still required to prove the approach. A major
concern at the present time is the manner in which context infor-
mation is defined. For one entity to understand another entity’s sit-
uation it must understand the meaning of the context information
that it provides. Currently YABS provides the concept of primary

context information, which is well understood and defined, and sec-
ondary context information which consists of key/value pairs that
are open to interpretation. To tackle the problem we are looking at
using alternative approaches to defining context information based
on common ontologies.

References
[1] Gregory D. Abowd. Classroom 2000: An experiment with the

instrumentation of a living educational environment.IBM Systems
Journal, 38(4):508–530, October 1999.

[2] James F. Allen. Time and time again: the many ways to represent
time. International Journal of Intelligent Systems, 6:341–355, 1991.

[3] P. Barron. Using Stigmergy to Build Pervasive Computing Environ-
ments. PhD thesis, Computer Science Dept, Trinity College Dublin,
2005.

[4] P. Barron and V. Cahill. Using stigmergy to co-ordinate pervasive
computing environments. InSixth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’04), pages 62–71,
December 2004.

[5] P. Barron, S. Weber, S. Clarke, and V. Cahill. Experiences deploying
an ad-hoc network in an urban environment. InIEEE ICPS Workshop
on Multi-hop Ad hoc Networks: from theory to reality, 2005.

[6] R. Beckers, O.E. Holland, and J.L. Deneubourg. From location
actions to global tasks: stigmergy and collective robotics. In Artificial
Life IV, pages 181–189, 1994.

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz.Swarm Intelligence From
Natural to Artificial Systems. Oxford University Press, 1999.

[8] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. Deneubourg.
Adaptive task allocation inspired by a model of division of labor
in social insects. InBiocomputing and emergent computation:
Proceedings of BCEC97, pages 36–45. World Scientific Press, 1997.

[9] Sven A. Brueckner and H. Van Dyke Parunak. Swarming agents for
distributed pattern detection and classification. InAAMAS, 2002.

[10] B. Bullnheimer, R.F. Hartl, and C. Strauss. Applying the ant system
to the vehicle routing problem. In2nd Metaheuristics International
Conference (MIC-97), Antipolis, France, 1997.

[11] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic
control for communications networks.Artificial Intelligence
Research, 9:317–365, 1998.

[12] P. Couderc and M. Banatre. Ambient computing applications:
an experience with the spread approach. In36th Annual Hawaii
International Conference on System Sciences (HICSS’03), 2003.

[13] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M Pasteels. The self-
organizing exploratory pattern of argentine ant.Journal of Insect
Behavior, 3:159–168, 1990.

[14] A. Dey and G. Abowd. Towards a better understanding of context and
context-awareness. InWorkshop on The What, Who, Where, When,
and How of Context-Awareness, as part of the 2000 Conferenceon
Human Factors in Computing Systems (CHI 2000), 2000.

[15] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents.IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 26(1):29–41, 1996.

[16] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. Ant
algorithms for discrete optmization.Artificial List, 5(2):137–172,
1999.

[17] W. Keith Edwards and Rebecca E. Grinter. At home with ubiquitous
computing: Seven challenges. In3rd international conference on
Ubiquitous Computing, pages 256–272, Atlanta, Georgia, USA,
2001. Springer-Verlag.

[18] David Garlan, Dan Siewiorek, Asim Smailagic, and PeterSteenkiste.
Project aura: Toward distraction-free pervasive computing. IEEE
Pervasive Computing, 1(2), 2002.

[19] S. Goss, S. Aron, J. L. Deneubourg, and J. M Pasteels. Self-organized

shortcuts in the argentine ant.Naturwissenschaften, 76:579–581,
1989.

[20] P.-P. Grassé. Le reconstruction du nid et les coordinations inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la
theorie de la stigmergie: essai d’interpretation du comportement des
termites constructeurs.Insectes Sociaux, 6:41–81, 1959.

[21] Robert Grimm, Janet Davis, Eric Lemar, Adam MacBeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello,
Steven Gribble, and David Wetherall. System support for pervasive
applications.ACM Transactions of Computing Systems, 22(4):421–
486, November 2004.

[22] Owen Holland and Chris Melhuish. Stigmergy, self-organization, and
sorting in collective robotics.Artif. Life, 5(2):173–202, 1999.

[23] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua-an
extensible extension language.Software: Practice and Experience,
26(6):635–652, 1996.

[24] Brad Johanson, Armando Fox, and Terry Winograd. The interactive
workspaces project: Experiences with ubiquitous computing rooms.
IEEE Pervasive Computing Magazine, 1(2), April-June 2002.

[25] Tim Kindberg and Armando Fox. System software for ubiquitous
computing.IEEE Pervasive Computing, 1(1), 2002.

[26] Marco Mamei and Franco Zambonelli. Programming stigmergic
coordination with the tota middleware. Infourth international joint
conference on Autonomous agents and multiagent systems, pages 415
– 422, July 25 - 29 2005.

[27] M. Mozer. The neural network house: An environment thatadapts
to its inhabitants. InAAAI Spring Symposium on Intelligent
Environments, pages 110–114, 1998.

[28] E. Mynatt, I. Essa, and W. Rogers. Increasing the oppurtunities for
aging-in-place. InACM Conference on Universal Usability, 2000.

[29] C. Pinhanez and A. Bobick. Fast constraint propagationon
specialized allen networks and its application to action recognition
and control. MIT Tech Report 456, MIT, January 1998.

[30] C. Pinhanez and A. Bobick. It/i: A theater play featuring an
autonomous computer graphics character. InACM Multimedia’98
Workshop on Technologies for Interactive Movies, January 1998.

[31] C. Pinhanez, K. Mase, and A. Bobick. Interval scritps: adesign
paradigm for story-based interactive systems. InCHI’97, March
1997.

[32] Claudio Santos Pinhanez.Representation and Recognition of Action
in Interactive Spaces. PhD thesis, MIT, June 1999.

[33] Manuel Roman, Christopher K. Hess, Anand Ranganathan Re-
nato Cerqueira, Roy H. Campbell, and Klara Nahrstedt. Gaia:A
middleware infrastructure to enable active spaces.IEEE Pervasive
Computing, 1(4):74–83, Oct-Dec 2002.

[34] M. Satyanarayanan. Pervasive computing: vision and challenges.
IEEE Personal Communications, 8(4):10 –17, Aug 2001.

[35] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van de Velde. Advanced
interaction in context. In1th International Symposium on Handheld
and Ubiquitous Computing (HUC99), pages 89–101. Springer, 1999.

[36] N.A. Streitz, J. Geißler, and T. Holmer. Roomware for cooperative
buildings: Integrated design of architectural spaces and information
spaces. InCoBuild98, February 1998.

[37] M. Stringer, G. Fitzpatrick, and E Harris. Lessons for the future:
Experiences with the installation and use of today’s domestic sensor
and technologies. In4th International Conference on Pervasive
Computing, 2006.

[38] Guy Theraulaz and Eric Bonabeau. A brief history of stigmergy.
Artificial Life, 5(2):97–116, 1999.

[39] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K.S.
Gupta. Reconfigurable context-sensitive middleware for pervasive
computing.IEEE Pervasive Computing, 1(3):33–40, 2002.

