Collabor ative Reinforcement L earning of Autonomic Behaviour

Jim Dowling, Raymond Cunningham, Eoin Curran and Vinny Cahill
Distributed Systems Group, Trinity College Dublin
{ipdowlin,rennnghm,vjcahill @cs.tcd.ie, currane@maths.tcd.ie}

Abstract

This paper introduces Collaborative Reinforcement
Learning (CRL), a coordination model for solving
system-wide optimisation problems in distributed sys-
tems where there is no support for global state. In
CRL the autonomic properties of a distributed system
emerge from the coordination of individual agents solv-
ing discrete optimisation problems using Reinforcement
Learning. In the context of an ad hoc routing protocol,
we show how system-wide optimisation in CRL can be
used to establish and maintain autonomic properties for
decentralised distributed systems.

1 Introduction

Massive autonomic distributed computer systems,
on a scale comparable with biological autonomic sys-
tems, require a decentralised, bottom-up approach to
their construction. The benefits of such an approach
include improved robustness and scalability, the pos-
sibility of self-regulation, self-configuration and self-
organisation, the lack of centralised points of failure
or attack, as well as possible evolution of the system
through evolving the local rules of the agents [1].

Collaborative Reinforcement Learning (CRL) is a
bottom-up approach to tackling the complex time-
varying problems of engineering autonomic behaviour
for distributed systems where there is no support for
global state. It is an extension to Reinforcement Learn-
ing [2] (RL) for solving system-wide optimisation prob-
lems in decentralised multi-agent systems. In CRL, in-
dividual agents solve discrete optimisation problems us-
ing RL and share solution information with their neigh-
bours, contributing towards the solution of the system-
wide optimisation problem. Agents are part of a dy-
namic population, with support for agents joining and
leaving the system and establishing connections with
neighbours. CRL does not make use of system-wide
knowledge and individual agents only know about and

communicate with their neighbours.

It is our belief that many autonomic properties of
distributed systems that can be represented as system-
wide optimisation problems can be solved using CRL.
Distributed systems such as ad hoc networks, peer-to-
peer and grid computing applications contain optimisa-
tion problems such as how to optimise load-balancing
in a grid-computing system or the optimal distribution
of meta-data in a peer-to-peer system. In this paper we
introduce SAMPLE, a routing protocol for ad hoc net-
works [3], as an implementation of CRL and describe
its autonomic properties such as the adaptation of traffic
flows to congestion and interference and the favouring
of stable network links by network traffic.

2 CRL

Collaborative Reinforcement Learning (CRL) is an
extension to RL that uses system-wide optimisation to
establish and maintain system-wide properties over a
group of decentralised agents, e.g. properties such as
fault tolerant or load-balanced. We view an autonomic
property of a distributed system as a system-wide prop-
erty that contributes to the system’s self-management.
Existing techniques that introduce system-wide proper-
ties into distributed systems, such as group communi-
cation protocols, communicating sequential processes
and dynamic software architectures, do so in a top-down
manner, decomposing system behaviour and making it
amenable to formal analysis. These approaches are not
suitable for dynamic environments or environments that
have no support for global state, such as wireless ad-hoc
networks.

CRL extends RL with a coordination model that de-
scribes how agents cooperate to solve a system-wide
optimisation problem composed of a set of discrete opti-
misation problems (DOP). It is inspired by swarm intel-
ligence algorithms [1]. The solution of the set of DOPs
that make up the system-wide optimisation problem is
initiated at some starting agent or set of agents and dis-
tributed across a partially connected set of agents result-



ing in near-optimal use of system-wide resources. Each
DOP is modelled as an absorbing Markov Decision Pro-
cess (MDP).

CRL solves system-wide optimisation problems by
specifying how individual agents can either solve a
DOP using reinforcement learning and share their re-
sults with neighbours using localised advertisement or
delegate the solution of a DOP to a neighbouring agent
by transferring responsibility for the solution to the
DOP, see Figure 1. DOPs can be delegated multiple

advertise(V(s)) | delegate(DOP) o

state s,(t) ¢ : state s(t)

reward r(t)) Agent -— Decay—m Agent reward r(t)
» i
action ay(t) action a](t)

Ir(t+1) A - A r](t+1)\

4‘4 Partially Shared ]
t+1 . s(t+1)l

g Environment Aie

' |

Figure 1. CRL

times across many neighbours before they are handled.
An agent delegates the solution to a DOP to a neighbour
when it either cannot solve the problem locally or when
the estimated cost of solving it locally is higher than the
estimated cost of a neighbour solving it.

2.0.1 Optimal Policy in CRL

In RL, the cost of solving a DOP is described by the
estimated value function, V'(s) - the expected perfor-
mance of the agent if it starts in state, s, and executes
an optimal state transition policy thereafter. We can also
use the optimal action-value function, Q(s, a), instead
of V(s), to describe the perfomance of the agent if the
optimal set of actions are executed starting from state,
s. The value function and action-value function for the
optimal policy are related using V (s) = max, Q(s,a).

In CRL state transitions may be local on the current
agent or be remote to a neighbouring agent. When es-
timating the cost of the transition to a state on a neigh-
bouring agent we also have to take into consideration
the connection cost to the neighbouring agent. For this
reason, we use a different estimated optimal action-
value function, Q;(s,a) at agent n; that includes both
the optimal value function for the state, V;(s), and the
connection cost to the state, D;(s’, a, s). The connec-
tion cost for transition to a state that is on the same agent
as the agent is zero, whereas the connection cost for
a transition to a state located on a neighbouring agent

should reflect the underlying network cost as well as
the cost of transferring control from the source agent to
the target agent. The transfer of control involves termi-
nating the DOP at the originating agent and starting the
solution to a new DOP at the destination agent.

2.0.2 Advertisement

When an agent executes actions it receives reinforce-
ments from its environment that cause updates to the V/
values of an agent. In CRL, neighbours are informed of
changes to an agent’s V' values using advertisement to
broadcast V' values to neighbours, see Figure 1. Each
neighbour then uses the V' values and their estimated
connection cost to the agent to update their cached V;
values. Examples of mechanisms for implementing ad-
vertisement updates in distributed systems include pe-
riodic broadcast of updates, conditional broadcast and
event-based notification. In our ad hoc routing proto-
col, SAMPLE, we use the shared radio communication
channel to piggy-back V' updates inside 802.11 unicast
and broadcast packets that are promiscuously received
by neighbours.

2.0.3 Dynamic Environments

Reinforcement learning is not suitable for non-
stationary (dynamic) environments. In decentralised
distributed systems, it is not possible for an agent to
have perfect and complete knowledge of the state of
its neighbours, connections and environment. However,
similar to RL, CRL models are based on MDP learn-
ing methods that require complete observability [2]. To
overcome problems related to partially observable envi-
ronments our statistical models favour more recent ob-
servations using a finite-history-window [2].

In decentralised distributed systems, it also is impor-
tant for agents to be able to both discover new agents
and to be able to *forget’ old agents and solutions as
the environment changes. CRL provides additional sup-
port for a discovery action that an agent can execute in
any state to attempt to find new neighbours. In SAM-
PLE, the discovery action is implemented using 802.11
broadcast. There is also a model for the decay of V;
information [3] where, in the absence of new advertise-
ments of V'(s) values by a neighbour, an agent decays
its cached V() values. The absence of V'(s) value ad-
vertisements amounts to negative feedback and allows
us to discard states, and hence agents, with stale values
in the system. The rate of decay is configurable, with
higher rates for more dynamic network topologies. As
a result of the decay model in CRL, there is a require-
ment for a continual critical mass of advertisements to
maintain knowledge of system structure. This property



is similar to autopoeisis found in self-organising sys-
tems [1].

2.04 Model-Based RL

Reinforcement learning strategies can be either model-
free or model-based [2]. We favour a model-based ap-
proach to building autonomic distributed systems using
CRL, as the use of a model can be seen as allowing
virtual experiments’. For example, if a V(s) gener-
ated value changes, a model-free method may require
many experiences of actions resulting in state s be-
fore this change can be incorporated into neighbouring
states. However, a method that uses a model can use
the observed, statistical information about state transi-
tion probabilities, T'(s, a, s"), about which actions re-
sulted in state s in the past to propagate this change in
V() to neighbouring states without the need for actu-
ally executing actions which result in state s. In dis-
tributed systems where real-world experience is expen-
sive, the model based approach has a distinct advantage
over model-free methods.

2.1 CRL Algorithm

The CRL algorithm can be used to solve system-
wide optimisation problems that can be characterised
as a multi-agent system, and where agents solve dis-
crete optimisation problems modelled as MDPs in the
following schema:

e A set of agents N' = {ni,ns,...,na} cOrre-
sponding to nodes in a distributed system.

e Each agent n, has a set, V;, of neighbouring agents
where V; C N andn; ¢ V;.

e Each agent n; has a set of states S;, where S; C S
and S is the system-wide set of states.

o Nodes have both internal and external states.
Int : N — P(8) is the function that maps from
the set of agents to a non-empty set of internal
states that are not visible by neighbouring agents.
Ezt : N — P(S) is the function that maps from
the set of agents to a set of externally visible states.
Ext(n;) is the set of states visible to neighbours of
n;. The relationship between internal and external
states is the following:
Int(ni) cS;
Ext(n;) C S;

Int(n;) U Ext(n;) = S;
Int(n;) N Ext(n;) = {}

e We define a set of causally connected states be-
tween agents n; and n; as:
Cnin,; = Int(n;) N Ext(n;) where n; € V;.

5 € Cp,;n, is a causally connected state where an
internal state s at n; corresponds to an external
state s at n;. Causally connected states enable the
delegation of a MDP from one node to another. In
CRL a state transition to s at n; terminates the
MDP at n; and initiates a new MDP starting at
state s at n;.

Each agent n; has a set of actions A; = A4, U
Ay, U discovery, where A; C A. Ag,are the set
of delegation actions that represent an action that
attempts to delegate a MDP from n;to n;, A, are
the set of DOP actions that attempt to solve the
MDP locally, and discovery is a discovery action.
discovery updates the set of neighbours, V;, for
agent, n;, and queries if discovered neighbouring
agent n; provides the capabilities to accept a del-
egated MDP from n;. If it does, A, is updated
to include a new delegation action that can result
in a state transition to s € C,,,,, delegating a
MDP from n; to n;. The discovery action is not
included in our calculation of the V; values, be-
cause it should never be part of the pure exploita-
tive strategy which the @Q; values represent.

D; : 8 x Ay, x S; — R is the connection cost
function that observes the cost for the attempted
use of a connection in a distributed system. The
connection cost is based on a statistical model that
estimates the cost of using a connection in a dis-
tributed system.

We define a cache at n; as Cache; =
{(Qi(s,a),rj) :rj € RA s € Cpyn, b The value
r; inthe pair (Q; (s, a;), r;) corresponds to the last
advertised V;(s) received by agent n; from agent
nj.

For each n; € V;, Cache; is updated by a V; ad-
vertisement for a shared causally connected state.
The update replaces the r; element of the pair
(Qi(s,a),r;) in Cache; with the advertised V;
value .

Decay(r;) — R is the decay model that updates
the ; element in Cache;,

Decay(rj) = r; + p'®

where td is the amount of time elapsed since the
last received advertisement for r; from agent ;.

CRL model-based learning requires learning the
state transition model, T'(s, a, s). This can be pro-
vided by the user or estimated during the learning
trial by observing actual state transitions. It is ap-
plication dependent.



e The distributed model-based @Q-learning algorithm
is:

R(s.a)+7 2 T(sa)

(D;(s',a, s) + Decay (V;(s")))

1)
where a € Ay, If a ¢ Ay, this defaults to the
standard model-based @Q-Learning algorithm [2].
R(s, a) is the MDP termination cost, P(s’|s,a) is
the state transition model that computes the prob-
ability of the action a resulting in a state transition
to state s’, D;(s’|s, a) is the estimated connection
costand V;(s') is r; € (Q(s,a),r;) € Cache; if
a € Ag, and V;(s') otherwise.

Qi(s,a) =

e V; values, at node n;, can be calculated using the
Bellman optimality equation [2]:

Vi(s) = max [Qi(s,a)]

e Finally, a cleanup updater is available at each
agent, n;, to remove stale elements from its set
of neighbours, V;, delegation actions, A4,, con-
nected states, C,,,, and its Cache;. When a
(Qi(s,aj),r;) entry in the cache drops below
a specified threshold, the cleanup updater re-
moves the delegation action a; from Ag,, the
stale connected state s from C,,,,,;, and the pair
(Qi(s,a;),r;) from Cache;. If after removing s,
cs;s; = 1) for j some neighbour of n;, then n; is
removed from V;.

3 SAMPLE: Ad-hoc Routing using CRL

Ad hoc routing exhibits challenging problems such
as the lack of global knowledge at any particular node in
the ad hoc network and the requirement for the system-
wide autonomic properties of the protocol to emerge
from local routing decisions at routing agents. SAM-
PLE is a probabilistic on-demand ad hoc routing proto-
col based on CRL [3] that possesses system-wide prop-
erties, such as the adaptation of network traffic patterns
around areas of congestion and wireless interference
and the exploitaton of stable routes. Whereas standard
ad hoc routing protocols such as Ad hoc On-Demand
Distance Vector Routing (AODV) and Dynamic Source
Routing protocol (DSR) use discrete models of links in
the network, in SAMPLE, we use a statistical model of
links based on RL and routing agents share their link
information with neighbours using CRL. Routing deci-
sions are based both on locally acquired experience us-
ing RL and information acquired from neighbours using
CRL, see Figure 2.

Statistical
Model of Link

o

A \\ e
Advertised

\ \ Route Cost

Eliminated by
Greedy Heuristic

\
Route (connection) Cost

Figure 2. Routing Decision in SAMPLE

We have implemented the SAMPLE routing protocol
in the NS-2 network simulator and performance results
show better performance in the face of adverse network
conditions than AODV and DSR [3]. In our experimen-
tal setup and simulations, there are 33 fixed nodes, 50
mobile nodes and 3 server nodes are the fixed nodes at
the centre of the simulation arena. The fixed nodes in
the simulation provide stable links in the network that
the routing protocols could exploit. Figure 3 shows the
variation in performance of SAMPLE, AODV and DSR
as the number of clients in the network is increased. For
these figures the packet size sent by clients was kept
fixed at 64 bytes, sent 3 times a second. As the num-
ber of clients in the network is increased, the offered
throughput to the routing protocols is increased. This
in turn increases the level of network congestion and
the amount of contention that the MAC protocol must
deal with. This increased congestion reduces the ratio
of packets that are successfully delivered due to an in-
creased number of failed MAC unicasts in the network.

SAMPLE performs better than existing ad-hoc pro-
tocols in the presence of failed unicasts due to the ability
of routing agents to learn that a link failed to some tran-
sient factor (and hence retrying the link may succeed)
or some more serious factor such as link failure, and
retrying the link is unlikely to succeed. Existing proto-
cols assume the link has failed and perform poorly when
packet error rates increase. As routing agents share their
experience about links it collectively improves their rate
of learning and convergence on more optimal system-
wide routing behaviour. SAMPLE displays the system-
wide property of routing traffic around areas of conges-
tion or wireless interference. This property optimises
throughput available in the network and emerges from
the solution to and interaction of the individual routing
DOPs at nodes. An important lesson from SAMPLE is
the need for experimentation, as the emergence of more
optimal routing properties is sensitive to tuneable pa-
rameters in CRL and the RL system model in SAMPLE.



Delivery Ratio vs Offered Kbps
12 T T T

Transmissions per Packet Sent vs Offered Kbps

T T
Routing Protocol
AODV

0.6 +

Delivery Ratio

04 -

02 -

Transmissions per Packet Sent

40 T T T T T T
Routing Protocol

AODV
35 - DSR +--x-— |
30 - | 4

20

15 | A

10 ¢ A

1 1 1 1 1 1
10 15 20 25 30 35 40 45
Offered Kbps

(a) Délivery Ratio

1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
Offered Kbps

(b) Throughput

Figure 3. SAMPLE Performance with Varying Load. 64 byte packets

3.1 Autonomic Propertiesof SAMPLE

From a system perspective, routing can be consid-
ered as a system-wide, continuous optimisation prob-
lem but from the perspective of an individual peer rout-
ing can be considered as a discrete optimisation prob-
lem - each packet will have start and termination states
and make a discrete number of state transitions. Individ-
ual agents, from a population of agents, attempt to find
a minimum cost solution to a routing problem, see Fig-
ure 2, and inform their neighbours of their lowest cost
solution, who may use that information to update their
solutions to the same routing problem. System-wide
autonomic properties that can be observed in SAM-
PLE include the exploitation of stable routes by packets
where possible and the re-routing of network traffic pat-
terns around congestion and interference spots. Both of
these properties emerge from the solution to and inter-
action of the individual discrete optimisation problems,
i.e. routing decisions, that operate only on local statis-
tical models. As can be seen from the results in fig-
ure 3, the autonomic properties of the routing protocol
improve routing performance, particularly in congested
and lossy wireless networks.

3.2 Discussion and Future Work

We are currently investigating the relationship be-
tween system-wide optimisation and the establishment
and maintanance of various autonomic properties in de-
centralised distributed systems. As a different applica-
tion of CRL, we are building a system that optimises
resource utilisation in an ad hoc networks using load-
balancing. While certain autonomic properties, such as

self-optimisation can often be cast as system-wide op-
timisation problems, it is less clear how self-healing,
self-configuration and self-protection can fit into this
scheme. CRL relies on agents being able to represent
an activity using a cost, and we are investigating how
we can represent different autonomic properties using
the cost model.

4 Conclusions

This paper introduces Collaborative Reinforcement
Learning, a coordination model for solving system-
wide optimisation problems in distributed systems
where there is no support for global state. It can be used
as a technique for establishing autonomic distributed
system properties using only local discrete optimisation
rules and information sharing among agents. We have
shown in SAMPLE that autonomic behaviour can be in-
troduced into distributed systems using CRL.

References

[1] J. Kennedy and R. C. Eberhart, Svarm Intelli-
gence. San Francisco, California: Morgan Kauf-
mann, 2001.

[2]

R. Sutton and A. Barto, Reinforcement Learning.
MIT Press, 1998.

[3] E. Curranand J. Dowling, “Sample: An on-demand
probabilistic routing protocol for ad-hoc networks,”
Technical Report: Dept. of Computer Science, Trin-

ity College Dublin, 2004.



