
Self-Managed Decentralised Systems using
K-Components and Collaborative Reinforcement Learning

Jim Dowling
Distributed Systems Group

Trinity College Dublin

jim.dowling@cs.tcd.ie

Vinny Cahill
Distributed Systems Group

Trinity College Dublin

vinny.cahill@cs.tcd.ie

ABSTRACT
Components in a decentralised system are faced with uncer-
tainty as how to best adapt to a changing environment to
maintain or optimise system performance. How can individ-
ual components learn to adapt to recover from faults in an
uncertain environment? How can a decentralised system co-
ordinate the adaptive behaviour of its components to realise
system optimisation goals given problems establishing con-
sensus in dynamic environments? This paper introduces a
self-adaptive component model, called K-Components, that
enables individual components adapt to a changing environ-
ment and a decentralised coordination model, called collab-
orative reinforcement learning, that enables groups of com-
ponents to learn to collectively adapt their behaviour to es-
tablish and maintain system-wide properties in a changing
environment.

Keywords
Decentralised Self-Adaptive Systems, Collaborative Rein-
forcement Learning, Architectural Reflection

1. INTRODUCTION
The specification of system-wide properties is a good start-

ing point for the construction of self-managing distributed
systems, as the system can use them to reason about sys-
tem behaviour and can adapt itself to actively establish and
maintain them, e.g., using self-management actions. Minsky
describes system-wide properties as regularities in a system
[1] and examples include fault tolerance and load-balanced.
System-wide properties may be formal properties of the sys-
tem determined at design time or attributes of the system
that are established and maintained at run-time. Existing
design time techniques that can introduce system-wide prop-
erties into distributed systems do so in a top-down manner,
decomposing system behaviour and making it amenable to
formal analysis [2]. These include constraints in software
architectures and formal models such as π-calculus. At run-
time systems typically rely on centralised or consensus-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSS’04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010 ...$5.00.

approaches to establish and maintain system-wide proper-
ties, using techniques such as group communication proto-
cols [3] or centralised configuration managers in dynamic
software architectures [4]. Both centralised and consensus-
based techniques require communication overhead to estab-
lish agreement on the value of shared variables, and as a
consequence of network dynamism, the physical limits of
network latency and the possibility of partial failure they
are not viable for decentralised environments [5].

Recently, there has been a trend towards using decen-
tralised control techniques to build self-adaptive, decentralised
systems, with areas such as peer-to-peer [6] and ad-hoc net-
works [7] producing noticeable achievements. A common
pattern for decentralised distributed system architectures is
to model them as a collection of frequently similar, coor-
dinating agents where each agent gathers information on
its own, takes independent decisions on how to behave and
communication between agents is localised [8] or through
some shared environment [9]. The benefits of such an ap-
proach include improved robustness and scalability, the lack
of centralised points of failure, the potential for system-wide
self-management as well as possible evolution of the system
through evolving the local rules of the agents [8].

The construction of decentralised distributed systems with
system-wide self-management properties presents a number
of challenges. These include developing a component model
that can support local self-management behaviours, design-
ing decentralised coordination models for components that
can establish and maintain system-wide properties over col-
lections of components and determining the functionality
required at the component-level to build such decentralised
coordination models.

2. THE K-COMPONENT MODEL
Many self-management behaviours can be engineered us-

ing self-adaptive components, as components have the abil-
ity to change their behaviour or structure at run-time in or-
der to accomplish specified goals [10], e.g., adapt to discov-
ered faults or sub-optimal performance. Self-management
behaviour for components requires the active monitoring of
component states and external dependencies for events that
cause adaptation actions, such as reconfiguring connections
to faulty components.

The K-Component model is a framework for building self-
adaptive systems [10] that operate in a decentralised envi-
ronment. The model provides a component interface def-
inition language called K-IDL, an extension to IDL, that
supports the definition of component states and adaptation

Component

{RPC Connector}

{Asynchronous Feedback Events}

Component

K-Component Runtime
K-Component Runtime

Adaptation

Contract(s)

AMM

Adaptation

Contract(s)

AMM
 {AMM Exchange}

Adaptation

Actions

Feedback

States

Figure 1: Connected Components in different K-Component Runtimes

actions, as well as required interfaces. Component states
and adaptation actions are used by decision making pro-
grams to reason about component operation and adapt com-
ponent operation. A K-IDL compiler translates component
interface definitions into an extended version of IDL-2 and
interfaces are compiled using modified Orbacus/C++ mid-
dleware.

A K-Component is a runtime with a single address space
where components, defined in K-IDL, can be deployed and
dependencies between components, whether internal or ex-
ternal to the runtime, are managed using connectors. Archi-
tectural reflection is used to reify the structure of component
and connectors deployed in a K-Component runtime as an
architecture meta model (AMM).

As the K-Component model is designed to enable the
construction of self-adaptive software in decentralised sys-
tems, there is no explicit representation of the system-wide
AMM. The system-wide software architecture is partitioned
amongst the K-Component runtimes in the system. Each K-
Component runtime manages its local software architecture
as an AMM that describes its partial view of the system.
This partial view is limited to the internal components and
connectors deployed in K-Component runtime and the ex-
ternal components connected to components in the runtime,
(see figure 1).

Reflective autonomous programs, called adaptation con-
tracts, are associated with a component and operate on a
runtime’s AMM by reasoning about adaptation conditions
using component/connector states and feedback events re-
garding remote component states. Programmers can spec-
ify adaptation contracts using a declarative programming
language called the Adaptation Contract Description Lan-
guage (ACDL). The ACDL allows programmers to declar-
atively associate component/connector states or feedback
events with adaptation actions using if-then rules or the
event-condition-action (ECA) paradigm. Events are used to
communicate feedback information between connected com-
ponents in different runtimes and are as a mechanism for
building decentralised coordination models, such as CRL.

One problem with both rule-based and the ECA approach
to specifying self-adaptive behaviour is that it becomes in-
feasible as the space of possible feedback events and adap-
tation actions increases. For complex, instrumented dis-
tributed systems, programmers cannot be expected to know
about and handle all possible internal component and ex-

ternal environmental states or be able to accurately pre-
dict the outcome of executing some adaptation action in
a dynamic environment. For this reason, in K-Components
self-adaptive behaviour can also be learnt by components us-
ing an unsupervised technique called collaborative reinforce-
ment learning (CRL). CRL also enables the decentralised
coordination of groups of connected components for the pur-
pose of establishing system-wide properties. The next sec-
tion introduces system-wide properties for distributed sys-
tems and shows how system-wide properties of a distributed
system can emerge from the interaction of its components.

Agent

(n

j

)

Agent

(n

i

)

advertise(V

i

(s)) | delegate(DOP)

Partially Shared

Environment

action a

i

(t)

reward r

i

(t)

state s

i

(t)

r

j

(t+1)

s

j

(t+1)

reward r

j

(t)

state s

j

(t)

action a

j

(t)

s

i

(t+1)

r

i

(t+1)

Decay

Figure 2: CRL Model

3. SELF-ADAPTIVE DECENTRALISED SYS-
TEMS USING COLLABORATIVE REIN-
FORCEMENT LEARNING

CRL is a decentralised approach to establishing and main-
taining system-wide properties in distributed systems. CRL
is an extension to Reinforcement Learning [11] (RL) for de-
centralised multi-agent systems. CRL does not make use
of system-wide knowledge and individual agents only know
about and interact with their neighbouring agents.

In RL, an agent associates actions with system states in
a trial-and-error manner and the outcome of an action is
observed as a reinforcement that, in turn, causes an up-
date to the agent’s action-value policy using a reinforcement
learning strategy [11]. The goal of reinforcement learning
is to maximise the total reinforcements (rewards) an agent
receives over a time horizon by selecting optimal actions.

Agents may take actions that give a poor payoff in the short-
term in the anticipation of higher payoff in the longer term.
In general, actions may be any decisions that an agent wants
to learn how to make, while states can be anything that may
be useful in making those decisions. As action selection is
probabilistic, there is some trial-and-error in the selection of
actions and RL is not a suitable technique for learning self-
* behaviour for the classes of distributed system that are
intolerant to suboptimal action selection, such as real-time
systems.

CRL is based on a variant of the coordination model tech-
nique found in swarm intelligence algorithms where agents
learn from the successes of their neighbours. It has been
previously applied to optimise routing in ad-hoc networks
[12]. CRL solves system optimisation problems by specifying
how individual agents solve discrete optimisation problems
(DOP) using RL, advertise their results to their neighbours
and transfer control to neighbours by initiating the start of
a new DOP on a neighbouring agent, see Figure 2. Each
agent stores a cache of with DOP solution information ad-
vertised by its neighbours that represents the agent’s local
view of the system i.e., its neighbourhood.

In a system of homogeneous agents that solve related
problems, the cached information can be used by agents to
help them improve their solution to their local DOP. This
process is known as collaborative feedback and it enables
agents to share more optimal policies [11], increasing the
probability of neighbouring agents taking the same or re-
lated actions. This process can produce positive feedback in
action selection probability for a group of agents. Positive
feedback is a mechanism that reinforces changes in system
structure or behaviour in the same direction as the initial
change and can cause the emergence of system behaviour
or structure [13, 9]. In CRL, the positive feedback pro-
cess continues until negative feedback, produced either by
constraints in the system or the decay model, causes agent
behaviour to adapt so that agents in the system converge on
stable policies. The decay model provides negative feedback
by degrading DOP solution information in an agent’s cache
over time according to a decay rate. In CRL, system-wide
properties can emerge from the interaction of positive and
negative feedback in the solution of discrete optimisation
problems [12].

3.1 Specifying CRL Problems in the K-Component
Model

In CRL, system optimisation problems are decomposed
into a set of DOPs, the solution of which are performed
by collaborating agents. In K-Components, adaptation con-
tracts represent the agents and components/connectors rep-
resent the environment. Each component explicitly specifies
both adaptation actions and states (indicating DOP solu-
tion information) in its interface, whereas connectors have
a fixed set of states and adaptation actions. Adaptation ac-
tion implementations also calculate and return a reinforce-
ment giving evaluative feedback on the action’s success to
adaptation contracts. The actions1, states and reinforce-
ments are used by the adaptation contract (the CRL agent)
to learn the optimal policy for how to adapt components
given current component and connector states. Every K-
Component maintains its local view of the system state by

1Architectural adaptation actions are also available to adap-
tation contracts

caching remote components states in its AMM. The adver-
tisement function used in CRL to update the cache can be
specified using the feedback event model in the ACDL.

3.2 Load Balancing using CRL
In this section we introduce a simplified version of a sys-

tem optimisation problem in a decentralised system: how to
balance load amongst peers in the network using CRL. Our
goal here is not to fully specify a solution to this complex
problem, but rather to elucidate the basic behaviour of the
CRL model and show how autonomic behaviour for the sys-
tem can emerge from self-adaptive (local decision making)
components.

A decentralised system contains a varying number of com-
ponents in different K-Component runtimes and can be mod-
elled as a partially connected graph, with components as
vertices and connections between neighbouring components
as connectors. A load balancing application for such a sys-
tem requires, at a minimum, a description of the load and
a cost metric, the load cost, that characterises the ability
of a component to handle a particular load [14]. When a
component receives a load, the adaptation contract for the
component makes a load balancing decision for the load. It
can base its decision on monitored load costs of the compo-
nent’s neighbours, i.e., its connected components, and use
a load balancing function to execute actions to balance the
load among them.

In this example, we simplify the problem by assuming all
components reside in runtimes on devices that have equal
capabilities and every load consumes an equal amount of re-
sources. A load can be any particular type of resource (e.g.
storage, unit of computation, etc). Every component calcu-
lates its internal load cost, i.e., its estimated cost to handle
a particular load type, with a lower load cost indicating a
better ability to handle a load. Each load has start and ter-
mination states - a component where the load is generated
and a component where the load is handled. The goal of
every adaptation contract in the system is to balance loads
to the components with the lowest estimated load cost.

Local

Load Cost

6

A

10 (0)

Advertised

Load Cost
7

10
6

15 (5)

6 (2)

10 (3)

10 (0)

4

A

C

D

B

Start State
 Terminal

State

Load (Connection) Cost

Figure 3: Load Balancing Decisions in CRL

Figure 3 illustrates the problem of how a series of loads
generated by component a are balanced over components
a,b,c,d. A load balancing function on every adaptation con-
tract uses a cost function to calculate its internal load cost
and the ability of its neighbours to handle the load. Each
neighbour has an advertised load cost, defined as a compo-
nent state in K-IDL, but adaptation contracts also have to
consider the connection cost in forwarding the load to the

neighbour. A simple linear model of a neighbour’s estimated
cost would be: estimated load cost = (advertised load cost
+ connection cost) . Components can advertise a load cost
that is lower than their internal load cost if they have a
neighbour with a load+connection cost that is lower than
their internal load cost, see legend in figure 3.

In figure 3, the optimisation problem starts at compo-
nent a. component a attempts to solve a discrete optimi-
sation problem, where the cost for component a to handle
the load locally is 10, but the cost to forward the load to
component c is 6. The solution to component a’s discrete
optimisation problem is to forward the load to component
c. When the load is forwarded by an adaptation contract
executing the component’s adaptation action, this triggers
the start of a new DOP at the adaptation contract for com-
ponent c, that in turn calculates its own optimal solution,
which is to handle the load locally. In this way, the system-
wide load-balancing behaviour is solved as a series of DOPs.

In K-Components, a component can advertise a change in
its load value using feedback events. The caching of a neigh-
bour’s advertised load costs in the AMM reduces the amount
of control traffic generated in the system. Cached load costs
are used by the adaptation contract’s cost function, but
these are only estimations of a neighbour’s current loads.
As such adaptation contracts make load balancing decisions
based on estimations of the value of loads, rather than their
true, in fact unknowable, values. This looser form of con-
sensus introduces some problems relating to the use of stale
data in decision making, e.g. loads may be balanced to the
wrong component due to stale cache information, but CRL
can help improve the accuracy of cached estimates through
both advertisement and decay of cache information.

System-Wide Self-Management in Decentralised
Systems
The proposed CRL solution presented can enable a load-
balancing decentralised system to self-manage its load-balancing
behaviour in the presence of node failure or unavailability.
When a component fails to advertise its estimated load cost
to its neighbours, e.g. due to node or communication fail-
ure, the neighbours decay their local cached load costs for
that component, reducing the probability that the compo-
nent will be selected as a target for load balancing. When
a component becomes unavailable, the probability of it re-
ceiving load balancing requests drops proportionally with
the cache’s decay rate. This self-management property is
not explicitly programmed in the system and is a conse-
quence of the negative feedback on a component’s cache.
The load balancing problem can also be characterised at
the component level as self-management decision making in
an uncertain environment.

There is no attempt to achieve consensus on the load cost
of different components in the system before a load balanc-
ing decision is taken by an adptation contract. Each compo-
nent takes load balancing decisions based on the estimated
loads of other components. In the case where a group of
components converge in their estimation of the load of a par-
ticular component, we can say that the nodes achieve emer-
gent consensus on the load of that component. Advertise-
ment of load costs helps reduce uncertainty in load-balancing
decision making by making more information available to
the adaptation contract about the state of the system. As
a result, the advertisement of estimated load costs helps

adaptation contracts improve the learning of useful self-
management behaviour.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we describe approaches to engineering self-

management properties in distributed systems at the com-
ponent level with K-Components and at the system level
using CRL in K-Components. We believe that many self-
management properties can be engineered at the component
level using a self-adaptive component model and that self-
management properties at the system level can be modelled
and solved as system optimisation problems, such as CRL.
Collaborative learning of a self-managing decision policy by
components can provide a system with flexibility and ro-
bustness enough to establish system-wide self-management
properties in both predicted and unforeseen environmental
conditions.

5. REFERENCES
[1] N. H. Minsky, “On conditions for self-healing in

distributed software systems,” Proceedngs of the
Autonomic Computing Workshop, AMS ’03, 2003.

[2] A. Montresor, H. Meling, and O. Babaoglu, “Towards
self-organizing, self-repairing and resilient distributed
systems,” Future Directions in Distributed Computing,
vol. LNCS 2584, 2003.

[3] M. Hayden, “The ensemble system,” PhD Thesis,
Cornell University: Dept. of Computer Science, 1997.

[4] D. Garlan and B. Schmerl, “Model-based adaptation
for self-healing systems,” in Proceedings of the first
workshop on Self-healing systems, pp. 27–32, ACM
Press, 2002.

[5] R. Khare and R. N. Taylor, “Extending the
representational state transfer (rest) architectural
style for decentralized systems,” in Proceedings of the
International Conference on Software Engineering
(ICSE), 2004.

[6] I. Clarke, S. Miller, T. Hong, O. Sandberg, and
B. Wiley, “Protecting free expression online with
freenet,” IEEE Internet Computing, Jan/Feb, 2002.

[7] E. Curran and J. Dowling, “Sample: An on-demand
probabilistic routing protocol for ad-hoc networks,”
Technical Report: Department of Computer Science,
Trinity College Dublin, 2004.

[8] J. Kennedy and R. Eberhart, Swarm Intelligence. San
Francisco, California: Morgan Kaufmann, 2001.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm
Intelligence: from natural to artificial systems. New
York: Oxford University Press, 1999.

[10] J. Dowling and V. Cahill, “The k-component
architecture meta-model for self-adaptive software,”
Proceedings of Reflection 2001, 2001.

[11] R. Sutton and A. Barto, Reinforcement Learning. MIT
Press, 1998.

[12] J. Dowling, E. Curran, R. Cunningham, and
V. Cahill., “Collaborative reinforcement learning of
autonomic behaviour,” 2nd International Workshop
on Self-Adaptive and Autonomic Computing Systems,
2004.

[13] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau, Self-Organization in
Biological Systems. Princeton University Press, 2003.

[14] M. Jelasity, A. Montresor, and O. Babaoglu, “A
modular paradigm for building self-organizing
peer-to-peer applications,” Proceedings of ESOP03:
International Workshop on Engineering
Self-Organising Applications, 2003.

