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Abstract

The identification of landmark points of a
figure in an image plays an important role
in many statistical shape analysis techniques.
In certain contexts, manual landmark detec-
tion is an impractical task and an automated
procedure has to be employed instead. Stan-
dard corner detectors can be used for this
purpose, but this approach is not always suit-
able, as the set of landmark points best repre-
senting the figure is not necessarily limited to
corners. We present a Bayesian approach for
automatic landmark detection, where a set
of N landmark vertices is fitted to the edge
of a segmented region of an image. We pro-
pose a likelihood function for the observed
segmented region given the vertices and then
use a Metropolis sampler to sample landmark
vertices given the observed region. Careful
consideration has to be given to the selection
of a prior for the distribution of the land-
marks.

1. Introduction

The shape of an object in a two dimensional image is
often characterized by a set of N labelled points and
hence is represented by an N x 2 matrix. This type of
shape representation scheme can be extended to R di-
mensional surfaces and it satisfies the requirements of
invariance to translation, scale and rotation. It there-
fore is a basis for many shape analysis methods. Such
data arises in many applications and the correspond-
ing labelled points are commonly called landmarks. In
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certain applications, for example in biological homol-
ogy, landmarks are assumed to be uniquely defined
locations that are identifiable across a particular class
of objects or individuals. In general, it is assumed that
a set of landmarks is found in at least two objects and
the interest is focused on their relative positions. This
abstraction allows shape theory to stand apart from
issues of interpretation (Goodall, 1991).

In object recognition context, one does not a priori
know the class of objects that the region of interest
belongs to. Therefore, this kind of definition is not
applicable. For this purpose, we define landmarks to
be be a set of coordinate points that best describe a
given region. The distinction between landmarks of
an object and salient points of an image is that the
purpose of salient points is not to summarize the shape
contour of an object, but rather to represent a subset of
image pixels where the image information is supposed
to be most important (Sebe & Lew, 2003).

Manual landmark detection is too time-consuming in
content based image retrieval applications where one
might be dealing with large databases of images. Ar-
guably it is also too subjective (Brett & Taylor, 2000).
In segmented images where a region contour is clearly
defined it is possible to use corner detectors such as
Harris (Harris & Stephens, 1988), as well as a num-
ber of other algorithms. For the purposes of image
retrieval, it is interesting to obtain information on the
uncertainty of the shape retrieved, which is why a
Bayesian approach is useful.

In this paper, presented is a Bayesian method for au-
tomatic detection of landmarks in pre-segmented im-
ages. The idea is to fit a set of N landmark vertices
to the edge of a segmented region of interest, with the
aim of describing the shape of that region well. The
edge of the region is taken to be the object contour.
There is a restriction for the segmented region to be
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solid, i.e. without holes. In theory, the particular seg-
mented region would represent one object of interest
in that image.

The Bayesian framework requires a likelihood function
to be proposed for the observed segmented region given
the landmark vertices and then a Metropolis sampler
is used to sample landmark vertices given the observed
region. Hence we obtain a distribution for the set of
landmarks given the segmented region from which we
can draw inferences on the landmarks set. In the fol-
lowing section of the paper this model is described in
more detail. Subsequently, the method was applied to
an artificial test example and a pre-segmented image
of a painting from the Bridgman Art Library, London.

Two main Bayesian approaches to high level imaging,
which involves working with components of an image
in such tasks as object recognition are based on pat-
tern theory (Grenander & Miller, 1994) and marked
point processes (Baddeley & van Lieshout, 1993); for
a recent contribution see (Hurn, 1998). The first ap-
proach uses a deformable template to represent the
outline of a typical object and the natural variabil-
ity is often represented by a probability measure on
the parameters affecting the deformations. Kent et al.
(2000) further consider some statistical aspects of this
approach including maximum likelihood based. In the
second approach, the images are characterized by pro-
cesses of simple geometrical figures, each specified by
a location and a mark containing information such as
the shape and size of the figure. Rue and Hurn (1999)
combine these two approaches by imbedding the tem-
plate models into a marked point process framework.
Other work has been done in estimating object bound-
aries in an image, usually with some prior knowledge
of the object shape. However, these approaches dif-
fer from the one discussed in this paper in that they
seek to obtain a contour of an object, as opposed to
selecting a set of points that best represent an already
estimated contour shape obtained from a segmentation
of the image.

2. The Bayesian Model

The Bayesian approach to the problem of selecting a
set of landmark points to best represent the shape of
a segmented region in an image could be described as
the following: the prior distribution for the scene of
interest X, m(x), is combined with the likelihood of
the data Y arising from a particular scene X, 7(y|z).
In this particular case, X is a set of ordered N land-
mark points, where each point is specified by a two
coordinate location vector in the image matrix. The
data Y is a matrix of pixels in the segmented image,

indexed as either belonging to the region of interest
or not. Inferences for X are made using the posterior
distribution
(xly) o m(ylw)m(z).

Hence 7(x) is the prior distribution for the locations
of landmarks and 7(y|x) is the likelihood of the ob-
served shape arising given the landmark points’ loca-
tions. The rest of this section describes the model
choices for 7(y|x) and 7(x).

2.1. Prior Distribution for X

The set of ordered landmark vertices forms a N-sided
landmark polygon. Note that in this model, the num-
ber of vertices N is a constant which needs to be set
by the user.

To model the fact that the landmark polygon edges are
not permitted to cross over, one can specify the prior
with the indicator function 7(x) oc I [edges crossing].

The prior distribution does not place a restriction on
the points to be on the edge of the segmented region.
Also the points need not be equally spaced, as this
restriction may not always result in landmarks best
describing the segmented region.

2.2. Likelihood

One possible data model is an increasing function of
the distance of the pixels from edge of the landmark
polygon. So the data model assumed is

m(ylz, o) = II

pizels(s,t)€S

< 11

pizels(s,t)¢S

71—(yst € S|x,a) X

m(yst ¢ Sz, @)

where

1

Tromp (Cad) @) if Yst €L
T(yst € S|, o) =

1— 1

1+exp (—a)

lf Yst %L

and
m(yst € S|z, ) =1 —7(yst € S|z, ).

S is the region of interest in the image, L is the region
bounded by the landmark polygon, D is the largest
minimum distance between the pixel and each edge in
the landmark polygon and d is the smallest minimum
distance. The likelihood term contains the unknown
parameter « for which a uniform prior between 0 and
a large upper bound is used.

Note that this simulation of the likelihood simply mod-
els the property that pixels from the polygon edge are
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Figure 1. (a) Observed segmented region simulated for a set of landmarks with a=1, (b) =10 and (c) a=80
likelihood function contours for a=1, (¢) a=10 and (f) a=80.

. (d) observed
less likely to be classifies as being inside the shape.

tion contours. Hence the full posterior distribution is
More complex likelihoods do not appear necessary.

7(z, aly) o 7(y|z, o) (z)m(a).
Figures 1(a) to (c) show the observed segmented region (, aly) Wz, ajm(e)m(e)
which was simulated for a given (artificial) set of land-
marks with different parameters ( a=1, a=10, «=80).

2.3. Inferences
Figures 1(d) to (f) show the observed likelihood func-

The Metropolis algorithm (Metropolis et al., 1953) was
used to obtain an iterative sequence of {x,a} that con-
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verges in distribution to 7(z, «|y). The approach used
was to update x and « one at a time while the other
one is held fixed. The conditional distributions for
both variables can be derived from the posterior dis-
tribution, the distribution of primary concern being
m(aly):

m(z|y, ) o w(y|x, a)m(x).

The candidate generating density for x was set to be
multivariate normal, where at each iteration of the al-
gorithm the location of only one vertex at a time was
perturbed. The vertex to be perturbed was randomly
chosen.

The Metropolis algorithm requires initial values to be
provided for all the variables. For parameter «, a value
greater than zero was randomly chosen. From a seg-
mented image, a starting set of landmark points can
be obtained by randomly selecting their locations in
the image matrix, or by first using an edge detector
to obtain the edge points of the shape of interest and
then randomly sampling from the edge point locations
to obtain a set of N landmark points. The randomly
selected initial landmark points can be reordered by
an algorithm such as the nearest neighbour.

3. Results
3.1. Artificial Test Example

An artificial image was created to illustrate the sam-
pling behaviour of the model. The shape Of interest
is a simple rectangular region. An initial set of land-
marks (with N=4) was obtained by randomly selecting
their locations in the image matrix.

A sequence of realisations from the 7(x|y) is obtained
once the convergence of the algorithm appears to have
been reached. In order to assess the convergence
four separate simulations were run with overdispersed
starting points. Figure 2 shows the sequences for all
6000 iterations for the four simulation runs.

Figure 3(a) shows four starting landmark sets and the
object of interest. Figure 3(b) shows the estimates
(sample means) from the posteriors of the four land-
mark sets. Note that the first half of the iterations of
the simulation runs was discarded for the purpose of
making inferences from the posterior.

3.2. Bridgman Art Library Painting

One segmented region was chosen in a pre-segmented
image from the Bridgman art library. The Prewitt
edge detector (Prewitt & Mendelsohn, 1966) was used
to identify the edge points of the region from which
15 points were randomly selected as the starting set of
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Figure 2. Four independent sequences of the simulations
with different starting points. All 6000 iterations are plot-
ted for each sequence and each landmark vertex. The start-
ing points are indicated by crosses.

landmarks. Figure 4(a) shows the starting landmark
set superimposed on the region and figure 4(b) shows
the estimate of the landmark sets from the posterior
distribution. Whereas the Metropolis algorithm seems
to converge for the artificial test example, there are
still some convergence and mixing problems with the
more complicated shape.

4. Discussion

In this study, the problem of automatically generat-
ing a set of landmark points to describe the shape of
a region of interest in segmented images has been at-
tempted by using a Bayesian framework. The advan-
tage of the Bayesian approach is that it provides in-
formation about the uncertainty of the shape, i.e. the
uncertainty of how good the landmarks chosen are at
summarizing the region of interest. This is particu-
larly useful in content based image retrieval applica-
tions, which is the aim of the future research on this
topic. This automatic landmark detection method will
be implemented to a content based image retrieval ap-
plication, where given a large database of segmented
images, the shapes of segmented regions in different
images are compared using Procrustes analysis.
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Figure 3. (a) Four starting landmark sets and the shape of
interest. (b) Sample mean estimates of the four landmark
sets.

Network of Excellence MUSCLE.
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