
Peer-to-Peer Netw Appl
DOI 10.1007/s12083-009-0062-6

Decentralising a service-oriented architecture

Jan Sacha · Bartosz Biskupski · Dominik Dahlem ·
Raymond Cunningham · René Meier · Jim Dowling ·
Mads Haahr

Received: 7 January 2009 / Accepted: 22 September 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Service-oriented computing is becoming an
increasingly popular paradigm for modelling and build-
ing distributed systems in open and heterogeneous
environments. However, proposed service-oriented ar-
chitectures are typically based on centralised compo-
nents, such as service registries or service brokers, that
introduce reliability, management, and performance
issues. This paper describes an approach to fully de-
centralise a service-oriented architecture using a self-
organising peer-to-peer network maintained by service
providers and consumers. The design is based on a gra-
dient peer-to-peer topology, which allows the system to
replicate a service registry using a limited number of the
most stable and best performing peers. The paper eval-
uates the proposed approach through extensive sim-
ulation experiments and shows that the decentralised
registry and the underlying peer-to-peer infrastructure
scale to a large number of peers and can successfully
manage high peer churn rates.

Keywords Gradient topology ·
Service-oriented architecture · Super-peer election ·
Utility · Aggregation

J. Sacha (B)
Vrije Universiteit, Amsterdam,
The Netherlands
e-mail: jsacha@cs.vu.nl

B. Biskupski · D. Dahlem · R. Cunningham ·
R. Meier · M. Haahr
Trinity College, Dublin, Ireland

J. Dowling
Swedish Institute of Computer Science, Kista, Sweden

1 Introduction

Service-Oriented Computing (SOC) is a paradigm
where software applications are modelled as collections
of loosely-coupled, interacting services that communi-
cate using standardised interfaces, data formats, and
access protocols. The main advantage of SOC is that it
enables interoperability between different software ap-
plications running on a variety of platforms and frame-
works, potentially across administrative boundaries
[1, 2]. Moreover, SOC facilitates software reuse and
automatic composition and fosters rapid, low-cost de-
velopment of distributed applications in decentralised
and heterogeneous environments.

A Service Oriented Architecture (SOA) usually con-
sists of three elements: service providers that publish
and maintain services, service consumers that use ser-
vices, and a service registry that allows service discov-
ery by prospective consumers [1, 3]. In many proposed
SOAs, the service registry is a centralised component,
known to both publishers and consumers, and is often
based on the Universal Description Discovery and In-
tegration (UDDI) protocol.1 Moreover, many existing
SOAs rely on other centralised facilities that provide,
for example, support for business transactions, service
ratings or service certification [3].

However, each centralised component in a SOA con-
stitutes a single point of failure that introduces security
and reliability risks, and may limit a system’s scalability
and performance.

This paper describes an approach to decentralise
a service-oriented architecture using a self-organising

1http://uddi.xml.org/

http://uddi.xml.org/

Peer-to-Peer Netw Appl

Peer-to-Peer (P2P) infrastructure maintained by ser-
vice providers and consumers. A P2P infrastructure is
an application-level overlay network, built on top of
the Internet, where nodes share resources and provide
services to each other. The main advantages of P2P
systems are their very high robustness and scalability,
due to inherent decentralisation and redundancy, and
the ability to utilise large amounts of resources avail-
able on machines connected to the Internet. While the
service provision and consumption in a SOA are inher-
ently decentralised, as they are usually based on direct
interactions between service providers and consumers,
a P2P infrastructure enables the distribution of a service
registry, and potentially other SOA facilities, across
sites available in the system.

However, the construction of P2P applications poses
a number of challenges. Measurements on deployed
P2P systems show that the distributions of peer charac-
teristics, such as peer session time, available bandwidth
or storage space, are highly skewed, and often heavy-
tailed or scale-free [4–7]. A relatively small fraction
of peers possess a significant share of the system re-
sources, and a large fraction of peers suffer from poor
availability or poor performance. The usage of these
low stability or low performance peers for providing
system services (e.g., routing messages on behalf of
other peers) can lead to a poor performance of the
entire system [8]. Furthermore, many distributed al-
gorithms, such as decentralised keyword search [9],
become very expensive as the system grows in size due
to the required communication overhead.

As a consequence, P2P system designers attempt to
find a trade-off between the robustness of fully decen-
tralised P2P systems and the performance advantage
and manageability of partially centralised systems. A
common approach is to introduce a two-level hierarchy
of peers, where so called super-peers maintain system
data and provide core functionality, while ordinary
peers act as clients to the super-peers.

In this paper, a service registry is distributed between
service providers and consumers in the system using a
gradient-based peer-to-peer topology. The application
of a gradient topology allows the system to place the
SOA registry on a limited number of the most reliable
and best performing peers in order to improve both the
stability of the service registry and the cost of searching
using this registry. Furthermore, the gradient topology
allows peers to update and optimise the set of registry
replicas as the system and its environment evolve, and
to limit the number of replica migrations in order to
reduce the associated overhead. Analogously, the gra-
dient topology can be used to decentralise additional

facilities in a SOA, such as a transaction service or a
certificate repository.

The proposed approach has been evaluated in a
number of usage scenarios through extensive simula-
tion experiments. Obtained results show that the de-
centralised registry, and the underlying algorithms that
maintain the gradient topology, are scalable and re-
silient to high peer churn rates and random failures.

The remainder of this paper is organised as follows.
Section 2 describes the design of a gradient P2P topol-
ogy and shows how this topology is used to support
a decentralised service registry. Section 3 contains an
extensive evaluation of a decentralised service registry
built top of a gradient topology. Section 4 describes the
review of related work, and Section 5 concludes the
paper.

2 Gradient topology

The gradient topology is a P2P overlay topology, where
the position of each peer in the system is determined by
the peer’s utility. The highest utility peers are clustered
in the centre of the topology (the so called core) while
peers with lower utility are found at gradually increas-
ing distance from the centre. Peer utility is a metric that
reflects the ability of a peer to contribute resources and
maintain system infrastructural services, such as a SOA
registry.

The gradient topology has two fundamental proper-
ties. Firstly, all peers in the system with utility above
a given value are connected and form a gradient sub-
topology. Such high utility peers can be exploited by the
system for providing services to other peers or hosting
system data. Secondly, the structure of the topology
enables an efficient search algorithm, called gradient
search, that routes messages from low utility peers
towards high utility peers and allows peers to discover
services or data in the system. These two properties
contribute to an efficient implementation of a decen-
tralised SOA registry.

The SOA registry is distributed between a number
of peers in the system for reliability and performance
reasons. Hence, there are two types of peers: super-
peers that host registry replicas, and ordinary peers
that do not maintain any replicas. A utility thresh-
old is defined as a criteria for the registry replica
placement, i.e., all peers with utility above a selected
threshold host replicas of the registry. Finally, gra-
dient search is used by ordinary peers to discover
high utility peers that maintain the registry. Figure 1
shows a sample P2P gradient topology, where the

Peer-to-Peer Netw Appl

Gradient
Search

Service Registry Replicas Ordinary Peers

Gradient
Search

A

B

C

Replica Placement Threshold

Fig. 1 Registry replication and discovery in the gradient topol-
ogy. Peers A, B, and C access registry replicas, hosted by peers in
the core, using gradient search

service registry is located at the core peers determined
by the replica placement threshold.

The following subsections describe in more detail the
main components of the gradient topology: utility met-
rics that capture individual peer capabilities; a neigh-
bour selection algorithm that generates the gradient
topology; a super-peer election algorithm for registry
replica placement; an aggregation algorithm, required
by the super-peer election, that approximates global
system properties; a gradient search heuristic that en-
ables the discovery of registry replicas; and finally, the
registry replica synchronisation algorithms.

2.1 Characterising peers

In order to determine peers with the most desired
characteristics for the maintenance of a decentralised
service, such as the SOA registry, a metric is defined
that describes the utility of peers in the system. Peer
utility, denoted U(p) for peer p, is a function of local
peer properties, such as the processing performance,
storage space, bandwidth, and availability. Most of
these parameters can be measured, or obtained from
the operating system, by each peer in a straight-forward
way. In the case of dynamically changing parameters, a
peer can calculate a running average.

Network characteristics, such as bandwidth, latency,
and firewall status, are more challenging to estimate
due to the decentralised and complex nature of wide-
area networks. Moreover, many network properties,
including bandwidth and latency, are properties of pairs
of peers, i.e., connections between two peers, rather
than individual peers. Nevertheless, a peer can estimate
the average latency and bandwidth of all its connections
over time and use the average value as a general in-
dication of its network connectivity and overall utility
for the system. Furthermore, it has been shown that the
bottleneck bandwidth of a connection between a peer
and another machine on the Internet is often deter-
mined by the upstream bandwidth of the peer’s direct
link to the Internet [10]. Thus, available bandwidth can
be treated as a property of single peers.

Peer stability is amongst the most important peer
characteristics, since in typical P2P systems the session
times vary by orders of magnitude between peers, and
only a relatively small fraction of peers stay in the
system for a long time [8]. One way of measuring the
peer stability is to estimate the expected peer session
duration using the history of previous peer session
times. Stutzbach et al. [7] show that subsequent sess-
ion times of a peer are highly correlated and the dura-
tion of a previous peer session is a good estimate for the
following session duration. However, the information
about previous peer session durations may not always
be available, for example for new peers that are joining
the system for the first time. Another approach is to
estimate the remaining peer session time using the cur-
rent peer uptime. Stutzbach et al. [7] show that current
uptime is on average a good indicator of remaining up-
time, although it exhibits high variance. For example, in
systems where the peer session times follow the power-
law (or Pareto) distribution, the expected remaining
session time of a peer is proportional to the current
peer uptime. Similar properties can be derived for other
session time distributions, such as the Weibull or log-
normal distributions, used in P2P system modelling.

Formally, if the peer session times in a system follow
the Pareto distribution, the probability that a peer ses-
sion duration, X, is greater than some value x is given
by P(X > x) = (m

x)k, where m is the minimum session
duration and k is a system constant such that k > 1.
The expected peer session duration is E(X) = μ = k·m

k−1 .
However, if a peer’s current uptime is u, where u > m,
the expected session duration follows the Pareto distri-
bution with the minimum value of u, i.e., P(X > x) =
(u

x)k, and hence, the expected session duration time is
k·u
k−1 . From this we can derive the expected remaining
uptime as k·u

k−1 − u = u
k−1 .

Peer-to-Peer Netw Appl

2.2 Utility metric properties

The choice of the utility metric has a strong impact
on the gradient topology. A utility metric where peers
frequently changes their utility values puts more stress
on the neighbour selection algorithm and may desta-
bilise the topology. It may also cause frequent switches
between super-peers and ordinary peers, which may be
expensive and undesired.

However, if peer utility grows or decreases monoton-
ically, peers can cross the super-peer election threshold
only once, assuming a constant threshold. Additionally,
if the utility changes are predictable, each peer is able
to accurately estimate its own utility and the utility of
its neighbours at any given time.

For example, if peer p defines its utility as the ex-
pected session duration, Ses(p), and estimates it based
on the history of its previous sessions, utility U(p) is
constant during each peer session. When p is elected
a super-peer, it is not demoted to a client unless the
super-peer election threshold increases above U(p).

If the utility of p is defined as p’s current uptime,
denoted Up(p), peer utility increases monotonically
with time. Again, when p is elected a super-peer, it is
not demoted unless the election threshold rises above
Up(p). More importantly, the utility function is fully
predictable. Any peer q, at any time t, can compute the
utility of p, given q has a knowledge of p’s birth time,
i.e., the time tp when peer p entered the system. Peer
utility is simply equal to

U(p) = t − tp. (1)

Clocks do not need to be synchronised between peers,
and q can estimate the birth time of p using its own
clock. At time t, when q receives the current uptime
Up(p) from p, it assumes that tp = t − Up(p).

For capacity metrics, such as the storage, band-
width, or processing capacity, there are two general
approaches to define peer utility. One approach is to
calculate peer utility based on the currently available
peer capacity. However, this has the drawback that peer
utility may change over time, and these changes may
be unpredictable to other peers. A better approach is
to define peer utility based on the total peer capacity,
which is usually static. Such utility functions are ad-
dressed later in the super-peer election Section 2.4.

Finally, certain algorithms described in this article
assume that peer utility values are unique, i.e., U(p) �=
U(q) for any peers p �= q. This property may not hold
for some utility definition, particularly if peer utility
is based on hardware parameters such as CPU clock
speed and amount of RAM. If the utility function is

significantly coarse-grained, the construction of a gra-
dient topology may become impossible. In order to
address this problem, each peer can add a relatively
small random number to its utility value to break the
symmetry with other peers.

Table 1 summarises the utility metric properties.

2.3 Generating a gradient peer-to-peer topology

In P2P systems, each peer is connected to a limited
number of neighbours and the system topology is deter-
mined by the neighbourhood relation between peers.

There are two general approaches to modelling
and implementing the neighbourhood relation between
peers. In the first approach, a peer stores addresses
of its neighbours, which allows the peer to send mes-
sages directly to each neighbour, and the neighbour-
hood relation is asymmetric. This strategy is relatively
straightforward to implement, but it has the drawback
that peers may store stale addresses of peers that have
left the system. This is especially likely in the presence
of heavy churn in the system. Moreover, such dangling
references can be disseminated between peers unless an
additional mechanism is imposed that eliminates them
from the system, such as timestamps [11, 12].

In the second approach, the neighbourhood relation
between peers is symmetric. This can be simply im-
plemented by maintaining a direct, duplex connection
(e.g., TCP) between each pair of neighbouring peers.
If a peer is not able to maintain connections with all
its neighbours, for example due to the operating system
limits, neighbouring peers store the addresses of each
other. This has the advantage that peers can notify each
other when changing their neighbourhoods or leaving
the system, which helps to keep the neighbourhood
sets up to date. Furthermore, outdated neighbour en-
tries are not propagated between peers in the system,
as each peer verifies a reference received from other
peers by establishing a direct connection with each
new neighbour. In the case of neighbours crashing,
or leaving without notice, broken connections can be
detected either by the operating system (e.g., using
TCP keep alive protocol) or through periodic polling
of neighbours at the application level. In the remaining

Table 1 Utility metric properties

Utility metric Constant Monotonic Predictable

Total capacity Yes Constant Yes
Available capacity No No No
Session length Yes Constant Yes
Uptime No Increasing Yes

Peer-to-Peer Netw Appl

part of this paper, it is assumed that the neighbourhood
relation between peers is symmetric.

The gradient topology is generated by a periodic
neighbour selection algorithm executed at every peer.
Periodic neighbour selection algorithms generally per-
form better than reactive algorithms in heavy churn
conditions, as they have bounded communication cost.
It has been observed that in systems with reactive
neighbour exchange, peers generate bursts of messages
in response to local failures, which congest local con-
nections and result in a chain-reaction of other peers
sending more messages, which may lead to a major
system failure [8].

The structure of the algorithm, shown in Fig. 2, is
similar to the T-Man framework [13], however, due
to the different neighbourhood models, the two algo-
rithms are not directly comparable.

The algorithm relies on a preference function defined
for each peer p over its neighbourhood set Sp, such that
maxSp is the most preferred neighbour for p and minSp

is the least preferred neighbour for p. Peer p attempts
to connect to a new neighbour when the size of Sp is
below the desired neighbourhood set size s∗, and a peer
disconnects a neighbour when the size of Sp is above s∗.

New neighbours are obtained through gossipping
with high preference neighbours, maxSp in particular,
which is based on the assumption that high preference
neighbours of peer p are logically close to each other
in the gradient structure. However, greedy selection of
maxSp for gossipping has the drawback that p is likely
to obtain the same neighbour candidates from maxSp

in subsequent rounds of the algorithm. The algorithm
can potentially achieve better performance if p selects

if jSpj> s then1
discon

*

*

nect(min(Sp))2
end3
else4

n max(Sp)5
S0 (Sn nSp)nfpg6
if jSpj< s then7

connect(max(S0))8
end9
else10

if max(S0)> min(Sp) then11
disconnect(min(Sp))12
connect(max(S0))13

end14

end15

end16

Fig. 2 Neighbour selection at peer p

neighbours for gossipping probabilistically with a bias
towards higher preference peers.

In the gradient topology, a peer p maintains two
independent neighbourhood sets: a similarity set Sp

and a random set Rp. The similarity set clusters peers
with similar utility characteristics and generates the
gradient structure of the topology, while the random set
decreases the peer’s clustering coefficient, significantly
reducing the probability of the network partitioning as
well as decreasing the network diameter. Random sets
are also used by the aggregation algorithm described
below.

For static and predictable utility metrics, each peer
is able to accurately estimate its neighbours’ utility.
In case of non-predictable utility metrics, each peer p
needs to maintain a cache that contains the most recent
utility value, U p(q), for each neighbour q. Every entry
U p(q) in the cache is associated with a timestamp cre-
ated by q when the utility of q is calculated. Neighbour-
ing peers exchange and merge their caches every time
their neighbour selection algorithms exchange mes-
sages, preserving the most recent entries in the caches.
Clocks do not need to be synchronised between peers
since all utility values for a peer q are timestamped
by q.

For the random set, the preference function is uni-
formly random, i.e., the relationship between any two
peers is determined using a pseudo-random number
generator each time two peers are compared. The
topology generated by such a preference function has
small-world properties, including very low diameter,
extremely low probability of partitioning, and higher
clustering coefficient compared to random graphs. Sim-
ilar topologies can be generated by other randomised
gossip-based neighbour exchange algorithms, such as
those described in [11, 12].

For the similarity-based set, the preference function
is based on the utility metric U. Peers aim at selecting
neighbours with similar but slightly higher utility. For-
mally, peer p prefers neighbour a over neighbour b , i.e.,
a > b , if and only if

U p(a) > U(p) and U p(b) < U(p) (2)

or
∣
∣U p(a) − U(p)

∣
∣ <

∣
∣U p(b) − U(p)

∣
∣ (3)

for U p(a), U p(b) > U(p) and U p(a), U p(b) < U(p).
Moreover, peer p selects potential entries to Sp from
both Sq and Rq of a neighbour q.

A simpler strategy, where peers prefer neigh-
bours with the closest possible utility, i.e., a > b if
∣
∣U p(a) − U(p)

∣
∣ <

∣
∣U p(b) − U(p)

∣
∣, does not work well

Peer-to-Peer Netw Appl

in systems with skewed utility distributions, as it may
produce disconnected topologies consisting of clusters
of similar utility peers. For example, in systems with
heavy-tailed utility distributions, peers do not connect
to the few highest utility peers, as they have closer
lower-utility neighbours. This problem is alleviated if
peers connect to similar, but preferably higher utility,
neighbours.

The random set, Rp, never reaches a stable state, as
peers constantly add and remove random neighbours.
This is desired, since random connections provide a
means for the exploration of the system. However,
for the similarity sets, Sp, instability or thrashing of
connections are harmful as reconfiguring of neighbour
connections increases system overhead. Such connec-
tion thrashing may occur when p selects q as the best
available neighbour, while q consistently disconnects
p as a non-desired neighbour. In order to avoid such
cases, each peer distinguishes between connections ini-
tialised by itself and connections initialised by other
peers. In the absence of failure, a peer closes only those
connections that it has initialised. By doing so, peers
agree on which connections can be closed, improving
topology stability.

The performance of the algorithm can be further
improved by introducing “age bias” [14]. With this tech-
nique, a peer p does not initiate gossip exchange with
low-uptime neighbours, because such neighbours have
not had enough time to optimise their neighbourhood
sets according to the preference function, and therefore
are not likely to provide good neighbours for p.

The described neighbour selection algorithm contin-
uously strives to cluster peers with similar utility. How-
ever, due to the system scale and dynamism, only the
highest utility peers, with sufficiently long life span and
high amount of resources, are able to discover globally
similar neighbours, while lower utility peers, due to
their instability, have mostly random neighbours. As a
consequence, a stable core of the highest utility peers
emerges in the system, where the connections between
peers are stable, and the core is surrounded by a swarm
of lower utility peers, where the topology structure
is more dynamic and ad-hoc. As shown later in the
evaluation section, the neighbour selection algorithm
generates a gradient topology in a number of different
P2P system configurations.

2.4 Electing super-peers

The super-peer election algorithm, executed locally by
each peer in the system, classifies each peer as either
a super-peer hosting a registry replica or an ordinary
peer that hosts no replicas. The algorithm has the

property that it elects super-peers with globally high-
est utility, and it maintains this highest utility set as
the system evolves. Furthermore, the algorithm limits
the frequency of switches between ordinary peers and
super-peers in order to reduce the associated overhead.

The election algorithm is based on adaptive utility
thresholds. Peers periodically calculate a super-peer
election threshold, compare it with their own utility,
and become super-peers if their utility is above the
threshold. Eventually, all peers with utility above the
current threshold become super-peers.

The top-K threshold is defined as a utility value,
tK, such that the K highest utility peers in the system
have their utility above or equal to tK, while all other
peers have utilities below tK. Given the cumulative peer
utility distribution in the system, D, where

D(u) =
∣
∣
∣

{

p | U(p) ≥ u
}
∣
∣
∣ (4)

the top-K threshold is described by the equation

D(tK) = K. (5)

In large-scale dynamic P2P systems, the utility dis-
tribution function is not known a priori by peers, as it
is a dynamic system property, however, peers can use
decentralised aggregation techniques, described in the
next section, to continuously approximate the utility
distribution by generating utility histograms. The cumu-
lative utility histogram, H, consisting of B bins of width
λ can be represented as a B-dimensional vector such
that

H(i) =
∣
∣
∣

{

p | U(p) ≥ i · λ}
∣
∣
∣ (6)

for i ∈ {1, ..., B}. The histogram is a discrete approxi-
mation of the utility distribution function in B points
in the sense that H(i) = D(i · λ) for i ∈ {1, ..., B}. The
top-K threshold can be then estimated using a utility
histogram with the following formula

tK = D−1(K) ≈ λ · arg max
1≤i≤B

(

H(i) ≥ K
)

(7)

where the accuracy of the threshold approximation
increases with the number of bins in the histogram.
The approximation accuracy can be further improved
if bin widths in the histogram are non-uniform and are
adjusted in such a way that bins closest to the threshold
are narrow while bins farther from the threshold are
gradually wider.

A top-K threshold allows a precise restriction on
the number of super-peers in a dynamic system, where
peers are continuously joining and leaving, since it has
the property that exactly K peers in the system are
above this threshold. Similarly, a proportional threshold

Peer-to-Peer Netw Appl

is defined as a utility value, tQ, such that a fixed fraction
Q of peers in the system have utility values greater than
or equal to tQ and all other peers have utility lower than
tQ. In a system with N peers, this is described by the
following equation

D(tQ) = Q · N. (8)

The proportional threshold can be approximated using
a utility histogram, since

tQ = D−1(Q · N) ≈ λ · arg max
1≤i≤B

(

H(i) ≥ Q · N
)

. (9)

where the utility histogram, H, and the number of
peers in the system, N, are again determined using the
aggregation algorithm.

As the system grows or shrinks in size, the pro-
portional threshold increases or decreases the number
of super-peers in the system and the ratio of super-
peers to ordinary peers remains constant. As such it
is more adaptive than the top-K threshold algorithm.
However, setting an appropriate number K, or ratio
Q, of super-peers in the system using the top-K thresh-
old or proportional thresholds requires domain-specific
or application-specific knowledge about system behav-
iour. A self-managing approach is preferable where the
size of the super-peer set adapts to the current demand
or load in the system.

It can be assumed that each peer p has some total
capacity C(p), which determines the maximum num-
ber of client requests that this peer can handle at a
time if elected super-peer, and each peer has a cur-
rent load, L(p), which represents the number of client
requests currently being processed by peer p, where
L(p) < C(p). One approach is to define peer utility
as a function of the peer’s available capacity (i.e.,
C(p) − L(p)) and to elect super-peers with maximum
available capacity. However, this has the drawback
that the utility of super-peers decreases as they receive
requests, and increases as they fall below the super-
peer election threshold and stop serving requests, which
may generate fluctuations of high utility peers in the
core. Depending on the application, frequent switches
between ordinary peers and super-peers may introduce
significant overhead, and may destabilise the overlay.

A better approach is to define the peer utility as a
function of the total peer capacity, C(p), and to adjust
the super-peer election threshold based on the load
in the system. This way, peer utility, and hence the
system topology, remains stable, while the super-peer
set grows and shrinks as the total system load increases
and decreases.

The utilisation of peer p is the ratio of peer’s current
load to the peer’s maximum capacity, L(p)

C(p)
. For a set

SP of super-peers in the system, the average super-peer
utilisation is given by
∑

p∈SP L(p)
∑

p∈SP C(p)
. (10)

In order to maintain the average super-peer utilisation
at a fixed level, W, where 0 ≤ W ≤ 1, and to adapt the
number of super-peers to the current load, the adaptive
threshold tW is defined such that

∑

p L(p)
∑

U(p)>tW
C(p)

= W. (11)

Peers can estimate the adaptive threshold by approx-
imating the average peer load in the system, L, the
total number of peers in the system, N, and the capacity
histogram, Hc, defined as

Hc(i) =
∑

U(p)≥i·λ
C(p) (12)

where i ∈ {1, ..., B}. The total system load is given then
by N · L, and the adaptive threshold can be estimated
using the following formula

tW ≈ λ · arg max
1≤i≤B

(

Hc(i) ≥ N · L
W

)

. (13)

In a dynamic system, the super-peer election thresh-
old constantly changes over time due to peer arrivals
and departures, utility changes of individual peers, sta-
tistical error in the approximation of system proper-
ties, and system load variability. Hence, peers need
to periodically recompute the threshold and their own
utility in order to update the super-peer set. However,
frequent switches between super-peers and ordinary
peers increase the system overhead, for example due
to data migration and synchronisation between super-
peers. In order to avoid peers frequently switching roles
between super-peer and ordinary peer, the system uses
two separate thresholds for the super-peer election, an
upper threshold, tu, and a lower threshold, tl, where
tu > tl (see Fig. 3). An ordinary peer becomes a super-
peer when its utility rises above tu, while a peer stops to
be super-peer when its utility drops below tl. This way,
the system exhibits the property of hysteresis, as peers
between the higher and lower utility thresholds do not
switch their status, and the minimum utility change
required for a peer to switch its status is � = tu − tl.
Figure 4 shows the skeleton of the super-peer election
algorithm.

2.5 Estimating system properties

The aggregation algorithm, described in this section,
allows peers to estimate global system properties

Peer-to-Peer Netw Appl

Upper
Threshold

Utility
Gradient

Utility
Gradient

Ordinary
Peers Super-Peers

Delta

Lower
Threshold

Fig. 3 Super-peer election with two utility thresholds on the
gradient topology

required for the calculation of the super-peer election
thresholds. The algorithm approximates the current
number of peers in the system, N, the maximum peer
utility in the system, Max, the average peer load in
the system, L, a cumulative utility histogram, H, and
a cumulative capacity histogram, Hc. Depending on
the super-peer election method, peers may only need
a subset of these system properties.

The aggregation algorithm is based on periodic gos-
sipping. Each peer p maintains its own estimates of N,
Max, L, H, and Hc, denoted Np, Maxp, Lp, Hp, and
Hc

p, respectively, and stores a set, Tp, that contains the
currently executing aggregation instances.

Each peer runs an active and a passive thread, where
the active thread initiates one gossip exchange per
time step and the passive thread responds to all gossip
requests received from neighbours. On average, a peer

while true do1
if super-peer then2

threshold calculateLowerT hreshold()3
if U(p) < threshold then4

becomeOrdinaryPeer()5
end6

end7
else8

threshold calculateU pperT hreshold()9
if U(p) > threshold then10

becomeSuperPeer()11
end12

end13

end14

Fig. 4 Super-peer election algorithm at peer p

sends and receives two aggregation messages per time
step. When initiating a gossip exchange at each time
step, peer p selects a random neighbour, q, and sends
Tp to q. Peer q responds immediately by sending Tq to
p. Upon receiving their sets, both peers merge them us-
ing an update() operation described later. The general
structure of the algorithm is based on Jelasity’s push-
pull epidemic aggregation [15].

The aggregation algorithm can be intuitively ex-
plained using the concept of aggregation instances. An
aggregation instance is a computation that generates a
new approximation of N, Max, L, H, and Hc for all
peers in the system. Aggregation instances may overlap
in time and each instance is associated with a unique
identifier id. Potentially any peer can start a new ag-
gregation instance by generating a new id and creating
a new entry in Tp. As the new entry is propagated
throughout the system, other peers join the instance
by creating corresponding entries with the same id.
Thus, each entry stored by a peer corresponds to one
aggregation instance that this peer is participating in.
Eventually, the instance is propagated to all peers in
the system. Every instance also has a finite time-to-
live, and when an instance ends, all participating peers
remove the corresponding entries and generate new
approximations of N, Max, L, H, and Hc.

Formally, each entry, Tp, in Tp of peer p is a tuple
consisting of eight values,

(id, ttl, w, m, l, λ, h, hc) (14)

where id is the unique aggregation instance identifier,
ttl is the time-to-live for the instance, w is the weight
of the tuple (used to estimate N), m is the current
estimation of Max, l is the current estimation of L, λ is
the histogram width used in this aggregation instance,
while h and hc are two B-dimensional vectors used in
the estimation of H and Hc, respectively.

At each time step, each peer p starts a new aggre-
gation instance with probability Ps by creating a local
tuple
(

id, TT L, 1, U(p), L(p), λ, Ip, Ic
p

)

(15)

where id is chosen randomly, TT L is a system constant,
Ip is a utility histogram containing one peer p

Ip(i) =
{

0 i f U(p) < i · λ

1 i f U(p) ≥ i · λ
(16)

and Ic
p is a capacity histogram initialised by p

Ic
p(i) =

{

0 i f U(p) < i · λ

C(p) i f U(p) ≥ i · λ
. (17)

Peer-to-Peer Netw Appl

The bin width λ is set to Maxp

B , where B is the number
of bins in the histograms H and Hc. Probability Ps is
calculated as 1

Np·F , where F is a system constant that
regulates the frequency of peers’ starting aggregation
instances. In a stable state, with a steady number of
peers in the system, a new aggregation instance is cre-
ated on average with frequency 1

F . Furthermore, since
an aggregation instance lasts TT L time steps, a peer
participates on average in less than TT L

F aggregation
instances, and hence, stores less than TT L

F tuples.
As the initial tuple is disseminated by gossipping,

peers join the new aggregation instance. It can be
shown that in push-pull epidemic protocols, the dis-
semination speed is super-exponential, and with a very
high probability, every peer in the system joins an
aggregation instance within just several time steps [15].

The tuple merge procedure, update(Tp, Tq), consists
of the following steps. First, for each individual tuple
Tq = (id, ttlq, wq, mq, lq, λq, hq, hc

q) ∈ Tq received by
p from q, if Tp does not contain a local tuple identified
by id, and ttlq ≥ TT L

2 , peer p creates a local tuple
(

id, ttlq, 0, U(p), L(p), λq, Ip, Ic
p

)

(18)

and adds it to Tp. This way, peer p joins a new aggrega-
tion instance id and introduces its own values of U(p),
C(p), and L(p) to the computation. However, if ttlq <
TT L

2 , peer p should not join the aggregation, as there
is not enough time before the end of the aggregation
instance to disseminate the information about p and
to calculate accurate aggregates. This usually happens
if p has just joined the P2P overlay and receives an
aggregation message that belongs to an already running
aggregation instance. In this case, the update operation
is aborted by p.

In the next step, for each tuple Tq = (id, ttlq, wq, mq,

lq, λq, hq, hc
q) ∈ Tq, peer p replaces its own tuple Tp =

(id, ttl p, wp, mp, l p, λp, hp, hc
p) ∈ Tp with a new tuple

Tn = (id, ttln, wn, mn, ln, λn, hn, hc
n) such that

ttln = ttl p + ttlq

2
− 1, wn = wp + wq

2
, ln = l p + lq

2
(19)

mn = max(mp, mq), λn = λp = λq, and hn and hc
n are

new histograms such that

hn(i) = hp(i) + hq(i)
2

, hc
n(i) = hc

p(i) + hc
q(i)

2
(20)

for each i ∈ {1, ..., B}. Thus, peer p merges its local
tuples with the tuples received from q, contributing to
the aggregate calculation.

Finally, for each tuple Tp = (id, ttl p, wp, mp, l p,

λp, hp, hc
p) ∈ Tp, such that ttl p ≤ 0, peer p removes

Tp from Tp and updates the current estimates in the
following way: Np = 1

wp
, Maxp = mp, Lp = l p, λ = λp,

and for each i ∈ {1, ..., B}

Hp(i) = hp(i)
wp

, Hc
p(i) = hc

p(i)

wp
. (21)

The algorithm has the following invariant. For each
aggregation instance id, the weights of all tuples in the
system associated with id sum up to 1, with 1

w
estimating

the number of peers participating in this aggregation
instance.

Peers joining the P2P overlay obtain the current
values of N, Max, L, H, and Hc from one of their
initial neighbours. Peers leaving, if they do not crash,
perform a leave procedure that reduces the aggregation
error caused by peer departures, where they send all
currently stored tuples to a randomly chosen neigh-
bour. The receiving neighbour adds the weights of the
received tuples to its own tuples in order to preserve the
weight invariant. Similarly as when joining an aggrega-
tion instance, peers do not perform the leave procedure
for tuples with the time-to-live value below TT L

2 , as
there is not enough time left in the aggregation instance
to propagate the weight from these tuples between
peers and to obtain accurate aggregation results.

It can be shown, as in [15], that the values Np, Maxp,
Lp, Hp, and Hc

p generated by the algorithm at the end
of an aggregation instance at each peer p approximate
the true system properties N, Max, L, H, and Hc, with
the average error, or variance, decreasing exponentially
with TT L.

In order to calculate the super-peer election thresh-
olds, peers need to complete two aggregation instances,
which requires 2 · TT L time steps. In the first instance,
peers estimate the maximum peer utility (Max) and
determine the histogram bin width (λ = Max

B). In the
following instance, peers generate utility histograms
(H or Hc), estimate the system size (N) and load
(L), and calculate appropriate thresholds, as defined in
Section 2.4.

2.6 Discovering high utility peers

The gradient structure of the topology allows an effi-
cient search heuristic, called gradient search, that en-
ables the discovery of high utility peers in the system.
Gradient search is a multi-hop message passing algo-
rithm, that routes messages from potentially any peer
in the system to high utility peers in the core, i.e., peers
with utility above the super-peer election threshold.

In gradient search, a peer p greedily forwards each
message that it currently holds to its highest utility

Peer-to-Peer Netw Appl

neighbour, i.e., to a neighbour q whose utility is equal
to

max
x∈Sp∪Rp

(

U p(x)
)

. (22)

Thus, messages are forwarded along the utility gradi-
ent, as in hill climbing and similar techniques.

Local maxima should not occur in an idealised gra-
dient topology, however, every P2P system is under
constant churn and the gradient topology may undergo
local perturbations from the idealised structure. In or-
der to prevent message looping in the presence of such
local maxima, a list of visited peers is appended to each
search message, and a constraint is imposed that forbids
message forwarding to previously visited peers.

The algorithm exploits the information contained
in the topology for routing messages and achieves a
significantly better performance than general-purpose
search techniques for unstructured P2P networks, such
as flooding or random walking, that require the com-
munication with a large number of peers in the system
[16]. Gradient search also reduces message loss rate by
preferentially forwarding messages to high utility, and
hence more stable, peers.

However, greedy message routing to the highest
utility neighbours has the drawback that messages are
always forwarded along the same paths, unless the
topology changes, which may lead to a significant im-
balance between high utility peers in the core. This is
especially probable in the presence of “heavy hitters”,
i.e., peers generating large amounts of traffic, as com-
monly seen in P2P systems [4]. Load balancing can be
improved in the gradient topology by randomising the
routing, for example, if a peer, p, selects the next-hop
destination, q, for a message with probability, Pp(q),
given by the Boltzmann exploration formula [17]

Pp(q) = e(U p(q)/Temp)

∑

i∈Sp∪Rp
e(U p(i)/Temp)

(23)

where Temp is a parameter of the algorithm called
the temperature that determines the “greediness” of
the algorithm. Setting Temp close to zero causes the
algorithm to be more greedy and deterministic, as in
gradient search, while if Temp grows to infinity, all
neighbours are selected with equal probability as in ran-
dom walking. Thus, the temperature enables a trade-
off between exploitative (and deterministic) routing of
messages towards the core, and random exploration
that spreads the load more equally between peers.
The impact of the temperature on the performance of
Boltzmann search has been studied in [16].

2.7 Supporting the decentralised registry service

The registry stores information about services available
in the system. For each registered service, it stores a
record that consists of the service address, text descrip-
tion, interface, attributes, etc. The registry allows each
peer to register a new service, update a service record,
delete a record, and search for records that satisfy
certain criteria. Each record can be updated or deleted
only by its owner, that is the peer that created it.

For fault-tolerance and performance reasons, the
registry service is replicated between a limited number
of high-utility super-peers. Each peer periodically runs
the aggregation algorithm, calculates the super-peer
election thresholds, and potentially become a super-
peer if needed.

It is assumed that the average size of a service record
is relatively small (order of kilobytes), and hence,
each super-peer has enough storage space to host a
full registry replica, i.e., a copy of all service records.
Due to this replication scheme, every super-peer can
independently handle any search query without com-
municating with other super-peers. This is important,
since complex search, for example based on attributes,
keywords, or range queries, is known to be expensive
in distributed systems [9, 18]. It is also assumed that
search operations are significantly more frequent than
update operations, and hence, the registry is optimised
for handling search.

In order to perform a search on the registry, a
peer generates a query and routes it using gradient
search to the closest super-peer. If the super-peer is
heavily-loaded, it may forward the query to another
super-peer which has enough capacity to handle it. The
super-peer processes the query and returns the search
results directly to the originating peer. Optionally,
clients may cache super-peer addresses and contact
super-peers directly in order to reduce the routing over-
head.

In order to create, delete, or update a record in the
registry, a peer generates an update request and routes
it to the closest super-peer using gradient search. The
update is then gradually disseminated to all super-peers
using a probabilistic gossip protocol. Every record in
the registry is associated with a timestamp of the most
recent update operation on this record. The timestamps
are issued by the records’ owners. Super-peers peri-
odically gossip with each other and synchronise their
registry replicas, as in [19]. Each super-peer periodi-
cally initiates a replica synchronisation with a randomly
chosen super-peer neighbour, and exchanges with this
neighbour all updates that it has received since the last
time the two super-peers gossipped with each other.

Peer-to-Peer Netw Appl

Conflicts between concurrent updates are resolved
based on the update timestamps. Every record can
be updated only by its owner, and it is assumed
that the owner is responsible for assigning consistent
timestamps for its own update operations. Moreover,
super-peers do not need to maintain a membership list
of all replicas in the system. Due to the properties of
the gradient topology, all super-peers are located within
a connected component, and hence, every super-peer
eventually receives every update.

Super-peers are elected using a load-based utility
threshold. Each peer defines its capacity as the maxi-
mum number of queries it can handle at one time. The
load at a peer is defined as the number of queries the
peer is currently processing. The super-peer election
threshold is calculated in such a way that the super-
peers have sufficient capacity to handle all queries is-
sued in the system. When the load in the system grows,
new replicas are automatically created.

2.8 Supporting additional SOA facilities

Apart from the service registry, which needs to be
present in a service-oriented architecture, many SOAs
rely on other infrastructural facilities, such as business
transaction services, or ranking systems, that are of-
ten implemented in a centralised fashion. This section
shows an approach to decentralise such facilities using
the gradient topology.

Assuming two applications, A and B, where each
application has different peer utility requirements that
can be encapsulated in two utility functions, U A and
UB, respectively, each application defines its utility
threshold, tA and tB, and the goal of the system is
to elect and exploit super-peers p such that either
U A(p) > tA or UB(p) > tB.

A naive approach is to generate two independent
gradient overlays, using the two utility functions and
the algorithms described in the previous sections. How-
ever, this would double the system overhead. A better
approach is to combine the two utility functions into
one general utility function U and to generate one
gradient overlay shared by both applications. A conve-
nient way of defining such a common utility function is

U(p) = max
(

U A(p), UB(p)
)

. (24)

This has the advantage that both, peers with high value
of U A and peers with high value of UB, have high utility
U , and hence are located in the core and can be discov-
ered using gradient search. The only change required
in the routing algorithm is that a search message, once
delivered to a high utility peer p in the core, may have
to be forwarded to a different peer in the core, since

p either has a high value U A or UB. This last step,
however, with a high probability can be achieved in one
hop, since peers in the core are well-connected.

The super-peer election thresholds, tA and tB, are
estimated using the same aggregation algorithm, where
the histograms for both U A and UB are generated
through the same aggregation instance in order to
reduce the algorithm overhead. However, a potential
problem may appear if the two utility functions, U A and
UB, have significantly different value ranges, since the
composed utility U may be dominated by one of the
utility functions. For example, if U A has values within
range [0..1] and UB has values in range [1..100], then U
is essentially equal to UB, and searching for peers with
high U A becomes inefficient.

One way to mitigate this problem is to define the
two utility functions in such a way that both have
the same value ranges, e.g., [0..1]. However, this
requires system-wide knowledge about peers. Simple
transformations or projections onto a fixed interval,
for example using a sigmoid function, do not fix the
problem, since if one function has higher values than
the other function, the same relation holds when the
transformation has been applied. A better approach
is to scale one of the two utility functions using the
current values of the super-peer election thresholds,
for example in the following way

U(p) = max
(

U A(p),
tA

tB
UB(p)

)

. (25)

This has the advantage that the core of the gradient
topology, determined by the threshold tA, contains
peers with U A above tA and peers with UB above tB,
since if U(p) > tA for a peer p then either U A(p) > tA

or UB(p) > tB.
Similarly, in the general case, where a gradient topol-

ogy supports more than two applications, all utility
functions are scaled by their respective thresholds

U(p) = max
(

U A(p),
tA

tB
UB(p),

tA

tC
UC(p), . . .

)

.

(26)

This way, all peers required by the higher-level ap-
plications (i.e., each peer p such that U A(p) > tA or
UB(p) > tB or UC(p) > tC and so on) have utility U(p)

above tA, and can be elected super-peers using the
single utility threshold tA.

Figure 5 shows a sample gradient topology that sup-
ports two different applications, A and B. Ordinary

Peer-to-Peer Netw Appl

Gradient
Search

Gradient
Search

Ordinary Peers

Replica Placement Threshold

Application A Super-Peers

Application B Super-Peers

X

Z

Y

Fig. 5 Super-peer election and discovery in a gradient topology
supporting two different applications A and B

peers perform gradient search to discover application B
super-peers. Peers X and Y locate an “A-type” super-
peer in the core and their request is forwarded to a “B-
type” super-peer. Peer Z discovers a “B-type” super-
peer directly.

2.9 Peer bootstrap

Bootstrap is a process in which a peer obtains an ini-
tial configuration in order to join the system. In P2P
systems, this primarily involves obtaining addresses of
initial neighbours. Once a peer connects to at least
one neighbour, it can receive from this neighbour the
addresses of other peers in the system as well as other
initialisation data, such as the current values of aggre-
gates.

However, initial neighbour discovery is challenging
in wide-area networks, such as the Internet, since a
broadcast facility is not widely available. In particu-
lar, the IP multicast protocol has not been commonly
adopted by Internet service providers due to design and
deployment difficulties [20]. Most existing P2P systems
rely on centralised bootstrap servers that maintain lists
of peer addresses.

This section describes a bootstrap procedure that
consists of two stages. In the first stage, a peer attempts
to obtain initial neighbour addresses from a local cache
saved during the previous session, for example on a
local disk. This can be very effective; Stutzbach et al.
[7] analyse statistical properties of peer session times
in a number of deployed P2P systems and show that

if a peer caches the addresses of several high-uptime
neighbours, there is a high probability that some of
these high-uptime neighbours will be on-line during
the peer’s subsequent session. Furthermore, such a
bootstrap strategy is fully decentralised, as it does not
require any fixed infrastructure, and it scales with the
system size.

However, if all addresses in the cache are unavailable
or the cache is empty, for example if the peer is joining
the system for the first time, the peer needs to have an
alternative bootstrap mechanism. In the second stage,
peers obtain initial neighbour addresses from a boot-
strap node. The IP addresses of the bootstrap nodes are
either hard-coded in the application, or preferably, are
obtained by resolving well known domain names. This
latter approach allows greater flexibility, as bootstrap
nodes can be added or removed over the course of
the system’s lifetime. Moreover, the domain name may
resolve to a number of bootstrap node addresses, for
example selected using a round-robin strategy, in order
to balance the load between bootstrap nodes.

Each bootstrap node is independent and maintains
its own cache containing peer addresses. The cache size
and the update strategy are critical in a P2P system,
as the bootstrap process may have a strong impact on
the system topology, particularly in the case of high
churn rates. If the cache is too small, subsequently
joining peers have similar initial neighbours, and in
consequence, the system topology may become highly
clustered or even disconnected. On the other hand, a
large cache is more difficult to keep up to date and may
contain addresses of peers that have already left the
system.

A simple cache update strategy is to add the ad-
dresses of currently bootstrapped peers and to remove
addresses in a FIFO order. However, this strategy has
the drawback that it generates a topology where join-
ing peers are highly connected with each other, which
again leads to a highly-clustered topology and sys-
tem partitioning. A better approach is to continuously
“crawl” the P2P network and “harvest” available peer
addresses. In this case, the bootstrap node periodically
selects a random peer from the cache, obtains the peer’s
current neighbours, adds their addresses to the cache,
and removes the oldest entries in the cache. This has
the advantage that the addresses stored in the cache are
close to a random sample from all peers in the system.

3 Evaluation

Evaluation is especially important when designing a
novel P2P topology, such as the gradient topology,

Peer-to-Peer Netw Appl

since P2P systems usually exhibit complex, dynamic
behaviour that is difficult to predict a priori. Theoret-
ical system analysis is difficult, and often infeasible in
practice, due to the system complexity. At the same
time, a full implementation and deployment of a P2P
system on a realistic scale requires extremely large
amounts of resources, such as machines and users, that
are prohibitive in most circumstances. Consequently,
the approach followed in this paper is simulation.

However, designing P2P simulations is also challeng-
ing. The designer has to decide upon numerous system
assumptions and parameters, where the appropriate
choices or parameter values are non-trivial to deter-
mine. Furthermore, dependencies between different
elements of a complex system are often non-linear, and
a relatively small change of one parameter may result
in a dramatic change in the system behaviour.

Moreover, due to the large scale and complexity, P2P
systems are not amenable to visualisation techniques,
as a display millions of peers, connections, and mes-
sages is not human-readable. P2P simulations must con-
tinuously collect and aggregate statistical information
about the system in order to, detect topology partitions,
identify bottlenecks, measure global system properties,
etc. Such frequent and extensive measurements are
often computationally expensive, which adds further
challenges to analysing P2P systems.

3.1 Evaluation goals

In order to evaluate the gradient topology and its usage
in the SOA, the behaviour of the three main algorithms
are studied: the neighbour selection algorithm, super-
peer election (i.e., registry replica placement), and re-
quest routing.

The neighbour selection algorithm is evaluated
through an analysis of the generated topology, where
the analysed properties include the average peer de-
gree (i.e., number of neighbours), clustering coefficient,
average path length in the topology, and the average
percentage of globally optimal neighbours in a peer’s
neighbourhood set. The super-peer election algorithm,
and indirectly the aggregation algorithm, are evaluated
in a simulation run by measuring the average differ-
ence between the desired and the observed numbers
of super-peers in the system, the average number of
switches between super-peers and ordinary peers, and
the total capacity, utilisation and load of super-peers.
Finally, the performance of the routing algorithms on
the gradient topology is studied by measuring the av-
erage request hop count and average failure rate (i.e.,
percentage of request messages that are lost) in a simu-
lation run.

The algorithms are run in a number of different
experiments that examine the impact of relevant system
parameters on the system performance, such as the
number of peers, churn rate, average load, and super-
peer thresholds. The evaluation shows that the gradi-
ent topology scales to a large number of peers and is
resilient to high peer churn rates.

For the interested reader, a further, more compre-
hensive evaluation of the gradient topology can be
found in [21]. In particular, [21] compares a number
of state-of-the-art super-peer election techniques, and
shows that the aggregation-based election used in this
paper generates higher-quality super-peer sets, accord-
ing to a number of different metrics, at a similar cost,
compared to the other known super-peer election algo-
rithms.

3.2 System model

The gradient topology has been evaluated in a discrete
event simulator. The system consists of a set of peers,
connections between peers, and messages passed be-
tween peers. It is assumed that all peers are mutually
reachable and any pair of peers can potentially establish
a connection. The neighbourhood model is symmetric,
as discussed earlier in Section 2.3. The maximum num-
ber of neighbours for a peer at any given time is limited
to 26, however, as shown later, peers rarely approach
this limit, as the desired number of peer neighbours is
set to 13 (7 for the random set and 6 for the similar set).

The P2P network is under constant churn, with peer
session times determined probabilistically, following a
Pareto distribution. While the paper describes a peer
leave procedure, it is hard to estimate how many peers
in a real-world system would perform the procedure
when leaving. For that reason, the worst case scenario
is assumed in the experiments, where no peers perform
the leave procedure. Joining peers are bootstrapped
by a centralised server, which provides addresses of
initial neighbours. The server obtains these addresses
by “crawling” the P2P network and maintaining a FIFO
buffer with 1,000 entries. The bootstrap server is also
used for initiating aggregation instances.

The peer churn rate in the experiments is carefully
calculated. In a number of independent measurements
[4, 5], median peer session time has been reported as
being between 1 minute and 1 hour. A good summary
of median session durations in P2P system is given in
[8]. In a more recent report [7], mean session times
range from about 30 min in Gnutella, through ap-
proximately 20 min in Kademlia, to about 2–5 min in
BitTorrent. In order to be consistent with these real-
world measurements, the mean peer session time in the

Peer-to-Peer Netw Appl

experiments in this paper is set to 10 min. Assuming
a time step of 6 seconds, this corresponds to a mean
session time of 100 time steps and a churn rate of 0.7%
peers per time step (0.11% peers per second).

While session time distributions are highly-skewed
in existing P2P systems, there is no general consensus
whether these distributions are heavy-tailed and which
mathematical model best fits the empirically observed
peer session times. Sen and Wong [4] observe a heavy-
tailed distribution of the peer session time, however,
Chu et al. [22] suggest a log-quadratic peer session time
distribution, while Stutzbach and Rejaie [7] suggest the
Weibull distribution. Moreover, Stutzbach and Rejaie
discovered that the best power-law fit for the peer
session times in a number of BitTorrent overlays has
an exponent whose value is between 2.1 and 2.7, and
therefore the distributions are not heavy-tailed. In the
experiments in this paper, the peer session times are set
according to the Pareto distribution with a median of
10 min and exponent 2.0 (which is border case between
heavy-tailed and non-heavy-tailed distributions).

3.3 Service registry simulation

The service registry is maintained by super-peers
elected using the adaptive thresholds. The capacity
value C(p) determines the maximum number of re-
quests a peer p can simultaneously handle if elected
super-peer and hosting a registry replica. The load
at peer p, denoted L(p), is defined as the number
of requests currently being processed at peer p. The
capacity values are assigned to peers according to the
Pareto distribution with exponent of 2 and average
value of 1, which models peer resource heterogeneity
in the system. Moreover, peer utility is defined as

U(p) = C(p) · log
(

Up(p)
)

(27)

where the capacity is weighted by the peer’s current
uptime in order to promote stable peers. As discussed
in Section 2.2, this utility metric is fully predictable.

At every step, each peer p in the system emits
a search request with probability Preq(p). Probability
Preq(p) follows the Pareto distribution between peers
with exponent 2 and average value Preq = 0.01. Peers
that generate more traffic correspond to the so called
“heavy hitters” in the P2P system.

Request routing is performed in two stages. First,
a newly generated request is routed using Boltzmann
search with low temperature T = 0.5 steeply to the core
until it is delivered to a super-peer. In the second stage,
the request is forwarded between super-peers in the
core until it is delivered to super-peer s that has enough
free capacity to handle the request (i.e., C(s) − L(s) ≥

1). Once super-peer s accepts the requests and starts
handling it, its load is increased by one. When the
request processing finishes, the load at the super-peer
is reduced by one.

Forwarding between super-peers is probabilistic. A
super-peer p forwards the request to one of its neigh-
bours, q, such that U p(q) > t, where t is the current
super-peer election threshold, with probability P

′
p(q)

proportional to q’s capacity

P
′
p(q) = C(q)

∑

U p(x)>t C(x)
. (28)

The bias towards high capacity neighbours improves
the load balancing property of the routing algorithm.
If no neighbour q exists such that U p(q) > t, the re-
quest is routed randomly. Every request has a time-to-
live value, initialised to TT Lreq = 30, and decremented
each time a request is forwarded between peers. Thus,
a request message can be lost when its time-to-live
value drops to zero or when the peer that is currently
transmitting it leaves the system.

3.4 Maintenance cost

At every time step, each peer executes the neighbour
selection, aggregation, super-peer election, and mes-
sage routing algorithms. A peer sends on average 4
neighbour selection messages per time step (a request
and response for Sp and similarly a request and re-
sponse for Rp) and less than 4 aggregation messages per
time step (2 request messages and 2 response messages,
since for F = 25 and TT L = 50 a peer participates
on average in less than 2 aggregation instances, as
explained in Section 2.5). The election algorithm does
not generate any messages. It can be shown that the
size of both the neighbour selection and aggregation
messages is below 1KB, and therefore, for the basic
topology maintenance, a peer sends less than 8KB of
data per time step. Given a time step of 6 seconds,
this corresponds to an average traffic rate of 1.25KB/s.
Moreover, this cost is independent of the system size
and the churn rate, since the aggregation and neighbour
selection algorithms are executed at a fixed periodicity
and always generate the same number of messages per
time step. However, the cost associated with gradient
search depends on the rate of requests and the size of
request messages, and hence is application-specific.

3.5 Topology structure

This section evaluates the neighbour selection algo-
rithm by analysing the generated overlay topology.
The evaluation is based on a set of experiments. Each

Peer-to-Peer Netw Appl

experiment begins with a network consisting of a single
peer, and the network size is increased exponentially
by adding a fixed percentage of peers at each time step
until the size grows to 100, 000 peers. At the following
time steps, the system is under continuous peer churn,
however, the rate of arrivals is equal to the rate of
departures and the system size remains constant.

The following notation and metrics are used. The
system topology T is a graph (V, E), where V is the set
of peers in the system, and E is the set of edges between
peers determined by the neighbourhood sets: (p, q) ∈
E if q ∈ Sp ∪ Rp. The graph is undirected, since the
neighbourhood relation is symmetric and if q ∈ Sp ∪
Rp then p ∈ Sq ∪ Rq. Similarly, sub-topologies TS =
(V, ES) and TR = (V, ER) are defined based on the
similarity and random neighbourhood sets, Sp and Rp,
accordingly, where (p, q) ∈ ES if q ∈ Sp, and (p, q) ∈
ER if q ∈ Rp.

Figure 6 shows the average peer degree distribution
in four systems with 100, 000 peers and different churn
rates, where each plotted point represents the total
number of peers in the system with a given neighbour-
hood size. The graph has been obtained by running
four experiments with different churn rates, each for
2, 000 time steps, generating peer degree distributions
every 40 time steps, and averaging the sample sets at
the end of each experiment in order to reduce the
statistical noise. The same procedure has been applied
to generate all the remaining graphs in this subsection.

The obtained degree distributions resemble a normal
distribution, where majority of peers have approxi-
mately 13 neighbours, as desired. Moreover, the distrib-
utions are nearly identical for all churn rates, suggesting
good resilience of the neighbour selection algorithm to
peer churn.

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25

N
um

be
r

of
 p

ee
rs

Degree

No churn
Median session 20min
Median session 10min
Median session 5min

Fig. 6 Peer degree distribution in four systems with different
churn rates

Vr is defined as a subset of peers in the system, Vr ⊂
V, that contains r highest utility peers. Formally,

Vr = {

p ∈ V | U(p) ≥ U(pr)
}

(29)

where pr is the rth highest utility peer in the system.
In order to investigate the correlation between peer
degree and peer utility, the average peer degree is
calculated for a number of Vr sets in T, TS and TR.
Figure 7 shows the results of this experiment. The plots
are nearly flat, indicating that the average number of
neighbours is independent from the peer utility, and in
particular, the highest utility peers are not overloaded
by excessive connections from lower utility peers. The
slight increase in the degree of the 12 highest utility
peers is caused by the fact that these peers cannot find
any higher utility neighbours, and hence, connect to
lower utility peers, generating a locally higher average
degree.

Similarly, Fig. 8 shows the clustering coefficient in
topologies T, TS and TR for a number of Vr set with
increasing utility rank r. In the TS topology, the coeffi-
cient gradually grows as peer utility increases, almost
reaching the value of 0.8 for r = 1, which indicates
that the highest utility peers in the system are highly
connected with each other and constitute a “core” in
the network. At the same time, the coefficient is nearly
constant in TR, since the preference function for the
random sets is independent of peer utility.

Given global knowledge about the system in a P2P
simulator, the optimal neighbourhood set S∗

p for each
peer p can be determined using the neighbour pref-
erence function defined by formulas (2) and (3) in
Section 2.3. Formally, S∗

p is a subset of all peers in
the system, S∗

p ⊂ V, such that min(S∗
p) ≥ max(V\S∗

p),
where the ≥ relation is defined in formulas (2) and (3).

 0

 5

 10

 15

 20

 1 10 100 1000 10000 100000

A
ve

ra
ge

 d
eg

re
e

Utility rank

Total
Similar

Random

Fig. 7 Average sizes of neighbourhood sets for highest utility
peers

Peer-to-Peer Netw Appl

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
lu

st
er

in
g

co
ef

fic
ie

nt

Utility rank

Total
Similar

Random

Fig. 8 Clustering coefficients of highest utility peers in sub-
topologies determined by similarity and random neighbourhood
sets

The quality of a peer neighbourhood set Sp can be then
estimated using Opt(p) metric defined as the portion of
optimal entries in Sp

Opt(p) = |Sp ∩ S∗
p|

|S∗
p|

. (30)

Consequently, Optavg(Vr) is the average value of
Opt(p) for the r highest utility peers in the system.

Figure 9 shows the value of Optavg(Vr) as a function
of the utility rank r in four experiments with different
churn rates. The graph shows that while the average
value of Opt() in the entire system is very low, as it is
relatively unlikely for peers to discover their globally
optimal neighbours in a large-scale dynamic system,
Opt(p) grows with peer utility and reaches its max-
imum value of 1 for the highest utility peers. This
confirms that the highest utility peers are stable enough

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

O
pt

im
al

 n
ei

gh
bo

ur
s

Utility rank

No churn
Median time 20min
Median time 10min
Median time 5min

Fig. 9 Average fraction of globally optimal neighbours for peers
of different utility ranking

and have long enough session times to fully optimise
their neighbourhood sets. Thus, the topology consists
of a stable “core” of the highest utility peers, which
maintain the topology structure, and lower utility peers
that are subject to heavy churn and have a reduced
ability to optimise their neighbourhood sets.

Furthermore, the highest utility peers manage to
maintain close-to-optimal neighbourhood sets in all ex-
periments with median peer session times ranging from
infinity (no churn) to 5min.

In order to get more insight into the structure of the
gradient topology, the subsequent experiments mea-
sure the average path length between highest utility
peers in the system. D(p, q) is defined as the short-
est path length between peers p and q in the system
topology T, and analogously, DS(p, q) and DR(p, q)

are defined for TS and TR. The average path length
in T, denoted Apl(V), is the average value of D(p, q)

over all possible pairs of peers (p, q) in the system

Apl(V) =
∑

p,q∈V D(p, q)

|V|2 . (31)

Given a utility rank r, the average path length between
the r highest utility peers is Apl(Vr). Furthermore,
AplS and AplR are again defined as the average path
lengths in TS and TR, respectively.

The average path length Apl(V) can be calculated
using the Dijkstra shortest path algorithm at O(|V|2d)

cost, where d is the average peer degree in V. How-
ever, in the system described in this paper, with |V| =
100, 000 and d = 13, this would require performing over
100, 000, 000, 000 basic operations. This cost can be
reduced by selecting a random subset V ′ from V and
approximating Apl(V) with

Apl
′
(V) =

∑

p∈V ′
∑

q∈V D(p, q)

|V ′| · |V| . (32)

Such approximation requires running the Dijkstra al-
gorithm for |V ′| peers, and hence, incurs the compu-
tational cost of O(|V ′||V|d) operations. In practice,
|V ′| = 100 generates accurate results.

In the unlikely case where two peers p and q are not
connected in the system topology, the distance D(p, q)

is not defined and the (p, q) pair is omitted in the calcu-
lation of Apl′. The number of such pairs is extremely
low in the reported experiments and such pairs only
occur when a peer becomes isolated and needs to be
re-bootstrapped. With the exception of isolated peers,
topology partitions were never observed in any of the
experiments described in this paper.

Figure 10 shows the average path length between the
highest utility peers in the system. Each point plotted
in the graph represents the value of Apl

′
(Vr) for a

Peer-to-Peer Netw Appl

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000 10000 100000

A
ve

ra
ge

 p
at

h
le

ng
th

Utility Rank

No churn
Median time 20min
Median time 10min

Median time 5min

Fig. 10 Average path length between peers of different utility
ranking

given utility rank r. For all churn rates, the average path
length gradually converges to zero when decreasing r.
This confirms the emergence of a gradient structure in
the system topology, where high utility peers, deter-
mined by a utility threshold, are closely connected.

3.6 Aggregation

This section evaluates the accuracy of the aggregation
algorithm. The following notation and metrics are used.
Variables Np,t, Hp,t and Hc

p,t denote the current esti-
mations at peer p of the current system size, N, utility
histogram, Ht, and capacity histogram Hc

t , respectively,
at time step t. The average relative error in the system
size approximation, calculated over all time steps and
peers in the system, is defined as

ErrN = 1
Time

Time
∑

t=1

1
N

∑

p

|Np,t − N|
N

. (33)

where Time is the experiment duration. Similarly, the
average error in utility histogram estimation, ErrH , is
defined as

ErrH = 1
Time

Time
∑

t=1

1
N

∑

p

d(Ht, Hp,t) (34)

where d is a histogram distance function defined as

d(Ht, Hp,t) = 1
B

B−1
∑

i=0

|Ht(i) − Hp,t(i)|
Ht(i)

. (35)

Analogously, ErrHc is defined as the average error in
the capacity histogram estimation.

Figure 11 shows the values for ErrN , ErrH and ErrHc

in two sets of experiments. In the first set, labelled

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

N H H^c

A
pp

ro
xi

m
at

io
n

er
ro

r

Churn
No-Churn

Fig. 11 Influence of churn on aggregation error

“Churn”, nodes are allowed to join and leave the over-
lay, as explained in Section 3.2. In the second set of
experiments, labelled “No-Churn”, the population of
nodes is static.

In the absence of churn, the aggregation algorithm
produces almost perfectly accurate system property
approximations, with the average error below 0.001%.
This behaviour is consistent with the theoretical and
experimental analysis described in [15]. In the pres-
ence churn, the observed error is non-negligible, and
is approximately equal to 3% for N and 10% for the
histograms. The next section evaluates the influence of
churn and aggregation error on the super-peer election.

There are two parameters that control the cost and
accuracy of aggregation, which are the frequency of in-
stance initiation, F, and an instance time-to-live, TT L.
Additionally, the histogram resolution, B, impacts on
the accuracy of utility distribution approximation.

When F is decreased, peers perform aggregation
more frequently, and have more up-to-date estimations
of the system properties. However, in the described
experiments, the system size and the probability distri-
butions of peer utility and capacity are constant, and
hence, running aggregation more often does not affect
the results. At the same time, when F is decreased, the
average message size increases, since peers participate
in a higher number of aggregation instances.

Similarly, when the TT L parameter is increased,
aggregation instances last longer, peers store more lo-
cal tuples, and aggregation messages become larger.
However, as shown in Fig. 12, if the TT L parameter
is too low (e.g., equal to 30), the aggregation instances
are too short to average out the tuples stored by peers
and the results have a high error. Conversely, when
aggregation instances run longer, they suffer more from

Peer-to-Peer Netw Appl

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

N H H^c

A
pp

ro
xi

m
at

io
n

er
ro

r

TTL=30
TTL=60

TTL=120
TTL=240

Fig. 12 Aggregation error versus instance TTL

churn (more tuples are lost during an instance) and the
quality of results gradually deteriorates. It appears that
optimum performance is achieved for TT L ≈ 50, and
this value for TT L is used in the experiments described
in this article.

Finally, the accuracy of utility distribution approx-
imation can be improved by increasing the histogram
resolution, B. Clearly, the message size grows linearly
with the number of histogram bins. The actual accuracy
improvement depends on the shape of the distribution
function and the histogram interpolation method. In
this article, linear interpolation is used and histograms
have 100 bins. This way, aggregation messages have be-
low 1kB, and would fit well into UDP packets, assuming
this protocol was used in the implementation.

3.7 Super-peer election

The following section evaluates the super-peer election
algorithm for the registry replica placement. A num-
ber of experiments is performed. In each experiment,
the P2P network initially consists of one peer and is
gradually expanded until it grows to N peers, as in
the previous section. Super-peers are elected using two
proportional thresholds, an upper threshold tu and a
lower threshold tl, such that tu = tQ, where Q is the
desired super-peer ratio in the system, and tl = tQ+�,
where � determines the distance between upper and
lower thresholds. At any time t, Mt denotes the cur-
rent number of super-peers in the system, Mt

N is the
current super-peer ratio, and Errt = |Mt − QN|, called
algorithm error, is the difference between the elected
and the desired numbers of super-peers in the system,
which reflects the election algorithm accuracy. Simi-
larly, RErrt = Errr

QN is the relative election error.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 5 10 15 20 25 30

S
up

er
-p

ee
r

ra
tio

Median session time

Q=0.01
Q=0.03

Q=0.1

Fig. 13 Average super-peer ratio observed in the system

As the network grows to N peers, the system is
run for 2, 000 time steps and results are aggregated.
M denotes the average number of super-peers in the
system over all time steps, Err is the average error, and
RErr is the relative algorithm error.

The first set of experiments investigate the impact
of churn on the super-peer election. Figure 13 shows
the average super-peer ratio M

N in systems with 50, 000
peers, where Q is set to 0.01, 0.03 and 0.1, and the
median peer session duration is ranging between 5min
and 30min. Figure 14 shows the average error RErr
in the same experiment. As expected, the accuracy of
the election algorithm degrades when the churn rate
increases (i.e., for shorter peer sessions), since churn
affects the aggregation algorithm, causing larger error
in the generated aggregates and in the threshold calcu-
lation. However, in all cases, the observed super-peer

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

Median session time

Q=0.01
Q=0.03

Q=0.1

Fig. 14 Average error in the number of super-peers elected as a
function of churn rate

Peer-to-Peer Netw Appl

 0

 5000

 10000

 15000

 20000

100,00080,00060,00040,00020,000

R
eq

ue
st

s

Number of peers

Load
Capacity for W=0.9

Capacity for W=0.75
Capacity for W=0.5

Fig. 15 Total load and super-peer capacity in systems with varied
sizes and adaptive thresholds

ratio is close to Q, and the average error is bounded
during simulation at 5%, which shows that peers’ local
estimations of the super-peer election thresholds are
close to the desired values.

Moreover, it should be noted that the calculated
peer session durations and the churn rates are based
on the assumption that the time step is 6 seconds long.
The system can achieve better churn tolerance either
when peers run periodic algorithms more frequently
and exchange more messages (i.e., the time step is
shortened).

In the next experiments, super-peers are elected
using adaptive thresholds tW , where W is the desired
super-peer utilisation, with the upper threshold tu = tW

and lower threshold tl = tW−�. Figures 15 and 16 show
the total system load, super-peer capacity, and the av-
erage super-peer utilisation in a number of experiments
with the system size N ranging from 10,000 to 100,000

 0

 0.2

 0.4

 0.6

 0.8

 1

100,00080,00060,00040,00020,000

S
up

er
-p

ee
r

ut
ili

sa
tio

n

Number of peers

W=0.9
W=0.75

W=0.5

Fig. 16 Average super-peer utilisation as a function of system
size

and W set to 0.9, 0.75, and 0.5. The median peer session
length is fixed at 10min and � = 0.01. It can be seen
that the systems exhibit stable behaviour, with the total
super-peer capacity growing linearly with the system
size and proportionally to the system load, while the
average super-peer utilisation remains at a constant
level, relatively close to W.

3.8 Dynamic peer utility

In the previous sections, it has been assumed that peer
capacity is constant. However, this assumption may not
always be realistic, as resources such as storage capac-
ity, network bandwidth, processor cycles and memory,
can be consumed by external applications, reducing the
capacity perceived by the peer. Furthermore, a peer
may be unable to determine its capacity precisely, and
may have to rely on local measurements or heuristics
that incur an estimation error.

In the following experiments, each peer p has a
constant maximum capacity value, C∗(p), and a current
capacity value, C(p), determined at each time step by
formula C(p) = C∗(p) · (1 − ε), where ε is randomly
chosen between 0 and εmax. Thus, the ε parameter can
be seen either as the peer capacity estimation error or
the interference of external applications.

Each experiment is set up with three parameters: the
capacity change amplitude, εmax, labelled “Epsilon” on
the graphs, the desired super-peer utilisation, W, and
the difference between the upper and lower thresholds,
�. In order to prevent super-peers close to the elec-
tion threshold from frequently switching their status to
ordinary peers and conversely, super-peers are elected
using two utility thresholds, where again tu = tW and
tl = tW−�.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.05 0.1 0.15 0.2

S
up

er
-p

ee
r

ch
an

ge
s

Delta

Epsilon=0.0
Epsilon=0.1
Epsilon=0.2

Fig. 17 Relative number of super-peer changes per time step as
a function of �

Peer-to-Peer Netw Appl

Figure 17 shows the average number of super-peer
changes as a function of �. The experiment demon-
strates that the number of changes sharply decreases
as � is increased. However, it does not converge to
zero, but rather to a constant positive value. This is
caused by the fact that some super-peers always leave
the system, due to churn, and ordinary peers must
continuously switch to super-peers in order to maintain
enough capacity in the core.

Hence, super-peer changes are due to two reasons.
First, as super-peers leave the system, ordinary peers
need to replace them and switch their status to super-
peers. The number of such switches can be simply
determined by counting super-peers leaving the system,
and is labelled “Churn” in the graphs. Secondly, both
the utility of individual peers and the utility threshold
constantly fluctuate, due to changes in the system load,
peer departures and arrivals, errors in the aggregation
algorithm, etc., which causes peers with utility close to
the election threshold to occasionally change their sta-
tus. The latter category of changes is labelled “Thresh-
old” in the graphs.

Figure 18 shows the number of super-peer changes
divided between the two categories in a system with
εmax = 0.1. The experiment demonstrates that the num-
ber of super-peer changes caused by utility and thresh-
old fluctuations can be reduced to a negligible level by
using an appropriate �.

Figure 19 shows the impact of � on the super-peer
election error. As expected, the error grows together
with �, since a larger gap between tu and tl relaxes the
constraints on the number of super-peers in the system.
The less precise restriction of the number of super-
peers in the system is the price for the reduction of the
super-peer switches.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.05 0.1 0.15 0.2

S
up

er
-p

ee
r

ch
an

ge
s

Delta

Total
Churn

Threshold

Fig. 18 Relative number of super-peer changes due to super-
peer departures and threshold fluctuations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.005 0.01 0.015 0.02

R
el

at
iv

e
er

ro
r

Delta

Epsilon=0.0
Epsilon=0.1
Epsilon=0.2

Fig. 19 Relative error in the number of super-peers elected in
the system as a function of �

3.9 Routing performance

The following section evaluates the routing algorithm
used by peers to access SOA registry replicas. As de-
scribed previously, requests are generated by peers with
average probability Preq and are routed to available
registry replicas hosted by super-peers. In a number of
experiments, two properties are measured: the average
request hop count and the average request failure rate.
Furthermore, these two parameters, hop counts and
failure rates, are calculated for requests routed between
ordinary peers, before delivered to a super-peer in the
core (labelled “Outside core” on the graphs), and for
requests routed in the core, when searching for a super-
peer with available capacity (labelled “Inside core” on
the graphs).

Figure 20 shows the average request hop count as a
function of median peer session time. The hop count

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30

H
op

s

Median session time

W=0.9
W=0.75
W=0.5

Fig. 20 Average request hop count as a function of churn rate

Peer-to-Peer Netw Appl

increases when peer sessions are shorter, which indi-
cates that the topology structure degrades when churn
rate increases, reducing the routing performance. Fur-
thermore, the request hop count is significantly higher
for W = 0.9 than for W = 0.5 and W = 0.75, which is
due to two reasons. First, in systems with higher super-
peer utilisation W, fewer super-peers are elected and
hence it is harder for ordinary peers to discover the
super-peers. Secondly, in systems with higher super-
peer utilisation, requests are forwarded more times
between super-peers in the core, as it is less likely to
discover a super-peer with spare capacity.

This observation suggests that routing is generally
more efficient in systems with lower super-peer util-
isation. However, with lower W, a larger number of
super-peers are elected, which increases the replica
maintenance cost, since more data needs to be migrated
over the network in order to create and synchronise the
replicas. Consequently, the adaptive threshold enables
a trade-off between the replica discovery cost and the
replica maintenance cost.

Figure 21 shows the impact of churn on the request
failure rate. As expected, the number of failures grows
when the churn rate is increased, and similarly as the
hop count, the failure rate is significantly higher for
W = 0.9 than for W = 0.75 and W = 0.5.

Figure 22 shows the average request hop count as
a function of the system size. The results show that
the hop count does not grow significantly within the
investigated range of 10, 000–100, 000 peers, which can
be explained by the fact that the hop count depends
mainly on the super-peer ratio in the system, which
is constant with the system size, and is determined by
W. Figure 23 shows the average request failure rate in
the same experiment. The results indicate good system

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30

F
ai

lu
re

 r
at

e

Median session time

W=0.9
W=0.75

W=0.5

Fig. 21 Request failure rate as a function of peer churn rate

 0

 2

 4

 6

 8

 10

 12

 14

100,00080,00060,00040,00020,000

H
op

s

Number of peers

W=0.9
W=0.75
W=0.5

Fig. 22 Average request hop count as a function of system size

scalability, as both the hop count and failure rate are
constant with the number of peers in the system.

3.10 Impact of Boltzmann temperature

The following set of experiments investigates the im-
pact of the Boltzmann temperature Temp on the per-
formance of request routing and the distribution of
requests between super-peers. Figure 24 shows the av-
erage request hop count outside the core (before a
request is delivered to a super-peer) as a function of
the temperature Temp. The Temp = 0 case represents
gradient search. The hop count grows steadily with
the temperature, and the best routing performance is
achieved with the lowest temperature. This justifies the
usage of greedy routing (i.e., gradient routing) outside
the core.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

100,00080,00060,00040,00020,000

F
ai

lu
re

 r
at

e

Number of peers

W=0.9
W=0.75

W=0.5

Fig. 23 Request failure rate as a function of system size

Peer-to-Peer Netw Appl

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

H
op

s

Boltzmann temperature

Threshold=0.9
Threshold=0.75
Threshold=0.5

Fig. 24 Average number of request hops outside core as a
function of Boltzmann temperature for three different super-peer
election thresholds

Figure 25 shows the average number of request hops
inside the core as a function of Temp. Unlike in the
previous experiment, better performance is achieved
for higher temperatures. It should be noted that while
requests are forwarded between super-peers using for-
mula (28), which is independent of Temp, Boltzmann
temperature impacts on the delivery of requests to
super-peers, and hence may affect routing in the core.
This is confirmed by the experimental results; the aver-
age request hop count in the core decreases when Temp
grows, which indicates that the load is distributed more
equally between super-peers for higher Temp.

Thus, the temperature parameter enables a trade-off
between greedy routing, which delivers request quickly
to the core, and randomised routing that improves load

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2

H
op

s

Boltzmann temperature

Threshold=0.9
Threshold=0.75
Threshold=0.5

Fig. 25 Average number of request hops inside core as a function
of Boltzmann temperature or three different super-peer election
thresholds

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2

H
op

s

Boltzmann temperature

Total
Gradient

Core

Fig. 26 Average number of request hops inside and outside core
as functions of Boltzmann temperature

balancing. This is further illustrated in Fig. 26, which
compares the request hop count inside the core and
outside the core for W = 0.75 and 0 ≤ Temp ≤ 2 , and
in Fig. 27, which shows the average request failure rate
in the same experiment. Both figures suggest that the
optimal temperature for routing is close to 0.5.

3.11 Impact of system load

The final set of experiments investigates the perfor-
mance of the system under variable load conditions.
Figure 28 shows the relationship between the request
probability Preq and the total number of super-peers in
the system. It can be seen that the super-peer set adapts
to the increasing load in the system. The super-peer
ratio initially grows slowly, as high capacity super-peers

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2

F
ai

lu
re

 r
at

e

Boltzmann temperature

Total
Gradient

Core

Fig. 27 Average request failure rate inside and outside core as
functions of Boltzmann temperature

Peer-to-Peer Netw Appl

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04

S
up

er
-p

ee
r

ra
tio

Request probability

W=0.75
W=0.5

Fig. 28 Super-peers ratio as a function of request probability

are available, but the growth rate quickly increases
for higher Preq, and eventually all peers in the system
become super-peers.

Figure 29 shows the average super-peer capacity and
the total system load in the same experiment. The figure
demonstrates that the super-peer capacity scales lin-
early with the load in the system, which is proportional
to Preq, until all peers in the system are fully utilised.

Figure 30 shows the average request hop count as
a function of the request probability Preq. Remark-
ably, the hop count is high for both low Preq and
high Preq, while achieving its minimum for Preq ≈ 0.02.
For low Preq, the high number of hops is caused by
the fact that very few (potentially zero) super-peers
are elected when the system load is very low, and
hence, it is hard for peers to discover the super-peers.
On the contrary, when the load is very high, a large

 0

 5000

 10000

 15000

 20000

 25000

 0 0.01 0.02 0.03 0.04

R
eq

ue
st

s

Request probability

Load
Capacity for Q=0.75

Capacity for Q=0.5

Fig. 29 System load and super-peer capacity as functions of
request probability

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.01 0.02 0.03 0.04

H
op

s

Request probability

Total
Outside core

Inside core

Fig. 30 Average request hop count as a function of system load

number of peers (potentially all peers in the system)
are elected super-peers, and the task of load balancing
between super-peers becomes very hard. In the latter
case, the performance of routing is mainly determined
by the load balancing algorithm. A similar effect can
be observed when measuring the request failure rate,
as shown in Fig. 31. A high percentage of requests
are lost when Preq is very low or very high, while
the lowest failure rate is reached for Preq close to
0.015.

An important conclusion from these experiments is
that the system should always maintain a minimum
number of super-peers, even in the presence of no
load, in order to reduce the request hop count and
failure rate. This can be accomplished by combining
the adaptive threshold with the top-K or proportional
threshold.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.01 0.02 0.03 0.04

F
ai

lu
re

 r
at

e

Request probability

Total
Outside core

Inside core

Fig. 31 Request failure rate as a function of system load

Peer-to-Peer Netw Appl

4 Related work

An approach to web service discovery that uses a de-
centralised search engine, based on a P2P network,
is described in [23]. In this approach, services are
characterised by keywords and positioned in a multi-
dimensional space that is mapped onto a DHT and par-
titioned between peers. A similar approach, described
in [24] and [25], partitions the P2P system into a set
of ontological clusters, using a P2P topology based
on hypercubes, in order to efficiently support complex
RDF-based search queries. However, both these ap-
proaches are based on P2P networks that do not reflect
peer heterogeneity in the system, unlike the gradient
topology, and do not address the problem of high utility
peer discovery in a decentralised P2P environment.

A number of general search techniques have been
developed for unstructured P2P systems (e.g., [26] and
[27]), however, these techniques do not exploit any
information contained in the underlying P2P topology,
and hence achieve lower search performance than the
gradient heuristic that takes advantage of the gradient
topology structure [16]. Morselli et al. [28] proposed a
routing algorithm for unstructured P2P networks that
is similar to gradient searching, however, they address
the problem of routing between any pair of peers rather
than searching for reliable peers or services.

In traditional super-peer topologies, the super-peers
form their own overlay within the existing P2P system,
while ordinary peers are connected to one or more
super-peers. Kazaa [29], Gnutella [30], and Skype [31]
are examples of such systems deployed over the Inter-
net. Yang and Garcia-Molina [32] give general princi-
ples for designing such super-peer networks. However,
nearly all known P2P systems lack an efficient, decen-
tralised super-peer election algorithm. Traditional elec-
tion algorithms, such as the Bully algorithm [33], and
other classical approaches based on group communica-
tion [34], cannot be applied to large-scale P2P systems,
as they usually require agreement and message passing
between all peers in the system. In many P2P sys-
tems, super-peers are selected manually, through some
out-of-band or domain-specific mechanism. Often, the
super-peer set is managed centrally, for example by
the global system administrator or designer, and often
statically configured (hard-coded) into the system. In
other cases, super-peers are elected locally using sim-
ple heuristics. These approaches, both centralised and
decentralised, often select a suboptimal set of super-
peers due to the lack of system-wide knowledge of
peer characteristics [21]. This paper describes a more
elaborate approach, where the super-peer election is

based on the aggregation of system-wide peer utility
characteristics.

Xiao and Liu [35] propose a decentralised super-peer
management architecture, similar to the one described
in this paper, that focuses on three fundamental ques-
tions: what is the optimal super-peer ratio in the system;
which peer should be promoted to super-peers; and
how to maintain an optimal super-peer set in a dynamic
system. To this end, they introduce the peer capacity
and session time metrics, similarly as in the gradient
topology, and they aim to elect super-peers with glob-
ally highest capacity and stability in the system. How-
ever, their approach uses relatively simple, localised
heuristics at each peer in order to estimate system-
wide peer characteristics, in contrast to the aggregation
algorithms used in this paper. Furthermore, their ar-
chitecture does not use double election thresholds that
reduce the number of swappings between super-peers
and ordinary peers, and they do not address varying
load and peer capacity.

Montresor [36] proposes a self-organising protocol
for super-peer overlay generation that maintains a bi-
nary distinction between super-peers and client peers.
The algorithm attempts to elect a minimum-size super-
peer set with sufficient capacity to handle all client
peers in the system. This approach has been further
extended in [37], where the super-peer election algo-
rithm not only attempts to minimise the total number
of super-peers in the system, but also imposes a limit
on the maximum latency between super-peers and their
client peers. In contrast, the gradient topology intro-
duces a continuous peer utility spectrum and a gradient
structure that enables super-peer election based on
adaptive utility thresholds. Furthermore, the gradient
topology allows the partitioning of peers into a con-
figurable hierarchy, where each level of the hierarchy
consists of peers whose utility values fall within the
same utility range, as in [14].

The task of data aggregation, or synopsis construc-
tion, has been well-studied in the past in the areas
of sensor networks [38, 39] and distributed databases
[40, 41]. Most of the proposed algorithms rely on dis-
semination trees, where the aggregated data is sent to
a single node. However, in the architecture described
in this paper, all nodes need to estimate global system
properties in order to decide on the super-peer election.

Kempe et al. [42] describe a push-based epidemic
algorithm for the computations of sums, averages, ran-
dom samples, and quantiles, and provide a theoretical
analysis of the algorithm. Their algorithm has been
used for the histogram and utility thresholds calcula-
tion in [43]. However, Montresor et al. [15] introduce

Peer-to-Peer Netw Appl

a push-pull aggregation algorithm that offers better
performance, compared to push-based approaches, in
systems with high churn rates. This paper extends the
push-pull aggregation algorithm by enabling the calcu-
lation of utility and capacity histograms and by adding a
peer leave procedure that further improves the behav-
iour of the algorithm in the face of peer churn.

The approach to decentralise a service-oriented ar-
chitecture, described in this paper, has been initially
proposed in [44]. The gradient search and Boltzmann
search heuristics have been first proposed in [16], and
the super-peer election thresholds have been intro-
duced in [43]. However, compared with [44], [16] and
[43], the algorithms presented in this paper have been
substantially elaborated and improved. In particular,
the neighbour selection algorithm has been extended,
the push-based aggregation algorithm has been re-
placed by a push-pull algorithm, a new super-peer
election approach based on system load and adap-
tive thresholds has been introduced, an approach to
multiple utility functions support has been added, a
bootstrap mechanism has been described, and most
importantly, a substantially more elaborate evaluation
has been performed.

5 Conclusions

This paper describes an approach to fully decentralise
a service-oriented architecture using a self-organising
peer-to-peer network maintained by service providers
and consumers. While the service provision and con-
sumption are inherently decentralised, as they usually
involve direct interactions between service providers
and consumers, the P2P infrastructure enables the dis-
tribution of a service registry, and potentially other
SOA facilities, across a number of sites available in the
system.

The most interesting element of the presented ap-
proach is the gradient topology, which pushes the state
of the art of super-peer election algorithms by using
aggregation techniques to estimate system-wide peer
properties. The gradient topology allows peers to con-
trol and dynamically refine and optimise the super-
peer set by adjusting the super-peer election threshold;
this is, as the authors believe, an important property
for super-peer systems in dynamic environments. Fur-
thermore, the approach allows the margin around the
super-peer threshold to be configurable, which reduces
the impact of random utility fluctuations on super-peer

stability. This decreases the system overhead associated
with creating or migrating super-peers.

The experimental evaluation of the gradient topol-
ogy shows that a system consisting of 100, 000 peers
maintains the desired structure in the presence of heavy
churn. Furthermore, peers successfully elect and update
a set of highest utility super-peers, maintaining a total
super-peer capacity proportional to the system load.
The election algorithm can also reduce the frequency
of switches between super-peers and ordinary peers,
in case of fluctuating peer utility, by applying upper
and lower thresholds and relaxing the super-peer utility
requirements. Finally, the presented routing algorithms
are robust to churn and scale to large numbers of peers,
enabling efficient super-peer discovery. Load balancing
can be achieved by a Boltzmann heuristic at the cost of
routing performance.

Acknowledgements The work described in this paper was
partly funded by the EU FP6 Digital Business Ecosystem project
(DBE), Microsoft Research Cambridge, and the Irish Research
Council for Science Engineering and Technology (IRCSET).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Huhns MN, Singh MP (2005) Service-oriented computing:
key concepts and principles. IEEE Internet Computing
9(1):75–81

2. Jammes F, Smit H (2005) Service-oriented paradigms in in-
dustrial automation. IEEE Trans Ind Inf 1:62–70

3. Papazoglou MP, Georgakopoulos D (2003) Service-oriented
computing. Commun ACM 46:24–28

4. Sen S, Wang J (2004) Analyzing peer-to-peer traffic across
large networks. IEEE/ACM Trans Netw 12:219–232

5. Gummadi KP, Dunn RJ, Saroiu S, Gribble SD, Levy HM,
Zahorjan J (2003) Measurement, modeling, and analysis of
a peer-to-peer file-sharing workload. In: Proceedings of sym-
posium on operating systems principles, pp 314–329

6. Saroiu S, Gummadi PK, Gribble SD (2003) Measuring and
analyzing the characteristics of napster and gnutella hosts.
Multimedia Syst 9(1):170–184

7. Stutzbach D, Rejaie R (2006) Understanding churn in peer-
to-peer networks. In: Proceedings of the 6th ACM SIG-
COMM conference on internet measurement. ACM, New
York, pp 189–202

8. Rhea S, Geels D, Roscoe T, Kubiatowicz J (2004) Handling
churn in a DHT. In: Proceedings of the USENIX annual
technical conference. USENIX, El Cerrito, pp 127–140

Peer-to-Peer Netw Appl

9. Li J, Loo BT, Hellerstein JM, Kaashoek MF, Karger DR,
Morris R (2003) On the feasibility of peer-to-peer web
indexing and search. In: Proceedings of the 2nd international
workshop on peer-to-peer systems. Springer, New York,
pp 207–215, LNCS 2735

10. Lakshminarayanan K, Padmanabhan VN (2003) Some find-
ings on the network performance of broadband hosts. In: Pro-
ceedings of the 3rd ACM SIGCOMM conference on internet
measurement. ACM, New York, pp 45–50

11. Voulgaris S, Gavidia D, van Steen M (2005) CYCLON: inex-
pensive membership management for unstructured P2P over-
lays. J Netw Syst Manag 13(2):197–217

12. Jelasity M, Guerraoui R, Kermarrec A-M, van Steen M
(2004) The peer sampling service: experimental evaluation of
unstructured gossip-based implementations. In: Middleware.
Springer, New York, pp 79–98, LNCS 3231

13. Jelasity M, Babaoglu Ö (2006) T-man: gossip-based over-
lay topology management. In: Proceedings of the 3rd inter-
national workshop on engineering self-organising systems.
Springer, New York, pp 1–15, LNCS 3910

14. Jelasity M, Kermarrec A-M (2006) Ordered slicing of very
large-scale overlay networks. In: Montresor A, Wierzbicki
A, Shahmehri N (eds) Proceedings of the 6th IEEE inter-
national conference on peer-to-peer computing. IEEE Com-
puter Society, Piscataway, pp 117–124

15. Jelasity M, Montresor A, Babaoglu O (2005) Gossip-based
aggregation in large dynamic networks. ACM Trans Comput
Syst 23:219–252

16. Sacha J, Dowling J, Cunningham R, Meier R (2006) Discov-
ery of stable peers in a self-organising peer-to-peer gradi-
ent topology. In: Proceedings of the 6th IFIP international
conference on distributed applications and interoperable sys-
tems. Springer, New York, pp 70–83, LNCS 4025

17. Sutton RS, Barto AG (1998) Reinforcement learning: an in-
troduction. MIT, Cambridge

18. Patrick Reynolds AV (2003) Efficient peer-to-peer keyword
searching. In: Middleware, ser. LNCS, vol 2672. Springer,
New York, pp 21–40

19. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker
S, Sturgis H, Swinehart D, Terry D (1987) Epidemic algo-
rithms for replicated database maintenance. In: Proceedings
of the 6th ACM symposium on principles of distributed com-
puting. ACM, New York, pp 1–12

20. Diot C, Levine BN, Lyles B, Kassem H, Balensiefen D (2000)
Deployment issues for the IP multicast service and architec-
ture. IEEE Netw 14(1):78–88

21. Sacha J (2009) Exploiting heterogeneity in peer-to-peer sys-
tems using gradient topologies. Ph.D. dissertation, Trinity
College Dublin

22. Chu J, Labonte K, Levine BN (2002) Availability and locality
measurements of peer-to-peer file systems. In: Proceedings
of ITCom: scalability and traffic control in IP networks, vol
4868, pp 310–321

23. Schmidt C, Parashar M (2004) A peer-to-peer approach to
web service discovery. World Wide Web 7(2):211–229

24. Schlosser M, Sintek M, Decker S, Nejdl W (2002) A scalable
and ontology-based p2p infrastructure for semantic web ser-
vices. In: Proceedings of the 2nd international conference on
peer-to-peer computing, pp 104–111

25. Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M,
Brunkhorst I, Löser A (2003) Super-peer-based routing and
clustering strategies for RDF-based peer-to-peer networks.
In: Proceedings of the 12th international conference on world
wide web. ACM, New York, pp 536–543

26. Yang B, Garcia-Molina H (2002) Improving search in peer-
to-peer networks. In: Proceedings of the 22nd international

conference on distributed computing systems. IEEE, Piscat-
away, pp 5–14

27. Lv Q, Cao P, Cohen E, Li K, Shenker S (2002) Search and
replication in unstructured peer-to-peer networks. In: Pro-
ceedings of the 16th international conference on supercom-
puting. ACM, New York, pp 84–95

28. Morselli R, Bhattacharjee B, Srinivasan A, Marsh MA (2005)
Efficient lookup on unstructured topologies. In: Proceedings
of 24th ACM symposium on principles of distributed comput-
ing, pp 77–86

29. Leibowitz N, Ripeanu M, Wierzbicki A (2003) Deconstruct-
ing the Kazaa network. In: Proceedings of the 3rd interna-
tional workshop on internet applications. IEEE Computer
Society, Piscataway, pp 112–120

30. Singla A, Rohrs C (2002) Ultrapeers: another step towards
gnutella scalability, version 1.0. Lime Wire LLC, Tech. Rep.

31. Guha S, Daswani N, Jain R (2006) An experimental study of
the Skype peer-to-peer VoIP system. In: Proceedings of the
5th international workshop on peer-to-peer systems, pp 1–6

32. Yang B, Garcia-Molina H (2003) Designing a super-peer net-
work. In: Proceedings of the 19th international conference
on data engineering. IEEE Computer Society, Bangalore,
pp 49–60

33. Garcia-Molina H (1982) Elections in a distributed computing
system. IEEE Trans Comput 31(1):48–59

34. van Renesse KPBR, Maffeis S (1996) Horus, a flexible group
communication system. Commun ACM 39(4):76–83

35. Xiao L, Zhuang Z, Liu Y (2005) Dynamic layer management
in superpeer architectures. IEEE Trans Parallel Distrib Syst
16:1078–1091

36. Montresor A (2004) A robust protocol for building superpeer
overlay topologies. In: Proceedings of the 4th international
conference on peer-to-peer computing. IEEE Computer So-
ciety, Piscataway, pp 202–209

37. Jesi GP, Montresor A, Babaoglu Ö (2006) Proximity-aware
superpeer overlay topologies. In: Keller A, Martin-Flatin J-P
(eds) Proceedings of the 2nd IEEE international workshop
on self-managed networks, systems, and services. Springer,
New York, pp 43–57, LNCS 3996

38. Aggarwal CC, Yu PS (2006) A survey of synopsis construc-
tion in data streams, ch. 9. Springer, New York

39. Nath S, Gibbons PB, Seshan S, Anderson ZR (2008) Synopsis
diffusion for robust aggregation in sensor networks. ACM
Trans Sens Netw 4(2)

40. Arai B, Das G, Gunopulos D, Kalogeraki V (2007) Effi-
cient approximate query processing in peer-to-peer networks.
IEEE Trans Knowl Data Eng 19(7):919–933

41. Renesse RV, Birman KP, Vogels W (2003) Astrolabe: a ro-
bust and scalable technology for distributed system monitor-
ing, management, and data mining. ACM Trans Comput Syst
21(2):164–206

42. Kempe D, Dobra A, Gehrke J (2003) Gossip-based compu-
tation of aggregate information. In: Proceedings of the 44th
IEEE symposium on foundations of computer science, pp
482–491

43. Sacha J, Dowling J, Cunningham R, Meier R (2006) Us-
ing aggregation for adaptive super-peer discovery on the
gradient topology. In: Proceedings of the 2nd IEEE inter-
national workshop on self-managed networks, systems &
services (SelfMan). Springer, New York, pp 77–90, LNCS
3996

44. Sacha J, Biskupski B, Dahlem D, Cunningham R, Dowling J,
Meier R (2007) A service-oriented peer-to-peer architecture
for a digital ecosystem. In: Proceedings of the 1st IEEE inter-
national conference on digital ecosystems and technologies.
IEEE, Piscataway, pp 205–210

Peer-to-Peer Netw Appl

Jan Sacha is a postdoctoral researcher in the Computer Systems
Group at Vrije Universiteit Amsterdam. He holds a Ph.D. degree
from Trinity College Dublin and a M.Sc. degree from both
Warsaw University and Vrije Universiteit Amsterdam. His main
research interests include peer-to-peer systems, grid systems, and
self-organising systems.

Bartosz Biskupski holds a Ph.D. in computer science from Trin-
ity College Dublin in Ireland and M.Sc. in computer science from
Vrije Universiteit Amsterdam in the Netherlands and Warsaw
University in Poland. His research interests include peer-to-peer
systems, media streaming and self-organisation in distributed
systems. He is currently starting up his own technology company.

Dominik Dahlem received a Diplom Engineer in Computer
Science from the University of Applied Sciences in Wiesbaden,
Germany, and an M.Sc. by research from Trinity College Dublin,

Ireland. He is currently working on his Ph.D. at Trinity Col-
lege Dublin. His research interests include multi-agent reinforce-
ment learning, social network analysis, kriging metamodelling
of computer experiments, and simulation technologies on high-
performance computing infrastructures.

Raymond Cunningham is the founder of a startup company.
Previously, he was a Research Fellow at the Department of Com-
puter Science, Trinity College Dublin. He holds a B.A. degree in
Mathematics and M.Sc. and Ph.D. degrees in Computer Science,
all from Trinity College Dublin. His research interests covered
the area of mobile distributed systems, distributed systems opti-
misation techniques and adaptive middleware.

René Meier is a lecturer in the School of Computer Science
and Statistics at Trinty College Dublin. He holds Ph.D. and
M.Sc. degrees from Trinity College Dublin. His research interests
include programming models and middleware for very large-
scale, context-aware mobile and pervasive computing systems as
well as for self-organising (peer-to-peer) systems.

Peer-to-Peer Netw Appl

Jim Dowling received the B.A. and Ph.D. degrees in computer
science from Trinity College, Dublin, Ireland. He is a researcher
at the Swedish Institute of Computer Science in Stockholm, and
a former Marie Curie Intra-European scholar. He has managed
both national and EU research projects in Ireland and Sweden.
His research interests are primarily in the areas of distributed
systems, autonomic computing, and middleware.

Mads Haahr is a Lecturer in Computer Science at Trinity College
Dublin. He holds BSc and MSc degrees from the University
of Copenhagen and a PhD from Trinity College Dublin. He
is Editor-in-Chief of Crossings: Electronic Journal of Art and
Technology and also built and operates RG. His current research
interests are in large-scale self-organising distributed and mobile
systems, in sensor-augmented artefacts and in true random num-
ber generation.

	Decentralising a service-oriented architecture
	Abstract
	Introduction
	Gradient topology
	Characterising peers
	Utility metric properties
	Generating a gradient peer-to-peer topology
	Electing super-peers
	Estimating system properties
	Discovering high utility peers
	Supporting the decentralised registry service
	Supporting additional SOA facilities
	Peer bootstrap

	Evaluation
	Evaluation goals
	System model
	Service registry simulation
	Maintenance cost
	Topology structure
	Aggregation
	Super-peer election
	Dynamic peer utility
	Routing performance
	Impact of Boltzmann temperature
	Impact of system load

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

