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We have experimentally investigated the dynamics of the phase ordering process of bent-core molecules at
isothermal conditions, forming the liquid crystalline “banana”B1 phase from the isotropic melt. In contrast to
the fractal growth patterns observed for other “banana” liquid crystal phases, theB1 phase exhibits dendritic-
like growth, which at short times shows similar growth structures as observed for conventional smectic
bâtonnet growth. Analysis with respect to growth laws of the formLstd, tn shows that the growth process
follows the theoretically predicted Allen-Cahn dynamics withn=1/2 for zero difference in the free energy
between the high- and the low-temperature phase, while the growth exponent approachesn→1 for increasing
supercooling. From the experimentally obtained data, we estimate the ratio between volume and curvature
driven contributions to the phase ordering process as a function of supercooling and suggest a phenomeno-
logically determined relationship of logDF,DT for the difference in free energy between the high- and the
low-temperature phase as the quench depth is varied.
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I. INTRODUCTION

Phase ordering processes after a quench, i.e., the rapid
change of an intensive thermodynamic variable of state, are
of fundamental importance for the processing of materials,
ranging from metal alloys and glasses to polymers, all the
way to the crystallization of pharmaceutical organic com-
pounds[1]. In a temperature quench experiment, the tem-
peratureT of a system is rapidly decreased across a phase
transition (at constant pressure) from a region of the phase
diagram, where the system is uniform in its high-temperature
phase, into a metastable region, where the low-temperature
phase is thermodynamically favored. Thermal fluctuations
induce nucleation of the low-temperature phase and germs
grow spontaneously once a critical nucleus size is exceeded.
This size is very small and cannot be observed by optical
techniques. The subsequent growth process can be described
by a characteristic lengthL, which is dependent on time, i.e.,
Lstd. At times, when nucleus growth can be followed opti-
cally, the time evolution of the characteristic lengthL can be
described by a growth law,

Lstd , tn, s1d

where n is called the growth exponent. The value of the
growth exponentn depends on the universality class, as clas-
sified by Hohenberg and Halperin[2]. Liquid crystals fall
into the category of “modelA” dynamics[3] [nonconserved
order parameter(NCOP)], as a temperature quench induces a
phase transition between the isotropic phase with order pa-
rameterS=0 to a partially ordered liquid-crystal phase with
0,S,1. During the isothermal phase ordering process after
the temperature quench, we have a nonequilibrium situation

with the low-temperature liquid crystal phasesSÞ0d grow-
ing in the “sea” of the high-temperature isotropic phasesS
=0d. During growth, the isotropic and the liquid crystal
phase are separated by a sharp domain boundary and the
velocity of the local domain interface is equal to the local
curvature of the germ. The change of the characteristic
lengthL with time can be described as

dLstd
dt

= C
1

Lstd
s2d

with C being a constant. Integration gives a growth exponent
of n=1/2, thus

Lstd , t1/2, s3d

which is independent of the spatial dimension of the sample.
This general result was already obtained by Lifshitz[4] and
by Allen and Cahn[5], the latter also giving experimental
evidence for the case of metal alloys. Other investigations on
solid-state materials followed[6,7]. Direct confirmation of
Eq. (3) by numerical methods was presented by several au-
thors [8–11] and recently in a large-scale computation by
Brown and Rikvold[12].

It is worthwhile to note that the above growth law[Eq.
(3)] not only holds for spherical but also for elliptical germs.
In the latter case,Lstd depends on direction. A suitable char-
acteristic length to investigate experimentally in the case of
elliptical germs is the long and/or the short axis of the el-
lipse. It can be shown from the definition of the local curva-
ture that shape invariance, i.e., a constant ratio between the
long and the short axis of an ellipse, leads to the same
growth law [Eq. (3)] for both characteristic lengths. And in-
deed, the growth exponents for both of these characteristic
lengths are in first approximation equal, as has been demon-
strated experimentally for the anisotropic bâtonnet growth of
a SmA liquid crystal [13].
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It has been pointed out by Bray[14] that thet1/2 growth
law is only valid for pure curvature driven growth at zero
difference in the free energy,DF=0, i.e., for quench depth
DT=0. For increasing quench depth,DF is different for the
low- and the high-temperature phase and a volume driving
term cannot be neglected. Following the discussion in Ref.
[15], Eq. (2) has to be extended to

dLstd
dt

= C
1

Lstd
+ V, s4d

whereV is a constant proportional toDF, the latter in turn
being a function of quench depth, i.e.,V=VfDFsDTdg. Sepa-
ration of variables and integration by substitution gave the
final result,

Lstd
V

+
C

V2lnS C

C + VLstdD = t. s5d

Equation(5) cannot be brought into the form of a growth law
analogous to Eq.(3). However, by assuming a reasonable
value ofC and different values forV, Lstd data can be gen-
erated computationally from Eq.(5), which then provides
different growth exponentsn as the ratioV/C, i.e., the ratio
between volume driven and curvature driven growth contri-
butions, is varied. Comparison with the experimentally de-
termined growth exponents thus allows a discussion of the
relative influences of curvature versus volume driven
growth.

Surprisingly, only a few reports have been published on
the growth of liquid crystals, despite the fact that their iso-
thermal phase ordering process can easily be followed by
polarization microscopy and digital image analysis, due to
the optical anisotropy of liquid crystals. Reports include the
recent studies on frustrated blue phases[16], nematic and
smectic phases[15], more detailed investigations of choles-
teric materials[17,18], and the anisotropic growth of smectic
bâtonnets[13].

The novel “banana” phases, comprised of bent-core me-
sogens, have recently attracted much attention with respect
to chiral phase properties from achiral molecules[19]. In
contrast to the phase ordering of conventional thermotropic

phases, the “banana” phases often exhibit fractal growth
structures[20–22]. An exception is found in theB1 phase.
Initial growth of liquid crystalline germs is very similar to
that of conventional smectic bâtonnets. Once these germs
have grown to come into close proximity of each other,
dendritic-like growth patterns develop as depicted in Fig. 1,
the textures being similar to those observed for discotic liq-
uid crystals. At even later times, these dendritic structures
coarsen to form a mosaic texture[23]. It is the isothermal
growth at short times in the bâtonnet regime of the “banana”
B1 phase that is the topic of this study.

II. EXPERIMENT

The compound investigated has the following structural
formula:

Its phase sequence, as determined by polarizing microscopy
on cooling, is given by Iso. 124 B1 110 Cr.

The material was filled into commercially available sand-
wich cells (E.H.C., Japan) of cell gapd=2 mm by capillary
action in the isotropic phase. The growth of theB1 phase
was followed at isothermal conditions after a temperature
quench by time-resolved digital image acquisition(JVC
model KY-F1030U) in polarizing microscopy (Nikon
Optiphot-Pol), equipped with a Linkam TMS91 hot stage for
control of relative temperatures to better than 0.1 K. Digital
images were recorded at a resolution of 12803960 pixels,
corresponding to an image size of 520mm3390 mm, for
further analysis by softwareIMAGETOOL 3.0, developed at the
University of Texas Health Science Center, San Antonio.
Samples were quenched from the isotropic phase at a rate of
3 K min−1, which represented the best compromise between
electronic temperature regulation and achievable quench
depth. The quench depth was varied fromDT=0.0 K sDF
=0d to DT=0.7 K sDF@0d. For larger quench depths, nucle-
ation commenced before the final temperature was reached,
i.e., growth could not be followed under isothermal condi-
tions.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 depicts a typical time series of isothermal growth
images of theB1 phase(bright) from the isotropic melt
(black) at a quench depth ofDT=0.3 K (only selected im-
ages are shown; the actual frame rate was one image every
2 s, taken over a time period of more than 1 min). Nuclei
grow in an anisotropic fashion, although without a preferred
direction, somewhat similar to the bâtonnet formation of
smectic liquid crystals[13], and can in a good approximation
be treated as ellipses. Dendritic growth patterns develop at
later times, most pronouncedly observed after the growth of
the long bâtonnet axis is hindered by the growth of other

FIG. 1. Typical polarizing microscopic texture of the liquid
crystalline “banana”B1 phase, showing clear features of dendritic
growth. The image size is 520mm3390 mm.
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germs. In this investigation, we exclusively study the growth
of bâtonnet-like germs, before a dendritic structure starts to
develop. The time regime of our investigations is thus lim-
ited by two factors:(i) the quench depthDT, because larger
quench depths imply faster growth, and(ii ) the distance with
respect to other formed germs, which nucleate at arbitrary
sites. Considering the latter factor, we only chose germs that
were most isolated, in order to be able to follow their growth
over as long a time period as possible. In all cases, care was
taken to only study germs that were undisturbed by neigh-
boring growing nuclei. Thus, as the characteristic lengthLstd
we determined the length of the long axis of a growing germ
in the time regime where it is undisturbed by other growing
nuclei. From analysis of various image series, the experi-
mental growth dataLstd were obtained, some of which are
illustratively shown in Fig. 3 for several quench depths as
indicated in the figure legend. These data are used for the
determination of the growth exponentn. At later times, the
different nuclei approach each other and growth slowly
ceases, leading toLstd=const on contact. The latter time re-
gime can clearly be identified by a change of slope in the
log-log representation ofLstd versust used for the determi-

nation of the growth exponents, deviating in the linear scal-
ing behavior. These data were obviously disregarded in the
present analysis, as they do not represent uninfluenced
nucleus growth.

Figure 4 shows the obtained growth exponentsn as a
function of quench depthDT (the solid line is a guide to the
eye). For very small quench depths in the vicinity of the
transition from isotropic toB1, i.e., at vanishing difference of
the free energyDF,0 between the two phases, a growth
exponent of approximatelyn=1/2 wasobtained, in accor-
dance with theoretical predictions by Lifshitz[4] and Allen
and Cahn[5]. At larger quench depths, i.e.,DF@0, the
growth exponent approaches values ofn→1. This behavior
is in accordance with theoretical predictions[14], as well as
with experimental trends first discussed for nematic liquid
crystals [15]. By use of Eq.(5), Lstd growth data can be
generated numerically for different ratios of the volume driv-
ing term V to the curvature driven termC, where C=1.5
310−13 m2 s−1 was chosen to obtain growth data comparable
to those observed in the experiments. From these data, we
can subsequently determine growth exponentsn as a func-
tion of V/C, as depicted in Fig. 5. Note that these are given

FIG. 5. Growth exponentn as a function of the ratio between
the volume driving termV and the curvature driving termC. V/C is
given in SI units withC=1.5310−13 m2 s−1 to obtain data similar
to that of the experiments. The growth exponentn is determined
from numerically generatedLstd data according to Eq.(5).

FIG. 2. Exemplary time series of polarizing microscopic growth
images of theB1 phase at a quench depth ofDT=0.3 K and iso-
thermal conditions after a temperature quench across the isotropic
(black) to the liquid crystallineB1 phase(bright): (a) t=8 s, (b) t
=12 s, (c) t=16 s, and(d) t=20 s. The individual image size is
520 mm3390 mm. At early times, growth proceeds via bâtonnets,
while at later times dendritic growth is observed.

FIG. 3. Experimentally determined growth dataLstd for a vari-
ety of different quench depths, as indicated in the legend of the
graph. The characteristic length is taken as the long axis of growing
nuclei.

FIG. 4. Experimentally determined growth exponentn as a
function of quench depthDT. Errors are in the order of the size of
the symbols. The data confirm the theoretically predicted change of
n=1/2 for DT=0 K to n→1 for large quench depths.
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in SI units, not in arbitrary units like in an earlier study[15],
and that the behavior ofnsV/Cd exhibits the same qualitative
functionality as the experimentally determinednsDTd curve
(Fig. 4), when plottingV/C on a logarithmic scale. We also
point out that our obtained results are in qualitative accor-

dance with the previous calculations in arbitrary units, if we
would setC=1. Determiningn from Lstd as a function of the
ratio of the volume to curvature term, we can estimateV/C
for the actual experimentally determined growth exponents
through iteration. The corresponding data of the characteris-
tic length L as a function of timet are shown in Fig. 6(a),
while the determined ratiosV/C are depicted as a function of
quench depth in Fig. 6(b). The latter plot suggests that the
logarithm of the ratio between the volume to curvature driv-
ing term, logsV/Cd, increases linearly with quench depthDT.
As V,DF and C=const, this implies that the logarithm of
the difference in free energyDF between the high- and the
low-temperature phase is proportional to the quench depth,

log DF , DT. s6d

Equation(6) phenomenologically relates the change of free
energy to the degree of supercooling the liquid crystal’s low-
temperature phase from the high-temperature isotropic
phase.

IV. SUMMARY AND CONCLUSIONS

An experimental investigation of the phase ordering pro-
cess of the “banana”B1 phase of bent-core liquid crystals
has shown that growth mainly proceeds in a smectic
bâtonnet-like fashion at short times, while developing into
dendritic growth at later time scales. An analysis in terms of
growth laws confirms the theoretically predicted behavior of
a changing growth exponent fromn=1/2 for zero quench
depth ton=1 for large supercooling. The experimental re-
sults were discussed in terms of curvature driven versus vol-
ume driven growth, and it was shown that the volume term
strongly dominates over the curvature term for increasing
quench depth.
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