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Fractal growth of a conventional calamitic liquid crystal
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We report observation of liquid crystal phase ordering via fractal growth aggregates for a calamitic, non-
bent-core mesogen. Fractal growth of a conventional sméct®m-C) phase from the isotropic melt after a
temperature quench was experimentally investigated with respect to time, cell gap, quench depth, and quench
rate. The determined fractal dimensions relating to the area as well as the perimeter of the growing aggregates
suggest a phase formation process via a percolation mechanism. Computer simulations of the phase ordering
process give further evidence for percolation growth, qualitatively reproducing the observed textures and
guantitatively leading to the same fractal dimensions. We propose a general model of fractal smectic liquid
crystal growth, which accounts for all of the different systems observed so far, bent-core or “banana” phases as
well as the observation of fractal phase ordering of a conventionaC$hase. The model is based on the
“breaking” of the commonly observed growth anisotropy by strong in-layer molecular interactions. These are
provided by hydrogen bonding in the Sthease discussed here and by steric interactions in the case of the
bent-core phases discussed in previous publications.
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I. INTRODUCTION B2 [12] as well as theB7 [13] phase, both phases being
) ) somewhat similar to the fluid smectic phases of conventional
Nucleation, growth, aggregation, coalescence, and dccalamitic mesogens, while the latter generally grow via non-
main coarsening have been topics of long-standing scientifiactal smectic batonnets to form fan-shaped text(iles.
interest in condensed-matter, solid-state, and soft-matteGrowth via fractal aggregates has also been reported for the
physics[1]. This is related not only to the question of devel- crystallization of bent-core molecules—i.e., the transition
oping a unified theoretical understandif®y3] of the forma-  into theB4 phasg15,16. In all these cases of liquid crystal
tion and phase ordering kinetics of a large variety of differentbanana phase ordering, complex growth structures were ob-
systems, but is also of most eminent practical importance—served, which are qualitatively different from those exhibited
for example, from alloy production all the way to pharma- by conventional calamitic phases. So are those observed in
ceutical synthesis. Essentially, the mechanical, electric, maghe present investigation, reporting observation of the fractal
netic, and optical properties of many materials classe§rowth of a nonbanana mesogen. The aim of this paper is to
depend on the way they are produced—i.e., in general, oRrovide a general description of fractal growth structures in
thermal history and the respective phase ordering dynamicquid crystals by a simple generic growth model. This offers
In comparison to the large number of investigations that hav@eneral new insights into the microscopic phase ordering

been carried out on liquid and solid systems over the |as|meghalnis.m Off mesolgens formingbfreflctal elxggregate_s. n
century, phase ordering studies on liquid crystals are rela- ANalysis of complex patterns by fractal geometric meth-

tively rare, despite the fact that phase formation can ofte Cgﬁq[;"?(]:;iz bsetfgcisdfgser}r?\rﬁ;%?/bfré%? Igftgiigﬁiglprt;%gi?wfg

quite e_asny be followed experlmentally by U.S?Of a pOIarIZa'from physics, chemistry, and biology all the way to r'naterial

tion microscope and adequate image acquisition. . cience and geology8—2(. Valuable information about the
Growth in condensed-matter systems can take a variety

diff f 4 ing f h qucti £ nderlying growth mechanism can be extracted from the
lfferent forms[4,9], ranging from the production of large, g5 q¢a1" dimension of such structures and aggregates, relating

near-to-perfect single crystals in the semiconductor industn{,o three fundamental growth models: diffusion-limited aggre-

spherulitic growth in the crystallization of polymers, and the ation (DLA) 121]. cluster-cluster adareqaticicCA) [2
formation of dendrites all the way to fractal structures, pre—g lon( ) [21], clu . ggregatict ) [22],

; ) . ~.and percolatiori23,24. The model of diffusion-limited ag-
dominantly observed in soft-matter materials such as Couo'dﬁjregation is based on single particles performing random
and polymerg6,7]. Only very recently has fractal growth in walks before joining a single growing aggregate. The ex-
liquid crystals been reportd@®], which was observed in the pected fractal dimension of such an aggregate is aBout
phase ordering processes of various novel phases related__t(l7 in two-dimensional space, which, for example, de-
bent-core mesogens, the so-called “banana” phfgekl]. ' ! '

E | ‘b h h b q cribes well the process of electrodeposition. Cluster-cluster
ractal aggregates of banana phases have been reported Ij o4 ation involves the random motion of many particles at

isothermal growth at the transition from the isotropic to thethe same time, sticking together to form clusters which con-
tinue to perform random walks until eventually all particles
are part of one single aggregate. The fractal dimension of
*Corresponding author. CCA clusters generally varies betwe@=1.6 and 1.8 in
Electronic address: dierking@reynolds.ph.man.ac.uk two-dimensional space, depending strongly on experimental

1539-3755/2004/18)/0517018)/$22.50 70051701-1 ©2004 The American Physical Society



DIERKING et al. PHYSICAL REVIEW E 70, 051701(2004

or simulation conditions, such as the sticking probability.
Processes described are, for example, found in the aggreg:
tion of colloids or wax spheres floating on water. Both of
these models, DLA and CCA, do not apply to the current
experimental situation, as we do not have individual particles
(ions, colloidg performing random walks, but rather observe
a nucleation and growth process, where individual nuclei do
not move. In all cases of fractal liquid crystal growth, banana
phase ordering as well as the results reported in the preser,
study of a hydrogen-bonded calamitic mesogen, a saturatiot
fractal dimension oD=1.9, has been observed so far. This is
clearly different from those of the above-outlined growth
mechanisms and indicates growth via site percolation at the
percolation threshold for which a fractal dimension f
=91/48=1.896 is expected theoretically.

Here we report an analysis of fractal growth aggregates
from a conventional calamitic mesogen. We demonstrate tha
the observed structures exhibit the same fractal dimension o
D=1.9 as those shown by the previously investigated banan:

: . (c
mesogens. Based on a simple model of broken growth aniso*

tropy due to large Iateral_ intermolecular interactions, wWe g 1. |llustration of a typical time series of 8DBH growth
demonstrate that all experimentally observed fractal growthyggregates obtained at isothermal conditions after a temperature
aggregates and textures of liquid crystals can be simulated kyiench below the isotropic to S@4ransition(R=3 K min'%, AT
percolation growth at the percolation threshold. =0.8 K, d=2 um). White areas represent the liquid crystal §m-
phase, growing from the black isotropic background. The image
size is 390um X 390 um; (a) t=15 s,(b) t=20 s,(c) t=25 s, and
(d)t=50 s.

~

Il. EXPERIMENT

A. General experimental conditions

The compound investigated in this study is bis- cell gap. The quench depthT was varied between 0.1 and
n-octyloxybenzoyjhydrazine[25-27, abbreviated as 8DBH. 0.8 K; for larger quench depths, growth could not be

Its structural formula is achieved at isothermal conditions. The quench Rteas
o o varied between 1 and 3 K mih and was adopted to
i i 3 K min™! for most results shown below. This quench rate
HI7C8O@“NH_NH—C@OC8HI7 gave the best compromise between temperature control and

achievable quench depth for isothermal growth, although it
The phase sequence of 8DBH on cooling, as determined bghould be mentioned that the same results were also obtained
polarizing microscopy, is for smaller quench rates.

iso 177 ° CSm-C 175 ° Ccub 131 ° Ccryst 1) B. Fractal analysis

with transition temperatures slightly depending on cell gap. Digital images were recorded at a relatively high resolu-
This is not of relevance to the present studies, as these weti®n of 1280x 960 pixels, corresponding to an image size of
carried out as function of quench depth—i.e., temperature520 um X 390 um. This ensured that the digital resolution
reduced to the respective clearing point. of the camera did not represent the limiting factor in the
The phase ordering process at the iso-Grtransition  fractal analysis, but that resolution was indeed only limited
was investigated by quenching the sample below the transby the optical microscopic method employed, which is on
tion temperature to a quench de@tfi and recording polar- the order of 1um. Figure 1 shows a typical texture time
izing microscopic images as a function of tim@ikon  series of the isothermal growth structures observed, scaled to
Optiphot-Pol, equipped with digital image acquisition, JVC 390 um X 390 um for later comparison to textures simulated
model KY-F1030U). The temperature of the sample was con-on a square grid. For the fractal analysis the recorded tex-
trolled to an accuracy of 0.1 K by a Linkham THMS600 hot tures were converted from color to gray scale images and
stage and a TP92 controller. Investigations were carried odtrther to binary images by manual thresholding with soft-
in commercially available liquid crystal sandwich cells ware IMAGETOOL 3.0, developed at the University of Texas
(E.H.C., Japan with planar polyimide alignment layers, Health Science Center, San Antonio. During image acquisi-
varying the cell gap d between 2 and AB. Lateral cell tion the camera was driven in slight overload to assure good
dimensions were 15 mix10 mm. We were thus effectively contrast between the liquid crystal aggregates and the isotro-
investigating two-dimensional growth behavior, which justi- pic phase. Care was taken that all images were clearly in
fies the two-dimensional fractal analysis presented below. Ifiocus during texture recording. The image conversion pro-
all cases the fractal aggregates were clearly larger than theess was carried out manually for each individual image,
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assuring that all structural features of the aggregates wer{
maintained. Fractal analysid7-2Q was carried out with
softwareBENOIT1.3 (TruSoft Internationgl on single aggre-
gates as well as whole textures, both leading to the samd
fractal dimension and thus indicating dilatation invariance.
Two analysis methods were employed, ihéormation di-
mension methodnd theruler dimension methadrhe infor-
mation dimensiom; is related to the mass of an object—i.e.,
the capability of filling two-dimensional space—and is de-
fined from the proportionality

I(d) ~ = Diln(d), 1

with
N(d)

I(d) = = X min(m), 2
i=1

wherem;=M;/M, with M; the number of points in th&h
box andM the number of total points in the data set. The
information dimension method is essentially equivalent to
the commonly employed box dimensid®,) method, de-
scribed by

FIG. 2. A typical single-liquid-crystal Sn@ growth aggregate
1 of 8DBH, used for the illustration of the different fractal dimension
N(d) ~ dPv’ ©) methods employed in this studgee Fig. 3.

with N(d) being the number of occupied boxes of side length,\, oy _size limit. This rule of thumb was also applied in

d. In contrast to the box dimension method, the informationhe present investigations, making further discussions with

dimension method weights the object pixel content of a boXregpect to optical resolution unnecessary. The experimentally
Whereas for the box dimension an individual box countsjetermined information dimension iD,=1.89, obtained

towardsN(d) even if just a single object pixel is contained fom g finear fit to the data with a minimized standard de-
within this box, the information dimension method weights iation SD< 0.001. D, is precisely equal to the theoretical
the object pixel content within each box. It thus minimizes, a|ye (D;=91/48 expected for two-dimensional percolation

errors through “stray” pixels, which are present in every im-q.5\th at the percolation threshold. FiguréoBillustrates

age of a natural, nonmathematical structure. @jg Dy and e ruler dimension method for the same clugteig. 2)
1<D;<2 characterizes a fractal image in two-dimensional '

space. IfD;=2, the aggregate is space filling and Euclidian.

The information dimension method can be used for the 12 [+ information dimension mefhod |
analysis of single aggregates as well as for whole textures. § 104

The ruler dimensiomD, is related solely to the perimeter 5 10"
of an object. It is defined from the proportionality {g 12:’ 5 - 18

10°4 i= .
M(l) ~ I7Pr, (4) £ 10}

with M(l) being the number of steps a ruler of lengthas to 107 To 150
be taken around the perimeter of an object, which has to be a (a) box side length  (pixels)
closed loop. The ruler dimension method can thus only be 10°

used for the analysis of single aggregates and gives [_=__ruler dimension method ]
1<D,<2 for a fractal objectD,=1 characterizes a Euclid- _
ean line. S 104

Both methods are demonstrated for a typical single 8DBH
cluster shown in Fig. 2. Figure(8® illustrates the employ-
ment of the information dimension method, exhibiting scal- 10'4
ing according to Eqq1) and(2) over more than two decades
of box side length and four decades of the dependent vari-
able. It is commonly accepted practice in the fractal analysis F|G. 3. Demonstration of the different methods employed in the
of natural patterns to disregard very large as well as Veryractal dimensional analysis, applied to the aggregate depicted in
small box sizes. Experience has shown that the most reliableig. 2. (a) The information dimension methodEgs. (1) and (2)],
fractal dimensions are extracted from box sizkbetween relating to the mass of the aggregate, &hdthe ruler dimension
approximately 1/10 of the maximum size of the image as thenethod[Eg. (3)], relating to the perimeter of the aggregate. Fractal
large box size limit and 10 times the image pixel size as thescaling is observed over at least two orders of magnitude.

10 100
(b) ruler length L (pixels)
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with D,=1.28 clearly evidencing that also the perimeter of 20

the observed clusters is fractal. g S e
1.8

. . s B D (related to area
C. Computer simulations -é 6] o Dlrﬁrelatedtoperirlneter)
Computer simulations of the observed growth were car- é '

ried out for single clusters as well as multicluster textures. In o AT=0.6K

the former case a 600600 pixel square grid was used with g 149

a single-site nucleation center, while in the latter case a

1200X 1200 pixel square grid was used with nucleation sites 1.21 = ] =] =

occurring at random. For all simulations a standard percola- O

tion algorithm was employed, which can be outlined as fol- 101+ : r T

lows: (i) In a first step the seed particle is g#tis occurs at 0 50 100 150 200

random positions for multisite percolatipnii) All nearest (@) te)

neighborg(square grid sites sharing a common side with the 20

seed particlgare identified and set “alive”™—i.e., can poten- [ | u n u n u

tionally be occupiediii ) Alive sites are occupied at random 184

with an occupation probabilityp and “killed” with a prob- 5 B D (related to area)

ability 1-p. Occupied sites are part of the growing cluster, 2 , | 0 D, (related to perimeter)

while killed sites cannot be occupied in any of the further &

iteration steps; i.e., they are “deadiV) The new nearest % AT=06K

neighbors are identifie@vhile ignoring dead sitgsset alive, g 141

and stepqiii) and (iv) of the algorithm are carried out for L -

many iterations until the growing cluster reaches one of the 121 o O a o

edges of the grid. For the multisite percolation simulations to o

generate the actually observed textugest only the single 10 . . . . T .

aggregatesthe latter stop condition was abandoned, being ! 2 A;’greg dono 6

equivalent to an infinite two-dimensional sample. This situ-

ation is reasonably well achieved experimentally, as the in- g, 4. (a) Time evolution of the fractal dimensior and D,
vestigated cell gaps are by several orders of magnitudgetermined from the growth of a single aggregate. Values of the
smaller than the lateral dimensions of the sample sandwicfactal dimensions reach saturation after approximately 6@)s.
cell. Information dimensiorD; and ruler dimensio, for several dif-

Initial computer simulations were carried out at variableferent aggregates of varying size betweeryds and 500um. The
occupation probabilitiep to confirm that the percolation fact that within the limits of error all aggregates exhibit equal frac-
thresholdp, of the simulations corresponds to the theoreti-tal dimensions illustrates dilatation invariance.

cally predicted value 0p.=0.593. This was indeed the case, . , . . »
as clusters with a lower occupation probabilityc p, did not ~ investigated at various applied growth conditions. Also the
¢ ruler dimensionD, is found to exhibit saturation behavior.

grow indefinitely. In accordance with the experiments, the_ )
time development of either a single cluster or multiple cIus—FIgure 4b) shows the values db;, related to the mass of the

; ) DS ; . . fractal, andD,, related to its perimeter, for six different ag-
ters was investigated by terminating the simulation algor'thmgregates of 8DBH at varying size between A% and

after a varying number of iteration steps.. Computer-sooﬂm, growing under identical experimental conditions. It
geqerated grqvvth structures were analyzed with respect Cig worth noting that the fractal dimension determined for
their fractal dimension according to the methods outline ndividual aggregates is equal to that of the whole texture, so
above. coalescence of aggregates is not a critical issue. Within the
limits of error, which are estimated to +0.01 foy and +0.03

Ill. RESULTS AND DISCUSSION for D,, the saturation fractal dimensions are found to be
equal for all different aggregates, illustrating dilatation in-
variance.

A first step in the analysis of experimentally obtained In the following we concentrate our discussion on the
fractal growth structures has to be the confirmation of dila-analysis of whole texture images, varying the quench Rate
tation invariance. For this reason Fig@ay depicts an ex- the quench deptAT, and the sample cell gagh. Figure 5
ample of the time evolvement of the fractal dimensi@)s summarizes the time development of the fractal dimension
and D, of a single 8DBH cluster at a quench depth/f D, for various quench conditions. Figuréapshows the evo-
=0.6 K and cell gapd=15 um. Parameters were chosen to lution of Di(t) as a function of quench rate for the two
demonstrate that fractal growth is not induced by the boundextreme cell gaps ofl=2 um andd=15um at a quench
ary conditions of the substrates, as liquid crystals behavdepth of AT=0.5 K. In all cases the fractal dimension
bulk like for cell gaps larger than approximatelyun. The  reaches saturation, a process which seems to be faster for
information dimensiorD; quickly saturates at a value &, large cell gaps than for small ones. The quench Rittoes
=1.9, a behavior which is observed for all of the time seriesnot have any influence on the saturation fractal dimension,

A. Experimental results

051701-4



FRACTAL GROWTH OF A CONVENTIONAL CALAMITIC ... PHYSICAL REVIEW E 70, 051701(2004

20 sion with increasing quench deptkT is observed, but it
should be noted that this is indeed close to the limits of error,
1.94 although the same trend is shown in both cell gap series.

Again, values for the thin cell are smaller than those of the
thick cell, which suggests that the fractal dimensigrdoes

C;m in fact exhibit a dependence on cell gdpwhich will be
17 : ;‘: sz;izf discussed below. We note that the fractal dimension deter-
’ v &2 ﬁRﬂKmM mined for relatively large quench depth and cell gap again
O d=15um R=1Kmin" precisely exhibits the value expected for percolation growth
1.6 A d=15 ym, R=2K min" at the percolation threshold;=1.89.
v d¢=15um, R=3Kmin! Figure %c) finally showsD;(t) as a function of cell gag
15 : P o 1% 200 at a quench depthAT=0.5K and a quench ratR
(@) t () =3 K min™. Saturation is quickly achieved and the fractal
dimension of the studied textures clearly increases with in-
1.90 creasing cell gap. AgairD;=1.89 is observed for the thick
v 7 v AR - AR FH. cell.
At B4 A The results indicate that the textures observed for increas-
188y —E—+F—0 o o ing quench depth and cell gap approach the theoretically
- B d=2 m AT=02K O d=15 ym AT=02K expected value oD;=91/48=1.896 for percolation growth
o A &2 pm AT05X A (H15 um, AT0SK at the percolation threshold.. We have thus carried out
1.86 Ml A i more detailed investigations of the quench depth and cell gap
—~ Vv vV ¥ dependence of the saturation fractal dimensio®ofFigure
P S S G — 6(a) showsD; as a function of quench deptl for the two
1844 - extreme cell gaps ofi=2 um (circles andd=15 um (dia-
= LI | mondg, over the whole range of quench depths that assured
S e A isothe_rmal phasg ordering. For_ the thin_cell the fra(_:tz_al di-
(b) t (s) mension slowly increases, while the thick cell exhibits a
quick increase of the fractal dimension with quench depth,
190 reaching saturation ob;=1.89 at approximatehNAT=0.4.
—— o+ o o The error bars represent a rather conservative estimation of
1881 o D; to £0.01, which is the range of data reproducibility. This
Y is much larger than the standard deviation, which was mini-
1.864 A A N \ mized to SB<0.001 in the determination of the fractal di-
o mension from linear fits to the relations of Eq%) and(2).
s T Figure §b) depicts the respective cell gap dependence of
AT D; at a quench depth akT=0.5 K. The fractal dimension
A =6 m increases with increasing cell gap, as was also observed in
1821 )4 groum AT=05K previous phase ordering studies of bent-core moledul®s
- although we here do not as quite observe the saturation be-
1.80 .

o m B w2 & o s o havior above approximatelgi:S_,um. Thg overa!l obtajned
©) t () experimental results from a variety of different investigation
series on 8DBH show that the fractal dimensions of growth
FIG. 5. Fractal information dimensidB; as a function of time ~ aggregates and textures all converge towards a valu, of
for (a) varying quench rat®R at AT=0.5 K for a thin cell(solid  =1.89+0.01 at large cell gapd, quench depthT, and
symbols,d=2 um) and a thick cel(open symbolsgd=15um), (b)  quench rate®R. This is precisely the theoretically predicted
varying quench deptiAT at R=3 K min™! for a thin cell (solid  value of two-dimensional percolation growth at the percola-
symbols,d=2 um) and a thick cel(open symbolsgd=15 um), and  tion threshold. In the following section we report computer

(© Vafying cell gapd at quench depthAT=0.5K and R simulations to further verify this conclusion.
=3 K min™.

which is D;=1.8 for the thin cell and;=1.9 for the thick
cell, the latter value being the one expected for percolation ] ) ] ]
growth at the percolation threshold. This gives a first indica- The algorithm employed is a site percolation model as
tion that the growth process may be slightly influenced byoutlined above. Single clusters were simulated at varying site
the boundary layers in the case of theu8t cell, while the —occupation probabilityp and it was confirmed that growth
15-um cell exhibits bulklike behavior. stopped at very small clusters sizespikc0.58. Only for
Figure %b) depicts the time dependence of the fractaloccupation probabilities above the theoretically predicted
dimensionD; as a function of quench depiT, again for the percolation threshold op>p,=0.59 were large growing
two extreme cell gaps af=2 um andd=15 um at a quench clusters obtained. Figure(& shows one of the simulated
rate ofR=3 K min™t. A slight increase of the fractal dimen- clusters for an occupation probability just above the percola-

B. Comparison to computer simulations
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1.90

1.88 -

1.90

1.88

1.864

[a]
1.84 -

m at=05K |
1.82-

1.80 T T T T T T T
0 2 4 6 8 10 12 14 16

m from simulation clusters I

(b) d (um) 1.854

FIG. 6. (a) Saturation fractal information dimensidp; as a P
function of quench deptAT for a thin cell(d=2 um, squaresand 1.80 . . .
a thick cell(d=15 um, diamonds In the case of the thick cell the 0.5 06 0.7 08 09
fractal dimension approachd=1.89, the theoretically predicted (b) site occupation probability p
value for two-dimensional percolation growth at the percolation ) ) )
threshold(b) Saturation fractal information dimensi@h as a func- FlG', _7' @ S|mulateq growth aggregate for_a site occupation
tion of cell gapd. probability of p=0.625, just above the percolation threshold. The

generated cluster is very similar to the experimentally obtained ag-
gregategcompare to Fig. 2 (b) Fractal information dimensioD;
as a function of site occupation probabilftyBelow the percolation

. ! e o - threshold ap.=0.59 clusters are not growing indefinitely. The satu-
Fig. 2) and indeed within the limits of error exhibits the same 4(ion fractal dimensions obtained from the experimental clusters

frac_tal dimension_sDi:1.89 andDr:_l.3 (see Fig-_ 3 Co_m' and texturegFigs. 4 and 5D;~ 1.9) suggest percolation growth in
paring the experimentally determined fractal dimensions ofhe vicinity of the percolation threshold.

the previous section to those of Figiby, which shows the

information dimensionD; obtained from cluster images

simulated at varying site occupation probability it can We can thus confidently conclude that fractal growth of a

clearly be deduced that 8DBH growth is accomplished viaconventional calamitic smectic mesophase has been demon-

percolation in the close vicinity of the percolation threshold.strated and that its growth mechanism is related to percola-
The time evolution of a growing texture can be simulatedtion at the percolation threshold. The phase formation behav-

by halting the generic computer algorithm of multisite per-ior of calamitic 8DBH is qualitatively and quantitatively

colation after a varying number of iteration steps. lllustrativevery similar to that observed for “banana” or bent-core liquid

images of such a time series simulation are depicted in Figrystals[28]. In the following section we will discuss the

8(A) for a site occupation probability op=0.625. The possible molecular reasons for this similarity as contrasted

computer-generated texture images of FigA)8clearly by all other calamitic smectic growth structures, especially

mimic the experimentally obtained textures of Fig. 1. As asmectic batonnet growth.

guantitative measure, the respective time evolvement of the

fractal dimensiorD; is shown in Fig. 88). This mirrors that

of the experimentally observed behavi&igs. 4 and »giv- C. Discussion

ing clear evidence for percolation growth close to the perco-

lation threshold of the conventional calamitic 8DBH me- For calamitic(rodlike) molecules, the general growth be-

sogen. havior of smectic phases from the isotropic melt is observed

tion threshold withp=0.625. The generated cluster is very
similar in appearance to those observed experimentsdg
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perpendicular to its long molecular axis—i.e., in the plane of
the smectic layers. This is also exemplified by the formation
of the cubic phase of 8DBH at somewhat lower tempera-
tures. This hydrogen bonding within the layer plane is rela-
tively strong in comparison to the general van der Waals
interactions between anisotropic molecules in a direction
perpendicular to their long axis. We suggest that this is the
reason for the breaking of the anisotropy in interactions be-
ing responsible for smectic layer formation and growth
within a smectic layer, as is observed for the majority of
conventional calamitic mesogens. In the context of a generic
growth model, this implies that the site occupation probabili-
ties are independent of direction—i.e., are isotropic—a con-
dition as was employed in the computer simulations pre-
sented above. The fact that quench experiments were carried
out into the two-phase region accounts for the site occupa-
tion probability being smaller than @sotropic regions rep-
resenting the “dead” sitgslt is important to note that the
same qualitative arguments also hold for the fractal growth
of the smecticlike phases of bent-core molecules, especially
the B2 phaseg[12,2§. In the latter case the strong intermo-
lecular interactions within the smectic layer plane, as pro-
vided by hydrogen bonding for 8DBH, are instead caused by
steric interactions due to the bent-core molecular shape. As
in the case for 8DBH, this leads to a percolation growth
mechanism, which results in growth and texture formation
via fractal aggregates of a dimensibr= 1.9, as is observed

in experiments.

1.54 m  multi-cluster simulation I

IV. CONCLUSIONS
14{ =
: i : i i : i i : The isothermal growth process of the sme@iphase of

6 2 4 6 8 10 122 14 16 8DBH from the isotropic melt was experimentally investi-
B) t (arb. units) gated for a conventional calamitic mesogen with respect to
FIG. 8. (A) Computer-generated time series of the texturequench depth, quenc_h_ rate, and .Ce” gap. T_he opserved
evolvement at isothermal growth conditions according to a multisitt—:grOWth Structgres exhibit a satL_lratlon fracta_l d'mens"on .Of
percolation model withp=0.625. The images mimic those of the D=1.9, Showm_g fractal gr_owth In a Conventlpnal Calam't'c_
experimentally obtained time series of Fig(B) Time dependence Mesophase. Site percolation at the percolation threshold is
of the fractal information dimensiom;, obtained from multisite SUggested as the generic formation mechanism of the experi-
percolation texture generation. The behavior is equivalent to thafn€ntally observed liquid crystalline textures. This is sup-
observed in the experimensee Fig. &a)]. The accordance of re- Ported by computer simulations carried out according to a
sults from the computer simulations with the experimental data promultisite percolation algorithm, which qualitatively and
vides strong evidence for percolation growth at the percolatiorquantitatively generates equivalent growth aggregates and
threshold being the responsible mechanism in the phase orderiigxtures. It is proposed that in the case of 8DBH hydrogen
process of the 8DBH aggregates. bonding is the responsible mechanism for the formation of
fractal aggregates, while the model can easily be extended to

) i . _ _also explain the fractal growth of tH&2 phase of bent-core
via the nucleation and anisotropic growth of so-called baton-mesogens through steric interactions.

nets[14]. Growth perpendicular to the smectic layer plane—
i.e., along the smectic normal—is much more pronounced
than growth in direction of the layer plane, resulting in shape
anisotropic aggregate®9,3Q with an aspect ratio in the
order of 5:1. This means that the process of smectic layer
formation is favored over the growth within individual lay-  We would like to express our sincere thanks to W. Weiss-
ers. flog, who generously provided the liquid crystal investigated

The here investigated calamitic mesogen 8DBH is inin this study. Financial support from The Nuffield Founda-
some respects different from the majority of other calamitiction under Grant No NAL/00680/G is also gratefully ac-
mesogens, as it promotes the formation of hydrogen bondsnowledged.
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