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We report observation of liquid crystal phase ordering via fractal growth aggregates for a calamitic, non-
bent-core mesogen. Fractal growth of a conventional smectic-C (Sm-C) phase from the isotropic melt after a
temperature quench was experimentally investigated with respect to time, cell gap, quench depth, and quench
rate. The determined fractal dimensions relating to the area as well as the perimeter of the growing aggregates
suggest a phase formation process via a percolation mechanism. Computer simulations of the phase ordering
process give further evidence for percolation growth, qualitatively reproducing the observed textures and
quantitatively leading to the same fractal dimensions. We propose a general model of fractal smectic liquid
crystal growth, which accounts for all of the different systems observed so far, bent-core or “banana” phases as
well as the observation of fractal phase ordering of a conventional Sm-C phase. The model is based on the
“breaking” of the commonly observed growth anisotropy by strong in-layer molecular interactions. These are
provided by hydrogen bonding in the Sm-C case discussed here and by steric interactions in the case of the
bent-core phases discussed in previous publications.
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I. INTRODUCTION

Nucleation, growth, aggregation, coalescence, and do-
main coarsening have been topics of long-standing scientific
interest in condensed-matter, solid-state, and soft-matter
physics[1]. This is related not only to the question of devel-
oping a unified theoretical understanding[2,3] of the forma-
tion and phase ordering kinetics of a large variety of different
systems, but is also of most eminent practical importance—
for example, from alloy production all the way to pharma-
ceutical synthesis. Essentially, the mechanical, electric, mag-
netic, and optical properties of many materials classes
depend on the way they are produced—i.e., in general, on
thermal history and the respective phase ordering dynamics.
In comparison to the large number of investigations that have
been carried out on liquid and solid systems over the last
century, phase ordering studies on liquid crystals are rela-
tively rare, despite the fact that phase formation can often
quite easily be followed experimentally by use of a polariza-
tion microscope and adequate image acquisition.

Growth in condensed-matter systems can take a variety of
different forms[4,5], ranging from the production of large,
near-to-perfect single crystals in the semiconductor industry,
spherulitic growth in the crystallization of polymers, and the
formation of dendrites all the way to fractal structures, pre-
dominantly observed in soft-matter materials such as colloids
and polymers[6,7]. Only very recently has fractal growth in
liquid crystals been reported[8], which was observed in the
phase ordering processes of various novel phases related to
bent-core mesogens, the so-called “banana” phases[9–11].
Fractal aggregates of banana phases have been reported for
isothermal growth at the transition from the isotropic to the

B2 [12] as well as theB7 [13] phase, both phases being
somewhat similar to the fluid smectic phases of conventional
calamitic mesogens, while the latter generally grow via non-
fractal smectic bâtonnets to form fan-shaped textures[14].
Growth via fractal aggregates has also been reported for the
crystallization of bent-core molecules—i.e., the transition
into theB4 phase[15,16]. In all these cases of liquid crystal
banana phase ordering, complex growth structures were ob-
served, which are qualitatively different from those exhibited
by conventional calamitic phases. So are those observed in
the present investigation, reporting observation of the fractal
growth of a nonbanana mesogen. The aim of this paper is to
provide a general description of fractal growth structures in
liquid crystals by a simple generic growth model. This offers
general new insights into the microscopic phase ordering
mechanism of mesogens forming fractal aggregates.

Analysis of complex patterns by fractal geometric meth-
ods[17] has been proven a valuable tool in the description of
complicated structures in many areas of science, ranging
from physics, chemistry, and biology all the way to material
science and geology[18–20]. Valuable information about the
underlying growth mechanism can be extracted from the
fractal dimension of such structures and aggregates, relating
to three fundamental growth models: diffusion-limited aggre-
gation (DLA ) [21], cluster-cluster aggregation(CCA) [22],
and percolation[23,24]. The model of diffusion-limited ag-
gregation is based on single particles performing random
walks before joining a single growing aggregate. The ex-
pected fractal dimension of such an aggregate is aboutD
=1.7 in two-dimensional space, which, for example, de-
scribes well the process of electrodeposition. Cluster-cluster
aggregation involves the random motion of many particles at
the same time, sticking together to form clusters which con-
tinue to perform random walks until eventually all particles
are part of one single aggregate. The fractal dimension of
CCA clusters generally varies betweenD=1.6 and 1.8 in
two-dimensional space, depending strongly on experimental
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or simulation conditions, such as the sticking probability.
Processes described are, for example, found in the aggrega-
tion of colloids or wax spheres floating on water. Both of
these models, DLA and CCA, do not apply to the current
experimental situation, as we do not have individual particles
(ions, colloids) performing random walks, but rather observe
a nucleation and growth process, where individual nuclei do
not move. In all cases of fractal liquid crystal growth, banana
phase ordering as well as the results reported in the present
study of a hydrogen-bonded calamitic mesogen, a saturation
fractal dimension ofD=1.9, has been observed so far. This is
clearly different from those of the above-outlined growth
mechanisms and indicates growth via site percolation at the
percolation threshold for which a fractal dimension ofD
=91/48=1.896 is expected theoretically.

Here we report an analysis of fractal growth aggregates
from a conventional calamitic mesogen. We demonstrate that
the observed structures exhibit the same fractal dimension of
D=1.9 as those shown by the previously investigated banana
mesogens. Based on a simple model of broken growth aniso-
tropy due to large lateral intermolecular interactions, we
demonstrate that all experimentally observed fractal growth
aggregates and textures of liquid crystals can be simulated by
percolation growth at the percolation threshold.

II. EXPERIMENT

A. General experimental conditions

The compound investigated in this study is bis-(4-
n-octyloxybenzoyl)hydrazine[25–27], abbreviated as 8DBH.
Its structural formula is

The phase sequence of 8DBH on cooling, as determined by
polarizing microscopy, is

iso 177 ° C
↔

Sm-C 175 ° C
↔

cub 131 ° C
↔

cryst s1d

with transition temperatures slightly depending on cell gap.
This is not of relevance to the present studies, as these were
carried out as function of quench depth—i.e., temperatures
reduced to the respective clearing point.

The phase ordering process at the iso–Sm-C transition
was investigated by quenching the sample below the transi-
tion temperature to a quench depthDT and recording polar-
izing microscopic images as a function of time(Nikon
Optiphot-Pol, equipped with digital image acquisition, JVC
model KY-F1030U). The temperature of the sample was con-
trolled to an accuracy of 0.1 K by a Linkham THMS600 hot
stage and a TP92 controller. Investigations were carried out
in commercially available liquid crystal sandwich cells
(E.H.C., Japan) with planar polyimide alignment layers,
varying the cell gap d between 2 and 15mm. Lateral cell
dimensions were 15 mm310 mm. We were thus effectively
investigating two-dimensional growth behavior, which justi-
fies the two-dimensional fractal analysis presented below. In
all cases the fractal aggregates were clearly larger than the

cell gap. The quench depthDT was varied between 0.1 and
0.8 K; for larger quench depths, growth could not be
achieved at isothermal conditions. The quench rateR was
varied between 1 and 3 K min−1 and was adopted to
3 K min−1 for most results shown below. This quench rate
gave the best compromise between temperature control and
achievable quench depth for isothermal growth, although it
should be mentioned that the same results were also obtained
for smaller quench rates.

B. Fractal analysis

Digital images were recorded at a relatively high resolu-
tion of 12803960 pixels, corresponding to an image size of
520 mm3390 mm. This ensured that the digital resolution
of the camera did not represent the limiting factor in the
fractal analysis, but that resolution was indeed only limited
by the optical microscopic method employed, which is on
the order of 1mm. Figure 1 shows a typical texture time
series of the isothermal growth structures observed, scaled to
390 mm3390 mm for later comparison to textures simulated
on a square grid. For the fractal analysis the recorded tex-
tures were converted from color to gray scale images and
further to binary images by manual thresholding with soft-
ware IMAGETOOL 3.0, developed at the University of Texas
Health Science Center, San Antonio. During image acquisi-
tion the camera was driven in slight overload to assure good
contrast between the liquid crystal aggregates and the isotro-
pic phase. Care was taken that all images were clearly in
focus during texture recording. The image conversion pro-
cess was carried out manually for each individual image,

FIG. 1. Illustration of a typical time series of 8DBH growth
aggregates obtained at isothermal conditions after a temperature
quench below the isotropic to Sm-C transition(R=3 K min−1, DT
=0.8 K, d=2 mm). White areas represent the liquid crystal Sm-C
phase, growing from the black isotropic background. The image
size is 390mm3390 mm; (a) t=15 s,(b) t=20 s,(c) t=25 s, and
(d)t=50 s.
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assuring that all structural features of the aggregates were
maintained. Fractal analysis[17–20] was carried out with
softwareBENOIT1.3 (TruSoft International) on single aggre-
gates as well as whole textures, both leading to the same
fractal dimension and thus indicating dilatation invariance.
Two analysis methods were employed, theinformation di-
mension methodand theruler dimension method. The infor-
mation dimensionDi is related to the mass of an object—i.e.,
the capability of filling two-dimensional space—and is de-
fined from the proportionality

Isdd , − Dilnsdd, s1d

with

Isdd = − o
i=1

Nsdd

milnsmid, s2d

wheremi =Mi /M, with Mi the number of points in theith
box andM the number of total points in the data set. The
information dimension method is essentially equivalent to
the commonly employed box dimensionsDbd method, de-
scribed by

Nsdd ,
1

dDb
, s3d

with Nsdd being the number of occupied boxes of side length
d. In contrast to the box dimension method, the information
dimension method weights the object pixel content of a box.
Whereas for the box dimension an individual box counts
towardsNsdd even if just a single object pixel is contained
within this box, the information dimension method weights
the object pixel content within each box. It thus minimizes
errors through “stray” pixels, which are present in every im-
age of a natural, nonmathematical structure. It isDi ùDb and
1,Di ,2 characterizes a fractal image in two-dimensional
space. IfDi =2, the aggregate is space filling and Euclidian.
The information dimension method can be used for the
analysis of single aggregates as well as for whole textures.

The ruler dimensionDr is related solely to the perimeter
of an object. It is defined from the proportionality

Msld , l−Dr , s4d

with Msld being the number of steps a ruler of lengthl has to
be taken around the perimeter of an object, which has to be a
closed loop. The ruler dimension method can thus only be
used for the analysis of single aggregates and gives
1,Dr ,2 for a fractal object.Dr =1 characterizes a Euclid-
ean line.

Both methods are demonstrated for a typical single 8DBH
cluster shown in Fig. 2. Figure 3(a) illustrates the employ-
ment of the information dimension method, exhibiting scal-
ing according to Eqs.(1) and(2) over more than two decades
of box side length and four decades of the dependent vari-
able. It is commonly accepted practice in the fractal analysis
of natural patterns to disregard very large as well as very
small box sizes. Experience has shown that the most reliable
fractal dimensions are extracted from box sizesd between
approximately 1/10 of the maximum size of the image as the
large box size limit and 10 times the image pixel size as the

low-box-size limit. This rule of thumb was also applied in
the present investigations, making further discussions with
respect to optical resolution unnecessary. The experimentally
determined information dimension isDi =1.89, obtained
from a linear fit to the data with a minimized standard de-
viation SD,0.001. Di is precisely equal to the theoretical
valuesDi =91/48d expected for two-dimensional percolation
growth at the percolation threshold. Figure 3(b) illustrates
the ruler dimension method for the same cluster(Fig. 2),

FIG. 2. A typical single-liquid-crystal Sm-C growth aggregate
of 8DBH, used for the illustration of the different fractal dimension
methods employed in this study(see Fig. 3).

FIG. 3. Demonstration of the different methods employed in the
fractal dimensional analysis, applied to the aggregate depicted in
Fig. 2. (a) The information dimension method[Eqs. (1) and (2)],
relating to the mass of the aggregate, and(b) the ruler dimension
method[Eq. (3)], relating to the perimeter of the aggregate. Fractal
scaling is observed over at least two orders of magnitude.
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with Dr =1.28 clearly evidencing that also the perimeter of
the observed clusters is fractal.

C. Computer simulations

Computer simulations of the observed growth were car-
ried out for single clusters as well as multicluster textures. In
the former case a 6003600 pixel square grid was used with
a single-site nucleation center, while in the latter case a
120031200 pixel square grid was used with nucleation sites
occurring at random. For all simulations a standard percola-
tion algorithm was employed, which can be outlined as fol-
lows: (i) In a first step the seed particle is set(this occurs at
random positions for multisite percolation). (ii ) All nearest
neighbors(square grid sites sharing a common side with the
seed particle) are identified and set “alive”—i.e., can poten-
tionally be occupied.(iii ) Alive sites are occupied at random
with an occupation probabilityp and “killed” with a prob-
ability 1−p. Occupied sites are part of the growing cluster,
while killed sites cannot be occupied in any of the further
iteration steps; i.e., they are “dead.”(iv) The new nearest
neighbors are identified(while ignoring dead sites), set alive,
and steps(iii ) and (iv) of the algorithm are carried out for
many iterations until the growing cluster reaches one of the
edges of the grid. For the multisite percolation simulations to
generate the actually observed textures(not only the single
aggregates) the latter stop condition was abandoned, being
equivalent to an infinite two-dimensional sample. This situ-
ation is reasonably well achieved experimentally, as the in-
vestigated cell gaps are by several orders of magnitude
smaller than the lateral dimensions of the sample sandwich
cell.

Initial computer simulations were carried out at variable
occupation probabilitiesp to confirm that the percolation
thresholdpc of the simulations corresponds to the theoreti-
cally predicted value ofpc=0.593. This was indeed the case,
as clusters with a lower occupation probabilityp,pc did not
grow indefinitely. In accordance with the experiments, the
time development of either a single cluster or multiple clus-
ters was investigated by terminating the simulation algorithm
after a varying number of iteration steps. Computer-
generated growth structures were analyzed with respect to
their fractal dimension according to the methods outlined
above.

III. RESULTS AND DISCUSSION

A. Experimental results

A first step in the analysis of experimentally obtained
fractal growth structures has to be the confirmation of dila-
tation invariance. For this reason Fig. 4(a) depicts an ex-
ample of the time evolvement of the fractal dimensionsDi
and Dr of a single 8DBH cluster at a quench depth ofDT
=0.6 K and cell gapd=15 mm. Parameters were chosen to
demonstrate that fractal growth is not induced by the bound-
ary conditions of the substrates, as liquid crystals behave
bulk like for cell gaps larger than approximately 8mm. The
information dimensionDi quickly saturates at a value ofDi
=1.9, a behavior which is observed for all of the time series

investigated at various applied growth conditions. Also the
ruler dimensionDr is found to exhibit saturation behavior.
Figure 4(b) shows the values ofDi, related to the mass of the
fractal, andDr, related to its perimeter, for six different ag-
gregates of 8DBH at varying size between 15mm and
500 mm, growing under identical experimental conditions. It
is worth noting that the fractal dimension determined for
individual aggregates is equal to that of the whole texture, so
coalescence of aggregates is not a critical issue. Within the
limits of error, which are estimated to ±0.01 forDi and ±0.03
for Dr, the saturation fractal dimensions are found to be
equal for all different aggregates, illustrating dilatation in-
variance.

In the following we concentrate our discussion on the
analysis of whole texture images, varying the quench rateR,
the quench depthDT, and the sample cell gapd. Figure 5
summarizes the time development of the fractal dimension
Di for various quench conditions. Figure 5(a) shows the evo-
lution of Distd as a function of quench rateR for the two
extreme cell gaps ofd=2 mm and d=15 mm at a quench
depth of DT=0.5 K. In all cases the fractal dimension
reaches saturation, a process which seems to be faster for
large cell gaps than for small ones. The quench rateR does
not have any influence on the saturation fractal dimension,

FIG. 4. (a) Time evolution of the fractal dimensionsDi andDr

determined from the growth of a single aggregate. Values of the
fractal dimensions reach saturation after approximately 60 s.(b)
Information dimensionDi and ruler dimensionDr for several dif-
ferent aggregates of varying size between 15mm and 500mm. The
fact that within the limits of error all aggregates exhibit equal frac-
tal dimensions illustrates dilatation invariance.

DIERKING et al. PHYSICAL REVIEW E 70, 051701(2004)

051701-4



which is Di =1.8 for the thin cell andDi =1.9 for the thick
cell, the latter value being the one expected for percolation
growth at the percolation threshold. This gives a first indica-
tion that the growth process may be slightly influenced by
the boundary layers in the case of the 2-mm cell, while the
15-mm cell exhibits bulklike behavior.

Figure 5(b) depicts the time dependence of the fractal
dimensionDi as a function of quench depthDT, again for the
two extreme cell gaps ofd=2 mm andd=15 mm at a quench
rate ofR=3 K min−1. A slight increase of the fractal dimen-

sion with increasing quench depthDT is observed, but it
should be noted that this is indeed close to the limits of error,
although the same trend is shown in both cell gap series.
Again, values for the thin cell are smaller than those of the
thick cell, which suggests that the fractal dimensionDi does
in fact exhibit a dependence on cell gapd, which will be
discussed below. We note that the fractal dimension deter-
mined for relatively large quench depth and cell gap again
precisely exhibits the value expected for percolation growth
at the percolation thresholdsDi =1.89d.

Figure 5(c) finally showsDistd as a function of cell gapd
at a quench depthDT=0.5 K and a quench rateR
=3 K min−1. Saturation is quickly achieved and the fractal
dimension of the studied textures clearly increases with in-
creasing cell gap. Again,Di =1.89 is observed for the thick
cell.

The results indicate that the textures observed for increas-
ing quench depth and cell gap approach the theoretically
expected value ofDi =91/48=1.896 for percolation growth
at the percolation thresholdpc. We have thus carried out
more detailed investigations of the quench depth and cell gap
dependence of the saturation fractal dimension ofDi. Figure
6(a) showsDi as a function of quench depthDT for the two
extreme cell gaps ofd=2 mm (circles) and d=15 mm (dia-
monds), over the whole range of quench depths that assured
isothermal phase ordering. For the thin cell the fractal di-
mension slowly increases, while the thick cell exhibits a
quick increase of the fractal dimension with quench depth,
reaching saturation ofDi =1.89 at approximatelyDT=0.4.
The error bars represent a rather conservative estimation of
Di to ±0.01, which is the range of data reproducibility. This
is much larger than the standard deviation, which was mini-
mized to SDø0.001 in the determination of the fractal di-
mension from linear fits to the relations of Eqs.(1) and (2).

Figure 6(b) depicts the respective cell gap dependence of
Di at a quench depth ofDT=0.5 K. The fractal dimension
increases with increasing cell gap, as was also observed in
previous phase ordering studies of bent-core molecules[12],
although we here do not as quite observe the saturation be-
havior above approximatelyd=8 mm. The overall obtained
experimental results from a variety of different investigation
series on 8DBH show that the fractal dimensions of growth
aggregates and textures all converge towards a value ofDi
=1.89±0.01 at large cell gapsd, quench depthsDT, and
quench ratesR. This is precisely the theoretically predicted
value of two-dimensional percolation growth at the percola-
tion threshold. In the following section we report computer
simulations to further verify this conclusion.

B. Comparison to computer simulations

The algorithm employed is a site percolation model as
outlined above. Single clusters were simulated at varying site
occupation probabilityp and it was confirmed that growth
stopped at very small clusters sizes ifp,0.58. Only for
occupation probabilities above the theoretically predicted
percolation threshold ofp.pc=0.59 were large growing
clusters obtained. Figure 7(a) shows one of the simulated
clusters for an occupation probability just above the percola-

FIG. 5. Fractal information dimensionDi as a function of time
for (a) varying quench rateR at DT=0.5 K for a thin cell(solid
symbols,d=2 mm) and a thick cell(open symbols,d=15 mm), (b)
varying quench depthDT at R=3 K min−1 for a thin cell (solid
symbols,d=2 mm) and a thick cell(open symbols,d=15 mm), and
(c) varying cell gap d at quench depthDT=0.5 K and R
=3 K min−1.
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tion threshold withp=0.625. The generated cluster is very
similar in appearance to those observed experimentally(see
Fig. 2) and indeed within the limits of error exhibits the same
fractal dimensionsDi =1.89 andDr =1.3 (see Fig. 3). Com-
paring the experimentally determined fractal dimensions of
the previous section to those of Fig. 7(b), which shows the
information dimensionDi obtained from cluster images
simulated at varying site occupation probabilityp, it can
clearly be deduced that 8DBH growth is accomplished via
percolation in the close vicinity of the percolation threshold.

The time evolution of a growing texture can be simulated
by halting the generic computer algorithm of multisite per-
colation after a varying number of iteration steps. Illustrative
images of such a time series simulation are depicted in Fig.
8(A) for a site occupation probability ofp=0.625. The
computer-generated texture images of Fig. 8(A) clearly
mimic the experimentally obtained textures of Fig. 1. As a
quantitative measure, the respective time evolvement of the
fractal dimensionDi is shown in Fig. 8(B). This mirrors that
of the experimentally observed behavior(Figs. 4 and 5) giv-
ing clear evidence for percolation growth close to the perco-
lation threshold of the conventional calamitic 8DBH me-
sogen.

We can thus confidently conclude that fractal growth of a
conventional calamitic smectic mesophase has been demon-
strated and that its growth mechanism is related to percola-
tion at the percolation threshold. The phase formation behav-
ior of calamitic 8DBH is qualitatively and quantitatively
very similar to that observed for “banana” or bent-core liquid
crystals [28]. In the following section we will discuss the
possible molecular reasons for this similarity as contrasted
by all other calamitic smectic growth structures, especially
smectic bâtonnet growth.

C. Discussion

For calamitic(rodlike) molecules, the general growth be-
havior of smectic phases from the isotropic melt is observed

FIG. 6. (a) Saturation fractal information dimensionDi as a
function of quench depthDT for a thin cell(d=2 mm, squares) and
a thick cell(d=15 mm, diamonds). In the case of the thick cell the
fractal dimension approachesDi =1.89, the theoretically predicted
value for two-dimensional percolation growth at the percolation
threshold.(b) Saturation fractal information dimensionDi as a func-
tion of cell gapd.

FIG. 7. (a) Simulated growth aggregate for a site occupation
probability of p=0.625, just above the percolation threshold. The
generated cluster is very similar to the experimentally obtained ag-
gregates(compare to Fig. 2). (b) Fractal information dimensionDi

as a function of site occupation probabilityp. Below the percolation
threshold atpc=0.59 clusters are not growing indefinitely. The satu-
ration fractal dimensions obtained from the experimental clusters
and textures(Figs. 4 and 5,Di <1.9) suggest percolation growth in
the vicinity of the percolation threshold.
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via the nucleation and anisotropic growth of so-called bâton-
nets[14]. Growth perpendicular to the smectic layer plane—
i.e., along the smectic normal—is much more pronounced
than growth in direction of the layer plane, resulting in shape
anisotropic aggregates[29,30] with an aspect ratio in the
order of 5:1. This means that the process of smectic layer
formation is favored over the growth within individual lay-
ers.

The here investigated calamitic mesogen 8DBH is in
some respects different from the majority of other calamitic
mesogens, as it promotes the formation of hydrogen bonds

perpendicular to its long molecular axis—i.e., in the plane of
the smectic layers. This is also exemplified by the formation
of the cubic phase of 8DBH at somewhat lower tempera-
tures. This hydrogen bonding within the layer plane is rela-
tively strong in comparison to the general van der Waals
interactions between anisotropic molecules in a direction
perpendicular to their long axis. We suggest that this is the
reason for the breaking of the anisotropy in interactions be-
ing responsible for smectic layer formation and growth
within a smectic layer, as is observed for the majority of
conventional calamitic mesogens. In the context of a generic
growth model, this implies that the site occupation probabili-
ties are independent of direction—i.e., are isotropic—a con-
dition as was employed in the computer simulations pre-
sented above. The fact that quench experiments were carried
out into the two-phase region accounts for the site occupa-
tion probability being smaller than 1(isotropic regions rep-
resenting the “dead” sites). It is important to note that the
same qualitative arguments also hold for the fractal growth
of the smecticlike phases of bent-core molecules, especially
the B2 phase[12,28]. In the latter case the strong intermo-
lecular interactions within the smectic layer plane, as pro-
vided by hydrogen bonding for 8DBH, are instead caused by
steric interactions due to the bent-core molecular shape. As
in the case for 8DBH, this leads to a percolation growth
mechanism, which results in growth and texture formation
via fractal aggregates of a dimensionD<1.9, as is observed
in experiments.

IV. CONCLUSIONS

The isothermal growth process of the smectic-C phase of
8DBH from the isotropic melt was experimentally investi-
gated for a conventional calamitic mesogen with respect to
quench depth, quench rate, and cell gap. The observed
growth structures exhibit a saturation fractal dimension of
D=1.9, showing fractal growth in a conventional calamitic
mesophase. Site percolation at the percolation threshold is
suggested as the generic formation mechanism of the experi-
mentally observed liquid crystalline textures. This is sup-
ported by computer simulations carried out according to a
multisite percolation algorithm, which qualitatively and
quantitatively generates equivalent growth aggregates and
textures. It is proposed that in the case of 8DBH hydrogen
bonding is the responsible mechanism for the formation of
fractal aggregates, while the model can easily be extended to
also explain the fractal growth of theB2 phase of bent-core
mesogens through steric interactions.
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FIG. 8. (A) Computer-generated time series of the texture
evolvement at isothermal growth conditions according to a multisite
percolation model withp=0.625. The images mimic those of the
experimentally obtained time series of Fig. 1.(B) Time dependence
of the fractal information dimensionDi, obtained from multisite
percolation texture generation. The behavior is equivalent to that
observed in the experiments[see Fig. 5(a)]. The accordance of re-
sults from the computer simulations with the experimental data pro-
vides strong evidence for percolation growth at the percolation
threshold being the responsible mechanism in the phase ordering
process of the 8DBH aggregates.
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