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Theory of Time-dependent Space-charge-limited Conduction
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Abstract: We have developed a theory of time-
dependent space-charge-limited conduction in recent
years to understand a hysteresis-shift phenomenon of
graded ferroelectric films. The theory is a generalization
of the conventional steady-state space-charge-limited
conduction model to include (i) two carrier types (p-
type and n-type), (ii) intrinsic conductivity and (iii) time
dependence. Later, the theory was also applied to
understand the hysteresis behaviour of homogeneous
ferroelectric films. In this paper, a full and updated
version of the theory is presented. At the limit of zero
intrinsic conductivity, the theory implies the dominance
of either carrier type. Accordingly, the independent
assumptions of (i) a single carrier type and (ii) a
negligible intrinsic conductivity in the conventional
steady-state conduction model are interrelated.

INTRODUCTION
Electrical conduction in solid dielectrics is often non-
Ohmic, due to the presence of space charge and other
field-induced effects [1,2]. For a plane-parallel
dielectric capacitor of thickness L under a steadily
applied voltage V, the conventional space-charge-
limited conduction model concludes that the current
density J and the voltage V have a power-law relation of
J V2 [1,2]. This relation has been experimentally
observed for various dielectric materials [3-5]. Its
theoretical derivation is summarized as follows:

Consider a dielectric sample with a negligible intrinsic
conductivity r0 O. Charge carriers of one single type are
injected from one electrode and captured by the other.
The charge mobility ,u and dielectric permittivity e are
assumed to be constant throughout the sample. The
electric displacement D and free charge density p as
functions of the position x from one electrode are

D(x) = &* E(x) (1)

and

p(=) dD(x)
=

dE(X) (Gauss' law),
dx dx

(2)

respectively. In the absence of both displacement and

diffusion currents, the steady-state current density J is
equivalent to the conduction-current density JC. The
continuity of a steady-state current implies that J is
independent of the position x. It follows that

J = Jc =A*p(x)*E(X)=A*.cE(X). dE(x)
dx

A g dE(x)2
2 dx

Equation (3) is
E(0)=0, as the
injected carriers
(3), one obtains

(3)PC£*(X)2-

based on the boundary condition of
electric field is neutralized by the
[1]. From Kirchoff s voltage law and

VJE(x) ( 9= .* ) (4)

or equivalently,

J = 9 V2_V2 (Child's law). (5)

Despite the success of (5) in describing the space-
charge-limited conduction of various dielectric
materials [3-5], there are motivations to derive a more
general time-dependent and multi-carrier space-charge-
limited conduction formula for wider applications: (i) In
the case of a time-varying applied voltage V(t), there are
also displacement currents. In this case, one cannot
equate J with JC, so that (5) cannot describe the
corresponding space-charge conduction process. (ii) In
many dielectric materials, there are at least two types of
carriers, namely p-type and n-type. The intrinsic
conductivity cr is usually small, but it might not be
negligible. (iii) For nonlinear dielectrics, the effective
dielectric permittivity, defined via (1) as &=DIE, is not a
constant. It could be field-dependent, position-
dependent (for inhomogeneous materials), or even time-
dependent (e.g. for ferroelectrics).

In recent years, we have investigated theoretically [6-8]
the peculiar vertical shift of hysteresis loops as observed
for graded ferroelectric thin films excited by alternating
electric fields [9]. In these graded films, there are
gradients of the electric displacement D and the
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corresponding presence of free space charge, according
to the Gauss' law in (2). The overall conductivity is
affected locally by the free space charge and thus
becomes non-Ohmic. To take into account the effects of
both space-charge and Ohmic conduction, we have
developed a theory of time-dependent space-charge-
limited conduction [6]. By incorporating this theory into
a model of the graded film, the vertical shift of
hysteresis loops was reproduced in the simulations [6].
Later, the theory was also applied to understand the
hysteresis behaviour of homogeneous ferroelectric films
[10]. In this paper, the formulation of the theory is
presented in full, with the limiting case of zero intrinsic
conductivity discussed in detail.

THEORETICAL DERIVATION OF THE
TIME-DEPENDENT SPACE-CHARGE-
LIMITED CONDUCTION FORMULA
For a time-varying applied voltage V(t), the conduction-
current density J (xt), electric field E(x, t), and the
electric displacement D(x,t) are functions of position x
and time t for an inhomogeneous dielectric. The
conduction-current density can be related to the electric
field via a time-dependent conductivity u(x, t):

Jc (x, t) = o(x, t) * E(x, t) . (6)

q [Ap(x, t) - An(x, t)] (10)

With a dielectric insulator being equivalent to a wide
band-gap semiconductor, there are endothermic
generation and exothermic recombination of carriers.
One can assume that the rates of these endothermic and
exothermic processes are equal (i.e. the energy released
by carrier recombination is entirely used for carrier
generation), with each rate being proportional to the
product of the reactants' concentrations. The latter
assumption is quite natural because the product of the
reactants' concentrations is equal to the number of ways
per unit volume the different types of reactants can
combine to undergo the process. In a dielectric insulator,
the concentration of recombined electrons is orders of
magnitude larger than the concentrations of free carriers.
Accordingly, the concentration of recombined electrons
for carrier generation has an insignificant fluctuation
with time, i.e. it is practically time-invariant. The rate of
carrier recombination is thus also approximately time-
invariant, as it is equal to the rate of carrier generation.
One can then approximate the recombination rate R as

R =R(x)oCinC(x)2
[Cin (x) + Ap(x, t)] [C,n (x) + An(x, t)] (11)

(10) and (11) can be rewritten as

Consider the presence ofp-type and n-type free charge
carriers, of position-dependent mobilities ,up(x) and -

Pun(x), and of electric charges q and -q, respectively.
Here, ,up(x), ,un(x) and q are positive values. Due to
charge neutrality, the intrinsic concentrations of the two
carrier types are equal, and are here denoted as Cin(x).
The time-dependent conductivity o(x, t) can be
expressed as

c(x, t) = q * Ap (x) * [C7, (x) + Ap(x, t)]

q [ pn (x)]. [C,i (x) + An(x, t)], (7)

Ap(x, t) + An(x, t)
q ax

(12)

and

Cin (x) * [Ap(x, t) + An(x, t)] + Ap(x, t) * An(x, t)
= 0,1 (13)

respectively. Further rearrangement of (12) and (13)
leads to a pair of quadratic equations for Ap(x,t) and
An(x, t):

where Ap(x,t) and An(x,t) are the differences between
intrinsic and total concentrations for the p-type and n-
type carriers, respectively. The intrinsic conductivity is
defined as

c, (x) = q * [lp (x) + pn (x)] * C1, (x)

Ap(x, t)2 + BP (x, t) * Ap(x, t) + Cp (x, t) 0 (14)

and

An(x, t)2 +Bn (xI t) An(x, t) + Cn (xI t) = 0, (15)
(8)

so that the time-dependent conductivity in (7) can be
written as

o(x, t) = cU (x) + q * [up (x) * Ap(x, t)

+ p, (x) * An(x, t)] (9)

According to (2), the density of free space charge is

D t)= q [Cin(x) + Ap(x, t)] -q [C,, (x) + An(x, t)]

where

Bp (X t) =

1 aD(x, t) + 2 C,, (x)
q ax

Cv (x, t) qCin (x) aD(x, t)
q ox

B (x, t) 1 aD(x,t)+ 2.C (x)
q Ax

and

Cn (X, t) _- C, (x) aD(x, t)
q ox

(16)

(17)

(18)

(19)
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Ap(x,t) and An(x,t) in (9) can then be replaced by the
roots of their quadratic equations. This leads to

q * [Pp (x) * Ap(x, t) + Pn (X) * An(x, t)]

jP (x) -
:q -

-+ An (X)

-B (x, t) _ VB "(X, t) 2 - 4.C*C(x,t)
2

-Bn(x,t)+ VBn (x, t)2 4.Cn (x, t)

2
(20)

Using the definitions from (16) to (19), together with
the definition of the intrinsic conductivity u0(x) in (8),
one obtains

[+jp (x) + j, (X)] = lp (x) + An WI)
so that (24) should be written as

(27)

Ox

+ {[8P (x)+An(X)] aD(Xt)}2 + (x)2 , (28)

which we here refer to as the time-dependent space-
charge-limited conduction formula.

(21)-q * [pu (x) * B, (x, t) + lUn (X) * Bn (X, t)]

[8p (x) -n(X)] aD(x, t) _cr(x)
2 Ax

and

- VBp (x, t)2-4 C, (x, t) =q* |Bn (x, t)2- 4* Cn (X, t)

I. |OD(x,t)
'

4-.J (x)2
2 ox -tj jup(x) + j, (x)

(22)

Using (21) and (22), (20) can be written as

q [Lup (x) * Ap(x, t) + pu, (x) * An(x, t)]

[lp (X) - Pln(X] D(x, t) A' (23)
2 oxAx

[_ p, (X)-An (X) |0W D(x, t) 2 4 o (x) 2[+1x+ x]r+F2 ox Up, (X) + FUn (X)]2

Using (9), (23) can be transformed into an expression
for the time-dependent conductivity o(x, t):

7(X t) _[lP (x) - P,W(X]D(X. t)

LIMIT OF ZERO INTRINSIC
CONDUCTIVITY

If the intrinsic conductivity u0(x) vanishes but the time-
dependent conductivity c(x,t) remains finite, the space-

charge density 5D(x,t)/13 must be non-zero, according
to (28). In this case, the conduction mechanism is space-

charge-limited. According to the expression for c(x,t) in
(7), either of the mobility values ,up(x) and ,u"(x) has to
be non-zero for c(x, t) to remain finite. From the
definition of the intrinsic conductivity u0(x) in (8), the
intrinsic concentration Ci,(x) must tend to zero for U0(x)
to vanish, because the mobility sum [up(x)+,u"(x)] is
finite.

For a vanishing Ci,(x), (13) reduces to

Ap(x,t) *An(x,t) 0 (29)

Multiplying both sides of (12) by Ap(x,t) or An(x,t), and
then applying (29), one obtains

Ap(x, t) * Ap(x, t) _ -OD(x,t) ]zt 0
q ox

(30)

and

ox

±1J[±uP(x)±IU(x)] aD(x,t)} ±+ jup(x) ± ,u(x) (x)2

o 0 ad fo [pp (x)+ 0,(X)]2
(24)

According to (IO) and (24), for Ap(x,t)=An(x,t)=O, it is

An(x,t) An(x,t) + . -D(x,t) 0
q ox

(31)

for Ap(x,t) and An(x,t), respectively. The solutions to
(30) and (31) are

Ap(x, t) z 0 or Ap(x, t) 1 D(x, t)
q Ax

(32)

and

An(x, t) 0O or An(x, t) - . -D(,ot)
q Ax

(33)

respectively. According to (12), however, only the
following combinations of solutions are allowed:

aD(x,t) 0

ox

and

(25)

07(X, t) =r07 ()[IiP, (x) + ju, (x)

,(x
p(x)+jun(x)]Eqqt (X) +im(lie

Equqation (26) implies

(26)
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Ap(x,t); 0 and An(x,t);- 1 aD(x,t)
q Ax

and

An(x, t) t0 and Ap(x,t) 1 aD(x, t)
q Ax

(34)

(35)

As the intrinsic concentration Ci,(x) vanishes, Ap(x,t)
and An(x,t) become the total concentrations of p-type
and n-type carriers, respectively. It follows that:

At the limit ofzero intrinsic conductivity uo(x), either p-
type or n-type carriers are dominant.

Since the total concentrations Ap(x,t) and An(x,t) must
be positive by definition, (34) and (35) imply
m(x,t)la3c<0 and MD(x,t)1a3c>0, as consistent with the
dominance of n-type andp-type carriers, respectively.

For a vanishing intrinsic conductivity uo(x), (28) can be
written as

U(X t),Z [lP, (x)-APX)WlD(x, t)
2 Ax

[Al, (X) + P,7 (X)] D(x, t)
2 Ax

For m(x,t)la3c>0 (p-type dominance), it is

U(,t;~[,u (x) -P,u (x) D(x, t)
2 Ax

u,Clp (x) + P (X)] aD(x, t)
2 Ax

aD(x, t)~up(x) * a

(36)

(37)

Else, for m(x,t)la3c<0 (n-type dominance), it is

U(,t;~[,u (x) - P,u WI) CD(x, t)
2 dx

Alp, (x) + , (X)]( aD(x, t)+I
2 oax)

,-A(x) . D(x, t)
ax

(38)

(37) and (38) together verify that the mobility in the
time- dependent conductivity c(x, t) is equal to that of
the dominant carrier type.

CONCLUSIONS
In this paper, a theory of time-dependent space-charge-
limited conduction is presented in full. It is a
generalization of the conventional steady-state space-
charge-limited conduction model to include (i) two

carrier types (p-type and n-type), (ii) intrinsic
conductivity and (iii) time dependence. According to the
theory, the time-dependent conductivity c(x, t) is related
to the space-charge density XD(x, t)/Jx and intrinsic
conductivity uo(x) in a nonlinear fashion (Equation (28)).
For the limiting case of zero intrinsic conductivity, the
theory concludes that either p-type or n-type carriers are
dominant, thus correlating the independent assumptions
of (i) a single carrier type and (ii) a negligible intrinsic
conductivity in the conventional steady-state model.
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