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We formulate and apply a continuum model that incorporates elasticity, yield stress, plasticity, and
viscous drag. It is motivated by the two-dimensional foam rheology experiments of Debregeas et al.
[Phys. Rev. Lett. 87, 178305 (2001)] and Wang et al. [Phys. Rev. E 73, 031401 (2006)], and is successful
in exhibiting their principal features, which are an exponentially decaying velocity profile and strain
localization. Transient effects are also identified.
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While initially two-dimensional (2D) foams were intro-
duced only as a simple model system for numerical and
theoretical studies [1,2], recent years have also seen a
variety of rheological experiments on so-called quasi-2D
foams, i.e., foams consisting of a single layer of bubbles
[3–8]. Using bubbles trapped between two glass plates
(Hele-Shaw cell) in a cylindrical Couette geometry (the
foam is contained between two concentric cylinders),
Debrégeas et al. found that the flow of the foam localizes
near the inner moving wall with an exponential velocity
profile, forming shear bands [4]. While quasistatic cellular
simulations [9,10] showed some agreement with the re-
sults, they continue to excite debate [7], especially in
regard to the localization of shear and deformation [6],
which is the salient feature of the experiment. Recently,
Wang et al. have extended shear experiments to the simpler
planar geometry [8]. While their experiments using bub-
bles between a liquid pool and a glass plate showed the
formation of shear bands with an exponential velocity
profile, a nearly linear velocity profile was obtained for a
bubble floating on the liquid (bubble raft or Bragg raft).
This has evidenced the crucial role played by the method
used to confine the bubbles and indicates that the nonuni-
form stress imposed by the Couette geometry is not suffi-
cient to explain the formation of shear bands with
exponential decaying velocity.

In this Letter, we introduce an elementary continuum
model for the analysis of rheological properties of a two-
dimensional foam. It includes a viscous drag that has no
counterpart in conventional 3D foam rheology. Our model
is therefore closely related to the 2D viscous froth model
[11] which was designed to enable dynamic simulations to
be undertaken with the full cellular structure of the foam
and included just such a viscous drag. Here the viscous
drag will enter as a term in the continuum description,
depending on a local average of the boundary velocity.
Experiment and theory have already addressed this force as
it arises in the flow of bubbles in cylindrical tubes and in
narrow channels [5]. It is often associated with the name of
Bretherton, who showed that the force varies with two-
thirds the power of velocity [12]. In some circumstances, a

power law of one-half is suggested [13]. Nevertheless, as in
the case of the 2D viscous froth, we adopt a linear form in
order to keep the model and the analysis simple, in a search
for a qualitative and semiquantitative understanding. In
other respects, the model is akin to the familiar Bingham
model of a substance that has a yield stress [14] and an
internal viscosity. This, or one of its variants, is often
invoked in the analysis of bulk foams. However, as in the
recent work of Takeshi and Sekimoto [15], we also include
an elastic response, so that the model we propose has four
key ingredients: elasticity up to a yield stress, plasticity,
internal viscosity, and a viscous drag force.

While it is amenable to obvious generalization, the
model will be defined here for the simple planar shear
geometry, as in [8]. Displacement u�y; t� and the velocity
v�y; t� � @u�y;t�

@t are in the x direction only, as when shear
takes place between two parallel infinite boundaries in that
direction (see Fig. 1). This reduces the problem to one
dimension. Strain and strain rate are reduced to scalars
��y; t� � @u

@y and _��y; t� � @�
@t .

We will neglect inertia throughout, so that the total force
acting on an element of fluid at ymust be zero. Forces arise
from the gradient of the shear stress ��y; t� and the drag

FIG. 1. Geometry of the case considered here in which the
velocity v�y; t� and the displacement u�y; t� are functions of the y
coordinate and time t.
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force per unit area, F � ��v, where � is the mean drag
coefficient. In two dimensions, stress has the dimension of
a force divided by a length and � is expressed in units of
force� time per volume. The required force balance is

 

@�
@y
� �v: (1)

It remains to specify the constitutive relation for � in
terms of � and _�. For simplicity, we capture the desired
ingredients of elasticity, yield stress, and plasticity with the
following relation:

 � � �Yf��=�Y� � � _�: (2)

Here, �Y is the yield stress and �Y is the yield strain. We
choose f��=�Y� � tanh��=�Y�, which roughly corre-
sponds to a typical 2D static stress-strain relation for foams
[14]. For foams �Y is of the order of unity and we shall set
it equal to unity here. The final term in Eq. (2) is the usual
strain-rate term of the Bingham model. Note that for foams
the viscosity � depends on the strain �. For low strain, the
dissipation is due to the stretching of films and occurs at the
same rate as the applied deformation. For high strain, it is
mainly due to topological changes which lead to the dis-
appearance and creation of films. This occurs at much
higher rate than the applied deformation [16]. Never-
theless, the assumption of a constant viscosity is helpful
in our elementary model. A very important restriction
requires that Eq. (2) is used only when the strain rate _�
always has the same sign (negative in what follows), which
is the case in the experiments to which we are referring. In
further work we will include hysteretic effects, which are
very important, but for now we accept this restriction.

We can nondimensionalize Eqs. (1) and (2) by introduc-
ing the natural length scale L0 � ��=��

1=2 and natural
time scale T0 � �=�Y . From now, length and time will
be expressed in units of L0 and T0. A convenient repre-
sentation of Eqs. (1) and (2) is

 

@2v

@y2
� v � �

@
@y
f
�
@u
@y

�
; (3)

where

 v �
@u
@t
: (4)

The model can be solved analytically in various cases
and limits. More generally, a numerical scheme of integra-
tion can be used to follow the time dependence of the
variables, as follows. We discretise y and twith small steps
�y and �t, using lowest order expressions for derivatives.
Given a knowledge of u in steps up to time t, @u@t may be
estimated as a backward derivative and Eq. (3) may be
solved for v�y; t� with the imposed boundary conditions.
Equation (4) then enables us to update u to t� �t. (In
practice, an improved Euler method was used for the
integration in time.)

We will consider only the case in which the boundary at
y � 0 is given a finite velocity V at all times t, while the
boundary at y � L is held fixed. Correspondingly, u�y �
0; t� � Vt and u�y � L; t� � 0. For the results presented
here, we set L � 15 and V takes various values. The
quantity � � Vt=L may be regarded as the total applied
shear at time t.

The numerical results presented in Fig. 2 are for low
velocities V � 1 and show the existence of several re-
gimes as the total applied shear is increased.

Regime I is observed for small total applied shear, at
which both velocity and strain profiles [Figs. 2(a) and 2(b)]
are close to exponentials. Regime II is characterized by a
linear velocity profile and a homogeneous strain. In
regime III both velocity and strain profiles combine an
exponential decay close to the moving boundary and a
linear decay close to the fixed boundary. With further
increase of total applied shear the linear tails diminish,
leading to an asymptotic steady state (regime IV) similar to
that for small applied shear.

The existence of these distinct regimes is also evident
from the plots of strain rates and stress as a function of total
applied shear as shown in Figs. 2(c) and 2(d), respectively.
While regime I is characterized by a strong localization of
both strain rate and stress, in regime II (10�2 < �< 1) the
strain rate is homogeneous. The asymptotic steady state of
regime IV is again characterized by strong localization of
the strain rate. Stress is saturating to its maximal magni-
tude 1 for all values of y.

FIG. 2. (a),(b) Profiles of velocity v=V and magnitude of the
strain � for three different times, represented by the total applied
shear � � Vt=L, shown in semilog scale. This exemplifies three
regimes of exponential or linear profiles. The regimes also
feature (c) the variation of the magnitude of strain rate _� and
(d) the variation of the magnitude of stress � with total applied
shear �, shown in log-log scale. In all the calculations shown, we
have chosen L � 15 and a low boundary velocity of V � 0:005
at y � 0.
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Figure 3 shows the velocity profiles obtained for the
same total applied shear but for different shearing velocity
V. For V � 1, the velocity varies linearly, corresponding
to regime II. For V � 1, the profile approaches the asymp-
totic form (regime IV). For V 	 1, we can have either
regime I [for � � 0:1 on Fig. 3(a)] or regime III [for � �
1 on Fig. 3(b)] where we see an initial exponential decay
followed by a linear tail (regime III). Figure 4 represents
the different regimes encountered on a semiquantitative
�-V diagram. Depending on the shearing velocity V, sev-
eral scenarios are possible before reaching the steady state
of the regime IV.

In order to understand these features, we return to the
governing Eq. (3) and reduce it by various approximations.
For small time (regime I), u is small and we neglect the
right-hand side of Eq. (3), which is approximately � @2u

@y2 .

The remaining equation,

 

@2v

@y2
� v � 0; (5)

has the elementary solution

 v � V
sinh�L� y�

sinh�L�
: (6)

Note that this solution does not vary with time, implying
that the system jumps instantaneously to the above velocity
profile. This is indeed consistent with what is found in the
numerical treatment and is a consequence of the singular
initial condition and the neglect of inertia. Provided L� 1
in the reduced units, this solution is approximately an
exponential over most of the range. The exponential profile
survives until @2u

@y2 becomes large and overtakes the term

proportional to v.
Neglecting the term proportional to v in Eq. (3), rather

than that on the right-hand side, and approximating the
latter as already stated, we obtain

 

@2v

@y2
� �

@2u

@y2 : (7)

Hence u� v � a�t�y� b�t�. Writing v � @u
@t and integrat-

ing again gives u � A�y�e�t � a�t�y� b�t�. This shows
that the solution which develops after some time is linear,
with a decaying transient part. The decay time is unity, in
the units used. Applying the boundary conditions at y � 0
and y � L, the linear variation of the velocity is then given
by

 v � V
�
1�

y
L

�
; (8)

in excellent agreement with the simulation (see Fig. 3).
A further transition (regime III) takes place when the

approximation tanhz
 z fails, and can be replaced by
tanh
1, as the strain � increases beyond the yield strain
�Y . At any given time in this regime, the second approxi-
mation replaces the first for y > y0. Thus the same expo-
nential of regime I is to be expected for y < y0, continued
by the linear solution of regime II for y > y0.

As the time t tends to infinity (regime IV), y0 tends to L
and the solution returns to the effectively exponential form

FIG. 3. Velocity profiles scaled by V for L � 15 [numerical
results for V � 0:001 (�), V � 0:3 (�), and V � 60 (�)]. (a) is
for total applied shear � � 0:1 and shows the succession of
regime II, regime I, and finally regime IV. (b) corresponds to the
transition from regime II to III to IV as obtained for � � 1. The
dashed line represents the linear solution given by Eq. (8), and
the solid line is the steady states solution given by Eq. (6)
corresponding to the exponential localization.

FIG. 4 (color online). Qualitatively different velocity profiles
are found in different regions of the �-V diagram. Regime I:
exponential. Regime II: linear. Regime III: combined exponen-
tial/linear. Region IV: approach to final steady state velocity
profile with an exponential localization. The boundaries �I=II and
�II=III (dashed lines) are defined as in the text. The area to the left
of the computed� data points is defined so that the relative error
between the velocity profile and the linear profile characterizing
regime II [Eq. (8)] is smaller than 1%. A similar 1% threshold
based on Eq. (6) has been used as a numerical criterion for the
computation of the boundary between regimes III and IV (�).
This threshold is also used for the computation of the � data
points.
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of Eq. (6). The simulations are in excellent agreement with
this profile, as shown by the solid line in Fig. 3. This
solution is only asymptotically reached. A closer analysis
of this approach is possible but will not be pursued here:
suffice it to say that it is a slow (power law) convergence.

The boundaries between these regions may be identified
as follows. That between regimes I and II may be found by
estimating and equating the magnitudes of the terms ne-
glected in their respective approximations. Using the solu-
tions given in Eqs. (6) and (8) gives �I=II 
 V=L, in
agreement with the linearity in V found in numerical
computation of the I/II boundary (see Fig. 4). Similarly,
we enter regime III when the maximum value of strain �
reaches �Y , which for the linear solution occurs at �II=III 


1, which is in reasonable agreement with the numerical
data shown in Fig. 4. Putting these together, we see that
regime II is eliminated entirely for V > L in dimensionless
units. Reinstalling physical units, this corresponds to a
shear rate which exceeds �y=�.

The steady state obtained at high applied shear � offers a
very elementary candidate for the explanation of the phe-
nomenon of localization with exponential velocity profiles
in 2D foams [4,8]. Our results allow for a direct compari-
son with the planar shear experiment on 2D foams of
Ref. [8]. As Eq. (6) can be approximated (in physical units)
by v=V 	 exp��y=L0�, the velocity measurements pro-
vide us with a direct determination of L0 � ��=��

1=2.
Expressed in units of bubble diameter d, they correspond
to L0 	 d for the bubbles trapped between a glass plate and
a pool of liquid. Our model also explains why no expo-
nential localization is found in the experiments using bub-
ble rafts. In this case, the mean drag coefficient � is
expected to be very small, since there are no rigid plates,
but rather the foam slides on underlying liquid. The decay
length of the exponential which scales like ��=��1=2 in-
creases up to a value of the same order of magnitude as the
system size L and the velocity profile appears to be very
close to a linear form. From Eq. (6) we also see, consistent
with the experiments of [8], that in the steady state regime
the scaled velocity profiles v=V do not depend on the shear
rate V=L.

Clearly the model can be applied more generally, for
example, to the circular Couette geometry. This suggests
the use of polar coordinates �r; ��, which leads to an extra
term �=r in the divergence of the stress of Eq. (1).
Although a full mathematical treatment is required to solve
the problem in the general case, it is possible to use our
present results, provided this extra term is much smaller
than the viscous drag term �v. Assuming that the stress is
dominated by the viscous contribution � _� during the

steady state, one finds that Eq. (1) still holds if the distance
between the two cylinders is much bigger than L0. This is
the case when bubbles are confined in a Hele-Shaw cell
where the velocity profiles are found to be exponential with
d < L0 < 2D [4]. On the contrary, for a bubble raft sheared
between two concentric cylinders, the velocity profile is
not exponential but rather discontinuous [7]. This can be
explained by a viscous drag too small to overcome the
nonuniform stress effect of the Couette geometry.

We thus have seen that the exponentially decaying ve-
locity profile in 2D foams, which is the signature of shear
bands, is due the viscous drag generated by the bubbles on
the confining plate. In due course, more realistic forces
(e.g., the Bretherton form) may be required, at the expense
of the extreme simplicity of what we have shown here.
Most of the qualitative conclusions are likely to remain
intact.
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