
Field-Programmable Physics Processor (FP3)
Muiris Woulfe and Michael Manzke

Interaction, Simulation and Graphics Lab (ISG), Department of Computer Science, Trinity College Dublin

Abstract
We outline the design and implementation of an FPGA-based
numerical integrator that will form the basis of our FPGA-based
physics engine. Physics engines are considered one of the most
important of a multitude of components requesting CPU time
in a modern computer game, and so we propose offloading this
physics computation to an FPGA-based physics engine. Moreo
ver, we suggest inserting FPGAs into PCs, as the FPGAs’ reconfig
urability could be used to accelerate a wide range of applications;
when the user is playing games, the FPGA could be configured
to accelerate game physics, as outlined here. Our physics proces
sor uses the fourth order Runge-Kutta numerical integration al
gorithm to solve the ordinary differential equations used in game
physics. Our current analyses indicate that the performance of
our physics processor should surpass that of the equivalent soft
ware executing on a CPU when several objects are simulated.

-
-

-
-

-

Numerical Integration
Ordinary differential equations (ODEs) describe the dynamic
behaviour of objects, and so form the basis of game physics.
To solve ODEs computationally, a numerical integration algo
rithm is typically employed. Due to the essentiality of ODEs
to game physics, we began our implementation of the field-
programmable physics processor with a numerical integrator.

-

Numerical integration algorithms approximate the so
lutions of ODEs. It is desirable to choose an algorithm that
is as accurate as possible when considering the constraint that
a physics engine is an interactive real-time system. Based on
these observations, we decided to implement the fourth order
Runge-Kutta algorithm, as it offers a satisfactory tradeoff be
tween speed and accuracy.

-

-

Design
We chose the architecture of a RISC
CPU as the starting point for our
design, because our numerical inte
grator demanded an adaptable ar
chitecture to facilitate a potentially
limitless range of equations. Our
design comprises two modular units
– a workload scheduler and an arith
metic unit.

-
-

-

The workload scheduler de
codes instructions and supplies data
to the arithmetic unit. The sched

uler comprises an instruction memory,
instruction decoder and register file. The

instruction memory stores equations in the
form of instructions, which are decoded into

-

-

control signals. The register file supplies the rel
evant data to the arithmetic unit and stores the
results of the arithmetic unit’s operation. Data
hazards are resolved inside the register file using
a simple busy bit mechanism.

-

The arithmetic unit currently imple
ments three floating-point operations – addi
tion, subtraction and multiplication. These
operations use IEEE 754 single-precision float
ing-point cores, which our analyses indicated
were of sufficient precision for game physics.

-
-

-

Workload Scheduler

Instruction
Decoder

Instruction
Memory

Register
File

Arithmetic
Unit

Performance
To evaluate the performance of our design, we
implemented a simplified model of a ship. The
first integration of this model consumes 408
clock cycles while each subsequent integration
consumes 383 clock cycles. The reduction in
timing is primarily due to instruction overlap
ping between integrations.

-

We tested our integrator on a Xil
inx XC2V6000 FPGA of
speed grade four and a Xil
inx XC4VLX160 FPGA
of speed grade twelve. The
shortest period achieved on
the XC2V6000 is 13.734 ns,
which yields 5260.122 ns for
the subsequent integrations.
The shortest period achieved on
the XC4VLX160 is 7.899 ns,
which yields 3025.317 ns for
the subsequent integrations. For comparison, the equivalent
software algorithm executes in 56.11 ns on a 3.4 GHz Intel
Pentium 4.

-

-

In the future, to im
prove the performance, we in
tend to increase the utilisation
of the arithmetic unit since the
algorithm consists of a chain
of interdependent instructions
that currently leave the arith
metic unit underutilised. We plan to connect a multitude of
workload schedulers to a single arithmetic unit, which will en
able good performance with minimal resource utilisation.

-
-

-

-

60 MHz

90 MHz

120 MHz

150 MHz
XC4VLX160

XC2V6000

10987654321
Number of Integrators

Cl
oc

k
Fr

eq
ue

nc
y

· · ·

Arithmetic
Unit

Workload
Scheduler

Workload
Scheduler

Workload
Scheduler

Acknowledgements
This research is supported by the Irish Research Council for
Science, Engineering and Technology funded by the
National Development Plan.

embark initiative
Investing in People and Ideas

http://www.cs.tcd.ie/~woulfem/

	Abstract
	Numerical Integration
	Design
	Performance
	Acknowledgements

