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Abstract
In this paper, we outline the design and implementation of an FPGA-based numerical integrator that will ulti-
mately form the basis of our FPGA-based physics engine. Physics engines are considered one of the most im-
portant of a multitude of components requesting CPU time in a modern computer game, and so we propose
offloading aspects of this physics computation to an FPGA-based physicsengine. We aim to ameliorate the speed
of the physics computation in concert with the other game components. Currently, our physics processor uses
the fourth-order Runge-Kutta numerical integration algorithm to solve the ordinary differential equations used
in game physics. Our analyses indicate that the performance of our physics processor should surpass that of the
equivalent software executing on a CPU when several objects are simulated.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture

1. Introduction

Physics engines are approaching ubiquity due to the ever-
increasing demand for realistic computer games. These mid-
dleware solutions perform physics computations on behalf
of other software, in order to simulate the behaviour of
objects realistically. They are primarily used in computer
games for improving the realism of on-screen objects, but
are also used in 3D modelling tools to assist animators in
creating realistic motion when rendering scenes.

Traditionally, physics engines have modelled rigid body
dynamics, which describe the interactions between rigid
bodies or solid objects. These are typically modelled by ordi-
nary differential equations (ODEs), which are capable of ex-
pressing the dynamic behaviour of systems. ODEs are usu-
ally rewritten so that the equations are in terms of integra-
tion rather than differentiation, so that they may be evalu-
ated using a numerical integration algorithm. Using ODEs,
acceleration may be integrated to compute velocity, and ve-
locity may be integrated to compute displacement. Recently,
physics engines have expanded their abilities beyond rigid
body dynamics to include related fields such as particle and
cloth simulation.

Computer game physics must be computed in real-time,
so that the physics computations do not delay the motion
displayed on the screen. While realism is important, it is sec-
ondary to this real-time requirement and it is satisfactory if

the user perceives the motion generated by the physics to be
entirely correct.

Havok Physics [Havb] and AGEIA PhysX [AGE] are
some prominent commercial examples of software physics
engines, while the Open Dynamics Engine (ODE) [ODE]
provides a non-commercial substitute. AGEIA PhysX is also
available as a hardware platform. This platform has recently
become commercially available, and can be used to improve
the physics of games above what is achievable with a purely
software solution. Physics, primarily background and effects
physics, may also be computed using the shaders on either a
recent ATI or NVIDIA Graphics Processing Unit (GPU) and
the Havok FX physics engine [Hava].

Originally, 3D graphics had to timeshare the CPU with
other game components, but the relentless desire for 3D
content spurred the development of GPUs, which are used
to offload complex graphical computations from the CPU.
This paper proposes to mirror this concept for physics,
through the creation of physics engine hardware, similar to
the AGEIA PhysX. However, we additionally propose the
use of Field-Programmable Gate Arrays (FPGAs), whose re-
configurability should provide unique advantages.

FPGAs are integrated circuits (ICs) consisting of pro-
grammable resources that may be reconfigured at runtime,
in the field. Algorithms can often be accelerated when they
are offloaded from the CPU to an FPGA, in the same way an
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Application-Specific Integrated Circuit (ASIC) may acceler-
ate an algorithm.

An FPGA physics engine solution offers advantages over
the more obvious ASIC approach. By placing FPGAs in-
side commodity PCs, the reconfigurable fabric of the FP-
GAs may be utilised for purposes other than physics compu-
tation. For instance, if a game performs many physics cal-
culations, the FPGA could be used for accelerating these
calculations as discussed in this paper. If, instead, a game
performs many AI computations, the FPGA could be used
to accelerate these AI routines. The adaptability of FPGAs
is illustrated by the way many diverse applications, such
as ray tracing [SWS02, SWW∗04] and MATLAB compu-
tations [NHCB01, HNCB01, HNS∗01, BBH∗03, BHN∗04],
have already been accelerated using an FPGA. Through its
reconfigurability, the FPGA allows a multitude of tasks to be
accelerated, unlike a less flexible ASIC.

Since ODEs describe the core of game physics, we chose
an FPGA-based numerical integrator as the starting point for
our physics engine. In the subsequent sections, we describe
this numerical integrator, which forms the groundwork for a
reconfigurable hardware physics engine.

2. Related work

Research into numerical integrators appropriate for physics
engines indicates that sophisticated algorithms are redun-
dant. Kokkevis’ [Kok04] work suggests that the simple Eu-
ler integrator is adequate for the problem set he analysed.
Meanwhile, Baraff [Bar95] advocates using the fourth-order
Runge-Kutta integrator ordinarily, but in certain defined cir-
cumstances he proposes employing a number of simplifica-
tions. The more sophisticated Verlet [Ver67] family of in-
tegrators have recently proven popular, after they were first
employed by Jakobsen [Jak01] in the gameHitman: Code-
name 47. Unlike the Euler and Runge-Kutta integrators, Ver-
let integrators are reversible in time, which is highly desir-
able for computer game applications.

Traditional numerical integration algorithms do not per-
form well on FPGAs as they consist of a large number of
dependent operations, leaving little scope for parallelism.
Myriad parallel numerical integration algorithms have been
proposed [KM82, FHS89, MG97, BF01, VAQ01, BGD∗02,
Ram02,MOC02,MCH∗04,BB05], but these concentrate on
coarse grained parallelism using a cluster of computers. The
emphasis, therefore, is on achieving high precision results
over a lengthy period. However, the emphasis in a physics
engine is on achieving results in real-time at the expense of
precision, making these algorithms unsuitable for our inte-
grator.

No FPGA-based physics engines have yet been designed,
although Atay [ALB05] has researched collision detection
using FPGAs. This research suggested that a speed gain of
36 is achievable over a commodity CPU. Implementation

details of the aforementioned ASIC solution, the AGEIA
PhysX, have not been published in academic fora although
a number of patent filings provide some limited infor-
mation [DHS∗05a, DHS∗05b, DHS∗05c, MBST05, TZS05,
ZTSM05a,ZTSM05b].

3. Mathematical background

The fourth-order Runge-Kutta method is a general-purpose
numerical integration algorithm that achieves relatively good
accuracy in relatively little time [Kiz64]. Moreover, the al-
gorithm is robust, meaning that it is capable of withstanding
irregularities in the function being integrated. For these rea-
sons, the fourth-order Runge-Kutta method was selected as
the first target for our evaluation.

The fourth-order Runge-Kutta method involves comput-
ing four approximate steps, each using the result of the for-
mer step [SB02]. These four steps are subsequently interpo-
lated to create a result with a lower truncation error than each
of the individual steps. The equations describing the fourth-
order Runge-Kutta algorithm are:

k1 = h f (yn)

k2 = h f

(
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1

2
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6
(k1 + 2k2 + 2k3 + k4)

whereh is the time-step [s] andf is the function to integrate.

To demonstrate the operation of the integrator and obtain
data on its performance, a suitable mathematical problem
was required. We decided to model the motion of a ship
when considering the various resistive forces, using a sim-
plified mathematical model proposed by Bourg [Bou02]. It
is indicative of many relevant physics equations due to its
heavily interdependent sequence of operations and its aver-
age complexity. The relevant equations are:

F = T − Cv0

a =
F

m

v1 =

∫

a dt

s =

∫

v1 dt

whereF is the total force acting on the ship [N],T is the
propeller thrust [N],C is the drag coefficient,m is the mass
[kg], t is the time [s],a is the acceleration [m/s2], v is the
velocity [m/s] ands is the displacement [m]. The forces are
illustrated inFigure 1.

When the simplified ship equations are merged with the
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Figure 1: Forces acting on a ship. T is the propeller thrust
[N] and C is the drag coefficient.

fourth-order Runge-Kutta algorithm, the sequence of calcu-
lations becomes:
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s = s + hv1 (1)

As can be observed from this sequence of equations, there
is little scope for parallelism. Most equations are dependent
on their preceding equations, preventing the computations
overlapping. This significantly limits the computation speed
on any modern CPU, FPGA or ASIC. Software physics en-
gines overcome this bottleneck by simulating a multitude of
objects simultaneously. In the future, we intend to use the
same technique for our FPGA-based physics engine.

4. Architecture

We chose the general architecture of an instruction set pro-
cessor as the starting point for our design, since our numer-
ical integrator demanded an adaptable architecture to facil-
itate a potentially limitless range of equations. Our design

comprises two primary modular units – a workload sched-
uler and an arithmetic unit – as illustrated inFigure 2. Both
units are pipelined to maximise their throughput. This allows
multiple instructions to be in execution simultaneously, so
that all parallelism available in the instruction set may be
exploited.

Workload Scheduler

Instruction

Decoder

Instruction

Memory

Register

File

Arithmetic

Unit

Figure 2: Simplified architecture of the physics engine. Con-
trol logic and other extraneous details have been omitted for
clarity.

The workload scheduler’s core role is to provide the in-
struction stream used to control the integration procedure.
The first pipeline stage consists of an instruction memory.
The instructions stored in this memory specify the oper-
ations that comprise the numerical integration algorithm,
merged with the mathematical description of the current
simulation. For the simplified ship model, the instructions
would specifyEquations (1). The mathematical operations
that may be utilised are defined by the capabilities of the
arithmetic unit.

The workload scheduler also contains a register file. This
register file stores the data utilised by the instructions and
is tasked with resolving data dependencies between instruc-
tions. To resolve dependencies, each register has a busy flag.
The destination register for each instruction is flagged, un-
til it is subsequently written. Any instruction requesting a
flagged register is stalled until the flag is cleared. When data
is written to the register file from the arithmetic unit, the
pipeline is also stalled to prevent erroneous data migrating
through.

The arithmetic unit’s core role is to execute the operations
supplied by the workload scheduler. It consists of a number
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of floating-point cores, which implement the required oper-
ations. For the simplified ship simulation, the required oper-
ations are addition, subtraction and multiplication.

As stated inSection 1, in a physics engine, objects need
only appear realistic, without necessarily behaving with
complete realism. Based on this observation, IEEE 754
single-precision floating-point cores were considered to of-
fer sufficient precision. These cores consume significantly
less logic and routing resources than the equivalent double-
precision floating-point cores.

Furthermore, it was decided to replace time-consuming
and logic intensive division with more efficient multiplica-
tion. For example, instead of dividing by 6, we multiply by
0.16666667. This leads to a minor loss of accuracy, but based
on the aforementioned observation, this was deemed negli-
gible.

5. Performance

To evaluate the performance of our design, we implemented
the model of a ship described byEquations (1). The first
integration of this model consumes 445 clock cycles while
each subsequent integration consumes 418 clock cycles. The
reduction in timing is primarily due to instruction overlap-
ping between integrations. Removal of the register initiali-
sation commands from the subsequent integrations also con-
tributed to this reduction.

To translate these cycle counts into timing data, we im-
plemented our integrator on a Xilinx XC2V6000 FPGA
of speed grade four. The shortest period achieved was
8.888 ns, which yielded 3955.16 ns for the first integra-
tion and 3715.184 ns for the subsequent integrations. For
comparison, the equivalent software algorithm executes in
56.11 ns on a 3.4 GHz Intel Pentium 4.

Since numerical integration algorithms perform a number
of discrete steps and average them to compute a more accu-
rate step, the equations describing these algorithms are heav-
ily interdependent. This means that they do not exploit the
parallelism available in hardware, so that the performance
of a hardware integrator could only exhibit a modest im-
provement over equivalent software. However, the FPGA
and CPU are executing at vastly different clock speeds, re-
sulting in a large discrepancy between their performances.

Despite the above results, we believe we will be able to
attain execution speeds greater than those achievable on a
CPU, by implementing the ideas proposed inSection 6.

6. Future work

We intend to fine-tune the performance of our FPGA-
based numerical integrator, to surpass the performance of
the equivalent CPU algorithm. We will analyse alternative

floating-point arithmetic cores, evaluate additional numeri-
cal integration algorithms, maximise the parallelism and port
the system to a shared-memory graphics architecture.

6.1. Floating-point arithmetic

Initially we plan to analyse alternative floating-point arith-
metic cores. Different cores have different area and timing
constraints, and it is important to find the cores offering
the best tradeoff between the two constraints. In particular,
we intend to analyse cores that do not implement the entire
IEEE 754 floating-point standard, like those used in the Cell
processor [OMJ∗05]. These cores would execute faster and
should offer sufficient precision to allow the physics to ap-
pear realistic. Additionally, we intend to analyse logarithmic
cores. These cores take only a single clock cycle to perform
a multiplication or division, at the expense of more time-
consuming additions and subtractions. There are, however,
significant time and area overheads involved in converting
the numbers between the IEEE 754 and logarithmic formats.

6.2. Numerical integrators

Next, we intend to evaluate other types of numerical integra-
tors. In particular, we plan to analyse the Verlet numerical
integration algorithm due to its many benefits and its cur-
rent popularity in computer games. It is probable that certain
numerical integration algorithms will be more amenable to
hardware implementation than others, and consequently, it
may be necessary to experiment to find the optimal algo-
rithm. Since the current integrator was designed to accom-
modate extensibility, it will be easy to experiment with al-
ternative algorithms.

6.3. Parallelism

We also intend to utilise many integrators in parallel, so
that each object in a simulation is integrated simultaneously.
This idea should offer the greatest acceleration, since ex-
ploiting parallelism is the primary means of accelerating al-
gorithms on FPGAs. Each workload scheduler could share
the same arithmetic unit as illustrated inFigure 3, since the
multiple floating-point cores in the arithmetic unit are highly
pipelined and currently underutilised. Although this will
lead to some stalls as the workload schedulers are arbitrated
for access to the arithmetic unit, this method should signifi-
cantly improve the performance while maximising the num-
ber of integrations that may be computed on an FPGA. In
this way, we will create a more complete and faster physics
engine.

6.4. Shared-memory graphics architecture

Ultimately, we intend to place our physics engine on the
shared-memory hybrid graphics cluster for visualisation and
video processing, which has been prototyped [MBO∗06],
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Figure 3: A more efficient scheme where multiple workload
schedulers utilise a single arithmetic unit. The arithmetic
unit consists of a number of floating-point cores.

as shown inFigure 4. The system consists of a cluster of
custom-built Printed Circuit Boards (PCBs). These PCBs are
connected to a cluster of commodity PCs that supply instruc-
tions and data to the boards. An Accelerated Graphics Port
(AGP) interface allows commodity graphics accelerators to
generate graphical output, while an FPGA provides addi-
tional reconfigurable logic that may be used to support the
graphics. The boards are connected via Scalable Coherent
Interconnect (SCI), which provides a high bandwidth, low
latency, point to point interconnect that implements a Dis-
tributed Shared Memory (DSM) architecture.

Figure 4: The first prototype of the custom-built high-
performance graphics cluster node.

We intend to port our physics engine to the FPGAs present
in this cluster. Each FPGA will simulate multiple objects in
parallel, and will operate in parallel with every other FPGA,
vastly increasing the parallelism of the system. Furthermore,
the SCI interconnect offers extremely low communication
latencies, alleviating the delay incurred when the CPU and
an FPGA communicate over the PCI bus in a commodity
PC. The significant parallelism and low latency interconnect
should considerably increase the performance of our imple-

mentation. Moreover, the system will then facilitate large-
scale physics computations.

7. Conclusions

We have presented the design of a reconfigurable hardware
numerical integrator, which will ultimately form the foun-
dations of a reconfigurable hardware physics engine for use
in computer games. This physics engine will eventually per-
form all necessary physics processing tasks, offloading this
intricate work from the CPU and leaving it free to perform
other tasks such as AI. This unlocks the possibility of per-
forming more complex and more accurate physics compu-
tations than are currently achievable. Although the perfor-
mance of the numerical integrator does not currently match
that attainable on a CPU, we expect to surpass this limitation
by utilising many parallel integrators.
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