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Abstract

Algorithms can be accelerated by offloading compute-
intensive operations to application accelerators compris-
ing reconfigurable hardware devices known as Field Pro-
grammable Gate Arrays (FPGAs). We examine three types
of accelerator programming model — master-worker, mes-
sage passing and shared memory — and a typical FPGA
system configuration that utilises each model. We assess
their impact on the partitioning of any given algorithm be-
tween the CPU and the accelerators. The ray tracing al-
gorithm is subsequently used to review the advantages and
disadvantages of each programming model. We conclude
by comparing their attributes and outlining a set of recom-
mendations for determining the most appropriate model for
different algorithm types.

1. Introduction

Application accelerators utilising Field Programmable
Gate Arrays (FPGAs) have been shown to improve the per-
formance of a wide variety of algorithms including colli-
sion detection for graphics simulations [27, 17], mathemat-
ical computation [18], ray tracing [26] and scientific sim-
ulation [11]. Improvements garnered by these accelerators
are achieved through parallel implementations of the algo-
rithms in hardware. The degree of parallelism can be scaled
by increasing the size of the FPGAs or through the use of
multiple interconnected FPGAs and a parallel programming
model. The approach taken to increase performance is to
split the algorithm across a CPU and one or more FPGAs.
The algorithm split is determined by the accelerator con-
figuration; different configurations have different program-
ming model requirements that can be quantified in terms of
scalability, latency, bandwidth and programmability.

In this paper, we investigate FPGA application accelera-
tor programming models as they relate to systems compris-
ing both single and multiple interconnected FPGAs. We

examine three programming models — master-worker, mes-
sage passing and shared memory — defining the characteris-
tics of each approach and outlining their relation to the im-
plementation of a sample algorithm — ray tracing. Based on
our experiences of using these approaches, we formulate a
set of recommendations outlining the most appropriate pro-
gramming model for a range of algorithm types.

2. Background and related work

FPGA application accelerators have traditionally been
attached to the CPUs of host PCs using the peripheral bus.
To overcome the limitations imposed by these systems, re-
searchers have focused on increasing their throughput [3]
and on configuring the CPU-FPGA application interface to
hide communication overheads [24]. With the introduc-
tion of FPGA accelerators that use direct Front Side Bus
(FSB) [21] or HyperTransport [13] interfaces, the need for
an appropriate programming model has intensified in or-
der to ensure the best possible performance is achieved.
Gelado et al [6] have designed an efficient communication
paradigm for these systems and Underwood et al [24] have
investigated ways to best achieve the performance poten-
tial of the acceleration logic. They show that a correctly
implemented Application Programming Interface (API) can
have substantial benefits for algorithm acceleration. Tripp
et al [23] demonstrate how such an API can be used to parti-
tion an algorithm across software and hardware efficiently.
The work focuses on traditional CPU-FPGA configurations
but can be readily applied to standalone FPGA acceleration
clusters.

These standalone clusters consist of standard CPU-based
compute nodes and interconnected FPGA nodes. A paral-
lel programming model — message passing or shared mem-
ory — is required for FPGA intercommunication. Message
passing is used by many research groups. TMD-MPI [19]
demonstrates the practicality of this programming model,
while the Reconfigurable Compute Cluster (RCC) [20] and
Baxter et al [1] investigate its suitability for point-to-point
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Figure 1. Schematics of two generic master-worker accelerators. (a) PCl or PCle. (b) HyperTransport.

intercommunication. Creedon and Manzke [4] and Pedraza
et al [16] present application and communication results for
FPGA message passing clusters.

A number of shared memory implementations also ex-
ist. The Research Accelerator for Multiple Processors
(RAMP) [22] examines the application of a global address
space programming model using Unified Parallel C (UPC)
as a programming language for massively parallel, many-
core systems. Brennan et al [2] use a Distributed Shared-
Memory (DSM) FPGA compute cluster with Scalable Co-
herent Interface (SCI) as the communication fabric. The
shared memory abstraction is implemented directly in the
FPGAs and combines the scalability of a network-based ar-
chitecture with the convenience of the shared memory pro-
gramming model.

3. Overview

Programming models for FPGA application accelerators
may be classified into three broad types based on their inter-
action with each other and the host system. We classify the
programming approaches as master-worker, message pass-
ing and shared memory. Although any programming model
can theoretically be used with any accelerator configura-
tion, each programming model is typically used with a spe-
cific configuration to maximise performance. This section
describes the characteristics of typical configurations used
with each programming model.

3.1. Master-worker

Accelerators using the master-worker programming
model comprise one or more CPUs interoperating with one
or more FPGAs inside a single PC. These can be separated
by means of a bridge, as with Peripheral Component Inter-
connect (PCI) [14] and PCI Express (PCle) [15], or directly

connected, as with FSB and HyperTransport [8], as illus-
trated in Figure 1. They are very constrained in the number
of FPGAs supported and their defining characteristic is that
all FPGA intercommunication must be performed via the
CPUs.

The interface between the CPUs and the FPGAs is
provided by the FPGA vendor’s board support package,
which comprises appropriate software libraries and hard-
ware modules. After deploying the algorithm, a typical se-
quence of operations is as follows. A CPU transfers data to
an FPGA’s local memory or to a shared memory location.
The CPU subsequently writes to the FPGA’s registers indi-
cating the number of items transferred and instructing the
FPGA to proceed with execution. The CPU either waits for
an interrupt or polls an FPGA register to determine when
execution is complete. The CPU then reads from another
register to establish the quantity of data stored, before read-
ing the results. All operations are performed consecutively
with the various read and write operations functioning as
implicit barriers.

3.2. Message passing

In addition to these master-worker accelerators, it is pos-
sible to create clusters of networked FPGAs. These FPGA
clusters require the ability to exchange and synchronise data
to perform all algorithm computations. They consist of one
or more commodity PCs and one or more FPGAs intercon-
nected across a network, as illustrated in Figure 2. In these
systems, the FPGAs are viewed as peers while the commod-
ity PCs are used to initialise and provide data to the FPGAs.

Message passing has been investigated in the context of
distributed memory FPGA clusters. Algorithm data is local
to each node and is exchanged between nodes using explicit
communications, which are controlled and requested by the
programmer.

Like the master-worker configuration, a message passing
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Figure 2. Schematic of a generic message passing accelerator.

accelerator receives data from a CPU across the network
and performs computations on that data. However, unlike
the master-worker configuration, the networked FPGAs are
peers and can be programmed to exchange algorithm data
directly, allowing all computations to occur in parallel.

From the programmer’s perspective, a single API is pro-
vided which enables the necessary send and receive oper-
ations, both on the central PC and FPGAs. All network
operations are performed transparently by the API so that
the programmer’s only concern is with parallelising the al-
gorithm. To use a message passing configuration correctly,
the programmer requires the ability to explicitly perform
communications, to access and use local memory and to be
able to control the operations of the hardware. At the core of
the algorithm will be a computational processing element,
similar to one that could also be used by master-worker sys-
tems. This is made possible by the API providing the nec-
essary operational controls independent of the implementa-
tion used by different message passing accelerators.

3.3. Shared memory

Shared memory accelerators comprise one or more
CPUs interoperating with one or more FPGAs, which
may be housed in multiple nodes, communicating across a
tightly-coupled interconnect such as SCI [9], as illustrated
in Figure 3. The nodes share a global memory address
space and communication is accomplished through shared
variables or messages deposited in shared-memory buffers.
There is no requirement for the programmer to explicitly
manage the movement of data, unlike in message passing
implementations.

The FPGAs are typically placed on separate nodes along
with some local memory and additional hardware compo-
nents that support the network interconnect. The choice of
interconnect affects the way in which the coprocessor nodes
are connected to the commodity PCs. Memory references
made by one of these nodes into its own address space are

automatically translated into a shared memory transaction
and transported to the correct remote node. The remote
node translates this transaction back into a local memory
access, providing a hardware DSM implementation.

In shared memory models, any processing element can
theoretically make direct hardware memory references into
the global address space without requiring knowledge of
whether the memory location that it is reading from or writ-
ing to is situated locally or remotely. In practice, it is still
important for the processing element to know if it is access-
ing local or remote memory due to the increased latencies
involved in accessing remote memory. Consequently, it is
important to outline a set of basic shared memory commu-
nication primitives that implement certain standard paral-
lel computation features such as process locks and barri-
ers. A method of hiding latencies from the processes must
also be developed. This may include commonly used tech-
niques such as transfer scheduling, block transfers and pre-
fetching.

Both hardware and software-based DSM systems can
be used to implement a shared memory abstraction across
multi-processor architectures, combining the scalability
of network-based architectures with the convenience of
shared-memory programming by providing a single global
virtual address space. Nitzberg and Lo [12] provide an
overview of several different hardware- and software-based
DSM systems.

Software Infrastructure for SCI (SISCI) [5] is the API
that covers different aspects of how SCI interconnects can
be accessed from host systems. It specifies the general func-
tions, operations and data types made available as part of
the SCI standard. It also takes care of mapping local ad-
dress segments into the shared memory address space and
checking whether errors have occurred during data trans-
fer. Low level communication among nodes is accommo-
dated by a set of SCI transactions and protocols that include
support for reading and writing data, cache coherence, syn-
chronisation and message passing primitives. SCI supports
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Figure 3. Schematic of a generic shared memory accelerator.

multiprocessing with cache coherence for the very general
DSM model. The use of cache coherence is optional and
applications may choose to maintain cache coherence under
software control instead of using SCI’s automatic coherence
mechanism.

4. Algorithm example

An illustrative example of an algorithm that would ben-
efit from the use of such accelerators is the ray tracing
algorithm used in graphics rendering. Although histori-
cally ray tracing has only been practical for offline ren-
dering, interactive and realtime frame rates have recently
been achieved [25]. The algorithm renders images by cast-
ing rays from the camera viewpoint into a scene, inter-
secting these rays with scene geometry and finally shading
these intersection points to determine the pixel colour. Ray
tracing has very high computational requirements and may
also have high bandwidth requirements when dealing with
complex geometry. We therefore chose this algorithm as a
means to compare the three application accelerators in the
context of a realistic algorithm.

Ray tracing has been applied to master-worker accelera-
tors [26]. The strategy employed has typically been to of-
fload parts of the algorithm, such as ray/object intersections,
and to reserve a large portion of the algorithm for computa-
tion on the CPU. The primary advantage of these accelera-
tors is their high bandwidth. Moreover, since parts of the al-
gorithm remain on the host machine, complex programming
tasks, such as the building of acceleration data structures,
can be implemented in software. This approach is also
amenable to commodity hardware in desktop PCs. How-
ever, master-worker systems lack the scalability of other
approaches and are likely to possess limited local memory,
precluding the rendering of large scenes.

Ray tracing has also been applied with some success
to message passing environments [7]. The large memory
space of such machines is of use in rendering large scenes,

as the scene geometry can be split evenly among the ac-
celerators. Each accelerator can then calculate a subset of
the scene’s ray operations. Increasing the number of ac-
tive nodes is simpler than for master-worker accelerators
and the large number of nodes could potentially allow a
greater portion of the algorithm to be implemented on the
FPGAs, possibly splitting different phases of the algorithm
over multiple accelerators. In addition, as the number of
processors increase, the overall memory capacity of the sys-
tem similarly increases. Therefore, the benefits of message
passing accelerators for ray tracing are twofold. The disad-
vantages of this approach are the overhead associated with
explicit communication between nodes, the bandwidth re-
quirements associated with large data transfers and the po-
tential for load imbalance across large numbers of nodes.

Shared memory accelerators are also suited to parallelis-
ing the ray tracing algorithm [10]. Mapping the algorithm
to these accelerators typically follows a similar approach
to message passing implementations. They possess similar
advantages, including scalability in both the number of pro-
cessing nodes and the memory capacity of the system. Such
accelerators are also easier to program as communication
need not be performed explicitly. Furthermore, the largely
unpredictable memory access patterns of the ray tracing al-
gorithm means that each node will likely require a substan-
tial amount of data from the other nodes in the system,
perhaps making shared memory accelerators preferable to
message passing accelerators. Shared memory accelerators
share the need for high bandwidth communication and the
potential for load imbalance but do not suffer the overhead
of explicit communication. However, the complexity in-
volved in building a shared memory accelerator is greater
and their cost is often prohibitive.

5. Comparison

Our analysis of the ray tracing application example
highlights some factors that influence which programming
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Figure 4. Graphs illustrating the scalability of the bandwidth and latency for four interconnect types.

model is optimal for a given algorithm. By generalising
these findings, it is evident that the factors of interest to
programmers are scalability, communication speed, cost-
effectiveness and programmability. In this section, we con-
sider the different programming models under these cate-
gories to reach a conclusion on the optimal accelerator for
different algorithm types.

Scalability comprises algorithm, interconnect and sys-
tem scalability. Algorithm scalability is determined by the
quantity of logic resources available and hence by the num-
ber of FPGAs in the system. Interconnect scalability is de-
termined by the bandwidth available for communication in
addition to the maximum number of devices permitted by
the interconnect technology. System scalability comprises
both algorithm and interconnect scalability while also con-
sidering the algorithm implementation in use. For example,
a suboptimal implementation executing on a large number
of FPGAs may not achieve the same performance as a su-
perior implementation executing on fewer FPGAs. Ignor-
ing implementation details, it can be seen that the master-
worker model is particularly constrained in terms of scala-
bility as the number of vacant interface slots in a single PC
typically limits this model to five or fewer FPGAs. This
limit may increase in the future if manufacturers provide
additional interface slots although such increases will al-
ways be limited by physical space constraints. Even with
such increases, intercommunicating via the CPUs would re-
main a bottleneck but the impact of this will lessen as CPU
and interconnect technology improves. In contrast, message
passing and shared memory are limited only by interconnect
scalability.

Communication speed involves two distinct elements —
bandwidth and latency. Bandwidth is the quantity of data
that can be transferred between FPGAs over a given time,
while latency is the overhead associated with initialising a

transfer. Master-worker accelerators can achieve excellent
bandwidth and latency, as in a HyperTransport implemen-
tation, although traditionally speeds have been lower, as
in a PCI implementation. In contrast, message passing is
traditionally interconnect agnostic and its communication
speeds are determined by its implementation. For example,
an Ethernet implementation has low bandwidth and high la-
tency. Shared memory typically achieves good bandwidths
and latencies, which are vital in supporting the continuous
remote memory requests. This contrasts with message pass-
ing accelerators, where the bandwidth is typically better but
the latency is typically worse. The scalability of these band-
widths and latencies is plotted in Figure 4.

Cost-effectiveness is related to the cost of purchasing a
particular system. Master-worker systems are relatively ex-
pensive to purchase, but typically only a single FPGA is
required so that the overall cost is reduced. Message pass-
ing and shared memory are typically purchased as multi-
ple FPGAs, leading to increased costs. Of these two ap-
proaches, message passing has a lower cost as it is able to
work with inexpensive equipment. Shared memory requires
specialised equipment and will cost more per-FPGA.

In terms of programmability, master-worker systems
are the simplest since the CPUs remain in control of
the entire system, removing the need to consider asyn-
chronous communication between FPGAs. Message pass-
ing is more complicated since FPGAs can intercommuni-
cate asynchronously. Moreover, the programmer must con-
sider the location of any required data before issuing a mes-
sage to access that data. Shared memory systems can also
communicate asynchronously between FPGAs but they are
simpler to program than message passing systems since all
memory is globally accessible and the programmer does not
need to consider the location of the data when issuing a
memory request. To achieve maximum performance, it is



still necessary to consider whether a memory access is local
or remote but this does not add significant complexity.

Based on these differences, we have created a series of
recommendations that outline the most amenable accelera-
tor for different algorithm types. These recommendations
are graphed in Figure 5.

Master-worker accelerators are suitable for algorithms
amenable to acceleration using approximately five or
fewer FPGAs. This limitation is determined by a com-
bination of scalability and cost, but may increase with
future architectural developments.

Message passing accelerators are appropriate for algo-
rithms that can be parallelised across large numbers of
FPGAs, where high latency is not an overriding con-
cern but where keeping costs minimal is an important
factor.

Shared memory accelerators are recommended for algo-
rithms that can be parallelised across large numbers
of FPGAs, where latency sensitivity impacts algorithm
performance and efficient execution must be achieved
irrespective of cost.

We do not consider programmability to be a deciding fac-
tor in determining the optimal application accelerator for a
given application type, since this remains relatively constant
and is mostly unaffected by the algorithm under consider-
ation. However, if programmability did vary significantly,
we feel that it would not be a major factor as it should be
possible to overcome all of the programming challenges that
could arise without significant difficulty.
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Figure 5. Graph illustrating the appropriate
accelerator for an algorithm based on system
scalability and communication speed.

6. Conclusions

This paper has examined three programming models for
FPGA application accelerators and considered the suitabil-

ity of each for performing parallel ray tracing. Based on
this examination, it is evident that the choice of program-
ming model significantly affects scalability, communication
speed, cost-effectiveness and programmability. Using these
four categories, we have formulated a set of recommenda-
tions for selecting the model best suited to different algo-
rithm types. We believe that these recommendations should
prove invaluable to programmers when attempting to select
the most appropriate model and accelerator combination for
a particular algorithm.
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