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Figure 1: Screenshots of our framework executing a variety of benchmarks, each with the angular velocity of the simulated objects uniform-
distributed between (-0.25, —0.25, —0.25) and (0.25, 0.25, 0.25). (a) 25 objects of size 250. (b) 25 objects with uniformly-distributed sizes
between 50 and 550. (c) 50 objects of size 400. (d) 50 objects with uniformly-distributed sizes between 50 and 850.

Abstract

Collision detection is a vital component of applications spanning
myriad fields, yet there exists no means for developers to anal-
yse the suitability of their collision detection algorithms across the
spectrum of scenarios that could be encountered. To rectify this,
we propose a framework for benchmarking interactive collision de-
tection, which consists of a single generic benchmark that can be
adapted using a number of parameters to create a large range of
practical benchmarks. This framework allows algorithm develop-
ers to test the validity of their algorithms across a wide test space
and allows developers of interactive applications to recreate their
application scenarios and quickly determine the most amenable al-
gorithm. To demonstrate the utility of our framework, we adapted
it to work with three collision detection algorithms supplied with
the Bullet Physics SDK. Our results demonstrate that those algo-
rithms conventionally believed to offer the best performance are not
always the correct choice. This demonstrates that conventional wis-
dom cannot be relied on for selecting a collision detection algorithm
and that our benchmarking framework fulfils a vital need in the col-
lision detection community. The framework has been made open
source, so that developers do not have to reprogram the framework
to test their own algorithms, allowing for consistent results across
different algorithms and reducing development time.
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1 Introduction

Collision detection refers to the process of determining if two sim-
ulated objects are intersecting. It is a vital component of computer-
aided design (CAD), robotics, virtual environments and other inter-
active computer graphics applications, yet it remains a fundamental
problem as collision detection forms the computational bottleneck
in many of these applications [Lin and Gottschalk 1998]. Inter-
active applications are particularly challenging as they demand a
frame rate of at least 30 Hz to maintain the illusion of visual con-
tinuity, and this duration must be sufficient to execute the entire
simulation potentially comprising input processing, collision de-
tection, physics simulation, artificial intelligence, audio generation
and graphical display. This scenario becomes even more challeng-
ing when haptics are added as the collision detection must now up-
date at 1 kHz [Vahora et al. 1999]. Despite numerous developments,
it remains a challenge to perform accurate collision detection in this
short time.

To address this challenge, new algorithms and adaptations of ex-
isting algorithms appear on a regular basis. These algorithms are
often tested using a small selection of benchmarks designed by the
algorithm developer, but these are unlikely to recreate the full range
of scenarios the algorithm will encounter. This is a significant prob-
lem, as Caselli et al. [2002] determined that the behaviour of colli-
sion detection algorithms is often very sensitive to the problem be-
ing solved, since these algorithms have been optimised for specific
scenarios. It would be advantageous if developers could rapidly test
a spectrum of benchmarks to gain a more complete understanding
of how their collision detection algorithms perform. This would




assist them in focusing on optimising those cases in which their
algorithms fail to perform efficiently.

Benchmarks designed by algorithm developers also create chal-
lenges for developers of applications utilising collision detection.
Execution times measured using these benchmarks are often pub-
lished as results in collision detection papers, making it difficult to
determine the algorithm most amenable to the application’s scenar-
ios. A developer could select an algorithm that appears to be supe-
rior to existing algorithms, but this might not perform efficiently for
the scenarios used in the application. Alternatively, they could se-
lect the algorithm whose published benchmarks most closely match
the application scenarios, but this removes the possibility of se-
lecting a better algorithm whose developer did not publish certain
benchmarks. In both cases, there is a significant risk that a devel-
oper will select a non-optimal algorithm. Therefore, it would be
beneficial if an application developer could quickly determine the
behaviour of a wide variety of collision detection algorithms using
benchmarks approximating application scenarios.

To mitigate these aforementioned issues, we propose a framework
for benchmarking collision detection that currently focuses on the
analysis of rigid body collision detection algorithms for interac-
tive applications utilising polygonal objects. It consists of a single
generic benchmark that may be modified using a number of param-
eters to create a large range of practical benchmarks. Using this
framework, algorithm developers can test their algorithm against a
wide range of potential benchmarks to determine which are prob-
lematic for their algorithms. After rectifying any issues highlighted
by the framework, they can conclusively prove that their algorithm
works well across a broad range of potential scenarios. Alterna-
tively, application developers can use our framework to implement
benchmarks approximating the scenarios found in their applica-
tions, to quickly check a wide range of potential algorithms in order
to determine the most appropriate one for their application. There-
fore, our framework should prove invaluable to both algorithm and
application developers.

Yet there exist a number of challenges in designing this framework.
Firstly, the framework must be sufficiently realistic to recreate sce-
narios found in interactive applications. Secondly, it must be ad-
equately flexible to emulate all common scenarios, but this flexi-
bility must not result in an overly complex framework. Thirdly,
the framework must be extensible to allow for the integration of
new collision detection algorithms and not restricted to currently
available algorithms. Fourthly, it must record accurate and relevant
performance data. Finally, for the framework to be useful, it must
gain traction with the collision detection community. We believe
that we have solved the first four challenges and that these work
towards achieving the final. Details of our solutions are provided in
the following sections.

2 Related Work

Researchers in many areas of computer graphics use standard-
ised benchmarks. For example, there exist two such benchmarks
in the field of raytracing. The Standard Procedural Databases
(SPD) [Haines 1987] consist of simple scenes primarily containing
recursively-generated objects, while A Benchmark for Animated
Ray Tracing (BART) [Lext et al. 2001] consists of detailed an-
imated environments. For GPUs, 3DMark Vantage [Futuremark
2009] is widely used to benchmark their performance. This appli-
cation consists of two graphics tests and six feature tests designed
to exercise every feature found in modern graphics cards. The stan-
dardised benchmarks used in these areas allow developers to ac-
curately test the performance of their designs across every likely

scenario, while facilitating comparisons between different imple-
mentations.

Despite the existence of these benchmarks, there exist very few
standardised benchmarks in the area of collision detection. Zach-
mann [1998] outlines a benchmark in a paper proposing dynami-
cally aligned discrete-orientation polytope (DOP) trees. However,
the benchmark focuses on offline algorithms for unmoving objects
with very large numbers of vertices. As a result, the benchmark
only provides car doors, car door locks, car exteriors and sets of
pipes as models and these are unsuitable for accurately benchmark-
ing algorithms designed for interactive applications. Trenkel et
al. [2007] outlines a development of this benchmark, which uses
a castle, a helicopter, a laurel wreath, the Apollo 13 capsule, sets of
pipes and a chandelier as models. Two parameters, object distance
and number of vertices, are used to alter the benchmark. However,
as for the previous benchmark, it is limited to unmoving objects
with large numbers of vertices. Moreover, the variety of parame-
ters is less wide-ranging than ours. A different approach is taken
by Caselli et al. [2002], which tests a range of collision detection
algorithms for their suitability in probabilistic motion planners, by
attempting to plan the motion of an object through a variety of grid-
like structures. However, the described benchmark is not of gen-
eral utility and is restricted to a fixed set of scenarios. For haptics,
Cao [2006] has created a framework for emulating a haptic device
to which benchmarks can be attached. However, this is unsuitable
for benchmarking non-haptic algorithm behaviour. Due to the var-
ious problems with each of these benchmarks, they have failed to
gain traction with the collision detection community.

Most collision detection developers design their own benchmarks.
For example, I-COLLIDE [Cohen et al. 1995] was tested using a
static scene comprising a single object type parameterised by the
quantity of objects, their complexity, their linear velocity, their an-
gular velocity and the density of objects in the scene. Van den
Bergen [1997] uses three static benchmarks consisting of a single
object type (either a torus, teapot or X-wing) initialised at random
locations within an enclosing cube. Govindaraju et al. [2005] take
a different approach as their algorithm is designed to work with de-
formable bodies. Their first three benchmarks model cloth of dif-
ferent complexities, the fourth models catheter in liver chemoem-
bolisation and the fifth models folding curtains. Even though each
of these papers has been widely cited, it appears that their bench-
marks have never been used outside of these papers, as they are
insufficient to test the behaviour of algorithms across a wide spec-
trum of scenarios.

Despite the lack of standardised collision detection benchmarks,
there has been significant research into collision detection algo-
rithms. This research can be divided into two distinct phases, re-
ferred to as the broad phase and the narrow phase in the taxonomy
proposed by Hubbard [1993]. The broad phase is the first collision
detection phase, which uses an approximate and fast test to enu-
merate appropriate pairs of objects into a potentially colliding set
(PCS), while the narrow phase is the second phase, which checks
the PCS using an accurate or exact algorithm.

Broad phase algorithms have been traditionally based on spatial
partitioning. Examples include sweep and prune [Baraff 1992; Co-
hen et al. 1995], uniform grids, hierarchical grids, spatial hash-
ing, hierarchical spatial hashing [Mirtich 1998a], octrees and k-d
trees [Bentley 1975; Friedman et al. 1977].

Narrow phase algorithms for rigid-body collision detection can
been classified in terms of the bounding volume hierarchy (BVH)
used to model the objects. A multitude of BVHs have been pro-
posed, including sphere trees [Quinlan 1994], oriented bounding
box (OBB) trees [Gottschalk et al. 1996], axis-aligned bound-



ing box (AABB) trees [van den Bergen 1997] and k-DOP
trees [Klosowski et al. 1998]. Non-BVH based algorithms in-
clude the Lin-Canny [Lin and Canny 1991] and Voronoi-Clip (V-
Clip) [Mirtich 1998b] algorithms, which both track the closest
features of polyhedra, and the Gilbert-Johnson-Keerthi (GLK) al-
gorithm [Gilbert et al. 1988; Gilbert and Foo 1990], which de-
termines intersection between two polyhedra. All of these algo-
rithms have traditionally been designed for performing collisions
at discrete time intervals. However, continuous collision detec-
tion methods have also been proposed [Redon et al. 2002]. De-
tailed surveys of collision detection algorithms can be found in
Lin and Gottschalk [1998], Jiménez et al. [2001] and Lin and
Manocha [2004].

Over the past few years, there has been significant research interest
in the area of deformable bodies. The same broad phase spatial par-
titioning techniques can be used as for the rigid-body case, although
there exist some techniques specialised for use with deformable
bodies [Luque et al. 1996]. For the narrow phase, deformations
are usually solved by refitting the deformed object’s BVH. Efficient
BVH refitting algorithms exist for both AABB trees [Larsson and
Akenine-Moller 2001] and sphere trees. There also exist narrow
phase spatial subdivision techniques such as Teschner et al. [2003],
which presents an alternative based on spatial hashing. Deformable
collision detection techniques can be adapted, as for the rigid body
case, to perform continuous collision detection [Redon et al. 2005].
A detailed survey of deformable collision detection algorithms can
be found in Teschner et al. [2005].

3 Design

As previously outlined, the range of applications utilising collision
detection is extremely large. It would be difficult to create a tool
that effectively emulates scenarios found in every potential applica-
tion. For this reason, we decided to narrow our focus to scenarios
encountered in interactive applications.

An analysis of modern interactive applications found that the ma-
jority use some form of physics engine to control the motion of the
objects within the simulated environment. To accurately recreate
such application scenarios, we determined that it was vital to use a
physics engine in our framework. Our analysis also indicated that
the majority of objects in these applications are modelled as rigid
bodies due to their simplicity and rapid execution times. For this
reason, we decided to initially concentrate on rigid body collision
detection, although our framework could easily be expanded to sup-
port deformable bodies, particle systems and articulated rigid bod-
ies in the future. Similarly, we have focused on collisions between
polygonal objects and left parametric surfaces, implicit surfaces and
voxel objects as future work.

We also determined that the majority of these applications contain a
ground plane. However, many existing benchmarks have no ground
plane and we believe that this is a significant oversight, since in
simulations involving gravity, the majority of objects will tend to
come to rest on the ground. If the collision detection system has
been poorly designed, objects on the ground may need lengthy tests
before they can be eliminated from consideration, as they will all
lie in the same plane and overlap along one axis. Algorithms that
are more sophisticated avoid this problem by processing axes in a
specific order or by deactivating stationary objects. Therefore, it is
vital to implement a ground plane so that the likely performance of
a collision detection algorithm can be quantified.

Based on these identified requirements, we constructed a generic
benchmark consisting of a cube containing a variable quantity of

objects. The size of the cube is determined by multiplying the num-
ber of objects by 50.

3.1 Parameters

To translate the generic benchmark into a variety of practical bench-
marks, we have defined ten parameters that can be used to specify
the initial state of each benchmark. These parameters mimic the
standard geometric and physical properties of rigid bodies and were
chosen after a preliminary analysis of a variety of interactive appli-
cations. We believe these should enable developers to accurately
recreate real application scenarios as benchmarks. The dialog boxes
used to control the parameters are illustrated in Figure 2. Each of
these parameters and their potential impact on the behaviour of the
collision detection algorithm are outlined below.
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Figure 2: Dialog boxes used to control the parameters.

Cycles This parameter controls the number of collision detection
cycles that will be executed, with the default being 1000 cycles.

Different benchmarks require different numbers of cycles before
reaching a steady state. For example, an object with a large mass
falling under the influence of gravity will reach a steady state
quickly, once the object comes in contact with the floor. However,
if the mass were reduced substantially, the object would take longer
to come into contact with the floor and it would take more cycles
for the benchmark to reach a steady state. This parameter provides
an opportunity to adapt the number of cycles to the behaviour of the
benchmark under consideration.

Objects — Quantity This parameter modifies the quantity of
simulated objects, with the default being 10 objects.

Object quantity influences algorithm behaviour, since greater quan-
tities tend to take longer to process than smaller quantities. Poorly
designed algorithms may not be able to cope with larger quantities
and may, for example, make inefficient memory requests.



Objects — Type This parameter selects the type of the simulated
objects, with an option of spheres, cuboids, cylinders, cones, Stan-
ford Bunnies [Turk and Levoy 1994], Stanford Armadillos [Krish-
namurthy and Levoy 1996] or a combination of objects determined
by the uniform probability distribution. The default is spheres. As
the Stanford Bunny and Armadillo are concave objects, we con-
struct them as a compound shape of convex hulls.

Object type influences algorithm execution speed, as some algo-
rithms optimise for specific primitive objects while others consider
every object using a generic bounding volume. Additionally, com-
plex, concave objects tend to be processed differently than simpler
convex primitives and can execute at very different speeds with dif-
ferent algorithms.

Objects — Aspect This parameter determines the aspect ratio of
the simulated objects. This ratio can be considered to be of the form
1:y:z where y and z are the user-modifiable options. The default is
1:1:1.

Aspect ratio influences the shape of the objects. Most collision de-
tection algorithms utilise bounding volumes (BVs) and some types
of BV may be difficult to fit around long, thin objects. The use of
this parameter can reveal a suboptimal BV selection, as many col-
lisions will occur in the PCS and the collision detection algorithm
will execute slowly.

Objects — Location This parameter selects the probability dis-
tribution used to populate the cube, from a choice of the uniform or
normal distributions. The default is the uniform distribution. Ob-
jects are placed inside the cube according to the selected distribu-
tion. Once an object location is generated, it is checked to ensure
it overlaps no other object or the cube walls. If it overlaps, a new
location is generated according to the distribution. The distribution
parameters are determined by the size of the cube. For the uniform
distribution, the minimum and maximum are the coordinates of the
cube walls. For the normal distribution, the mean is 0 and the vari-
ance is the coordinates of the cube walls in the positive direction
divided by three. This choice of variance ensures 99.7% of objects
will be within the walls. The 0.3% of objects outside the walls will
be detected and new normal locations within the walls will be gen-
erated.

The effect of the uniform distribution is to place objects throughout
the cube, while the normal distribution tends to cluster the objects
in the centre of the cube. A cluster of objects is likely to result in
increased collisions, as the objects within the cluster interact with
one another.

Size This parameter determines the size of the simulated objects,
using a constant value or a choice of the uniform or normal prob-
ability distributions. The default is a constant 50. When using the
probability distributions, each side of each simulated object will be
of differing size. Any sizes less than or equal to zero will be dis-
carded and a new size will be generated.

Larger objects will tend to result in more collisions. The uniform
distribution will tend to create objects across a full range of sizes,
while the normal distribution will tend to create objects whose sizes
are centred on the mean.

Mass This parameter controls the mass of the simulated objects,
using a constant value or a choice of the uniform or normal proba-
bility distributions. The default is a constant 1.

The mass of the objects determines how quickly the objects will
move under the influence of the acceleration. If the mass is de-
termined by a distribution, the varying masses will change the rate
at which objects move relative to one another. This will affect the
number of collisions that occur. The mass will also determine how
the objects move once they reach the ground plane. Objects with
a small mass may tend to roll, while those with a larger mass will
tend to come to a stop more quickly. Therefore, the mass will also
determine the number of collisions that occur between objects and
the ground plane.

Acceleration This parameter controls the acceleration that acts
on all simulated objects, using a constant value or a choice of the
uniform or normal probability distributions. The default is a con-
stant (0.0, —9.8, 0.0), corresponding to acceleration due to gravity.
The acceleration is applied as a single value to the entire simulated
environment.

Acceleration determines the motion of the objects within the world,
influencing the number of collisions. For example, the accelera-
tion could be used to move all of the objects towards one wall of
the cube. Alternatively, if zero acceleration were applied, objects
would float, resulting in zero collisions, unless a linear or angular
velocity were employed.

Linear Velocity This parameter controls the linear velocity of
the simulated objects, using a constant value or a choice of the uni-
form or normal probability distributions. The default is a constant
(0, 0, 0).

Linear velocity determines the linear motion of objects. This pa-
rameter has an effect similar to that of the acceleration, but differ-
ent values can be given to different objects by using a probability
distribution. If objects move towards each other, this will tend to
maximise the number of collisions that occur.

Angular Velocity This parameter controls the angular velocity
of the simulated objects, using a constant value or a choice of the
uniform or normal probability distributions. The default is a con-
stant (0, 0, 0).

Angular velocity determines the rotational motion of objects. This
adds a degree of complexity to the simulation due to the difficulty
of fitting BVs to rotated objects. Moreover, different BVs fit rotated
objects very differently, so the optimality of the collision detection
algorithm’s choice of BV can be tested using this parameter.

Remarks The random number generators that power the uniform
and normal probability distributions are individually seeded with a
constant value of hexadecimal AAAAAAAA to make the bench-
marks repeatable. Each uniform distribution takes a minimum and
a maximum value as parameters, while each normal distribution
takes a mean and a variance value as parameters.

3.2 Application Programming Interface (API)

Since the purpose of our framework is to allow algorithm and ap-
plication developers to analyse a variety of collision detection algo-
rithms, we have designed it to be extensible. To this end, we have
created an API for retrieving geometry data from the framework
and supplying the framework with a list of collisions.



To add an algorithm to the framework, the developer first inherits
from a collision detection class. To initialise the appropriate algo-
rithm data structures, the inherited class’ initialisation method can
be overridden. Inside, a variety of method calls can be used to re-
trieve object properties and geometry.

To perform the collision detection routines, the class’ collision de-
tection method can be overridden with the appropriate collision de-
tection method from the algorithm under consideration. Inside this
method, the algorithm can call a selection of framework methods to
retrieve object status data. This method will be called during each
physics engine time step. For each collision, a point on both collid-
ing objects, a contact normal and the distance between the two con-
tact points is required. Using this data, the physics engine is able to
perform the appropriate physics calculations before processing the
next step.

4 Implementation

Our framework is implemented in C++. For the uniform and nor-
mal distributions, the relevant classes defined in the Technical Re-
port 1 (TR1) [JTC1/SC22/WG21 2005] additions to the C++ stan-
dard library are used. The Boost 1.36.0 library [Boost 2009] pro-
vides some additional data structures. Single precision is used for
floating-point numbers, but this can be changed to double precision
using an appropriate preprocessor directive.

For the physics engine, we selected Bullet Physics
SDK 2.74 [Coumans 2009], due to its status as a mature
open source cross-platform engine featuring collision detection
and physics, optional multithreaded execution and a PlayStation 3
port. All of these were deemed desirable attributes as they expand
the flexibility of the framework.

To visualise the benchmark and the effect of modifying the pa-
rameters, a graphical display was created using OpenGL [Khronos
Group 2009]. A GUI, created using the cross-platform open source
wxWidgets 2.8.7 library [wxWidgets 2009], allows the user to vi-
sually modify the parameters.

To test our framework and acquire sample results, a collision de-
tection system based on the one provided with Bullet is included.
For comparison purposes, the user can change the broad phase al-
gorithm, although the narrow phase algorithm remains constant in
this initial implementation. The three broad phase algorithm op-
tions are the all pairs brute force algorithm (referred to as “simple”
by Bullet), the sweep and prune algorithm [Baraff 1992; Cohen
et al. 1995] and the custom dynamic bounding volume tree (DBVT)
algorithm, which is based on AAABs. Alternative algorithms can
easily be added to our framework using its aforementioned API.
Both the broad and narrow phases can be changed using this API.

Screenshots of our framework executing a variety of benchmarks
are shown in Figure 1.

5 Results

Our framework was compiled with G++ 4.2.4 and optimised for
speed. It was executed on an AMD Opteron 2350 2 GHz quad core
CPU with 8 GB RAM running 64-bit Ubuntu Linux 8.04. For each
of our experiments, we recorded the broad phase, narrow phase and
complete collision detection execution times using high-resolution
performance counters.

Our first experiment uses the sweep and prune algorithm to execute
a benchmark consisting of 5000 objects whose types are determined
by the uniform distribution. The variation in execution times across
1000 collision detection cycles is plotted in Figure 3.
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Figure 3: Results from the first experiment.

From our results, it is evident that the algorithm has a significant
startup cost as the data structures are initialised during the first cy-
cle. For the subsequent cycles, execution times remain relatively
constant. We can also see that an insignificant amount of time is
spent in the broad phase, with the narrow phase accounting for most
of the complete execution time.

Our second experiment uses Bullet’s three collision detection al-
gorithms to execute benchmarks with object types determined by
the uniform distribution. The quantity of objects is varied between
1000 and 5000, and the z value of the aspect ratio is varied be-
tween 1 and 5, to create twenty-five variations of the benchmark.
The mean execution times, averaged over 1000 collision detection
cycles, are graphed in Figure 4.

From our results, we can see that for each algorithm, the aspect ratio
has a negligible effect while the number of objects has a very signif-
icant effect. Examining the performance of the different algorithms
reveals that sweep and prune and DBVT are the most efficient in
the broad phase. This is to be expected as these algorithms, un-
like all pairs, exploit coherence. However, the situation changes for
the narrow phase as sweep and prune takes significantly longer to
execute than all pairs, suggesting that sweep and prune’s efficient
broad phase comes at the expense of an inefficient narrow phase.
It is likely that Bullet’s implementation of sweep and prune creates
a larger PCS than all pairs. With regard to the complete execution
time, DBVT performs best, followed by all pairs and then sweep
and prune. This holds true for each benchmark, suggesting that
the behaviour of these algorithms is not significantly affected by
changes to either object count or aspect ratio.

Our third and final experiment uses Bullet’s three collision detec-
tion algorithms to execute a wide range of benchmarks that demon-
strate all of the framework’s parameters, except the aspect ratio
as this was analysed in the second experiment. These twenty-two
benchmarks are listed in Table 1 and their mean execution times,
averaged over 1000 collision detection cycles, are graphed in Fig-
ure 5.

These graphs illustrate how different parameters influence the three
algorithms. It is clear that the quantity and complexity of the sim-
ulated objects has the greatest influence on the performance of the
algorithms. In particular, we can see that cones do not work effi-
ciently with sweep and prune and that distributing objects normally
is less efficient than distributing them uniformly. Other parameters
have a lesser influence, but a certain degree of variation is evident.
As for the second experiment, we can see that sweep and prune
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Figure 5: Results from the third experiment.

works well in the broad phase but poorly in the narrow phase. More
significantly, from the complete execution time, it is clear that for
low numbers of simple objects, sweep and prune performs better
than all pairs, but for larger numbers of more complex objects, all
pairs is more efficient. However, our primary finding is that DBVT
works significantly better in all cases.

Our unexpected findings in these three experiments have demon-
strated the need for our framework. Conventional wisdom suggests
sweep and prune is the most efficient broad phase algorithm but we
have discovered that, at least with Bullet’s implementation, sweep
and prune’s efficiency may come at the expense of an inefficient
narrow phase. Moreover, our findings recommend the use of DBVT
for all scenarios similar to those found in the benchmarks used in
our experiments. However, if a different scenario were to be found
in an application utilising collision detection, we recommend recre-
ating this scenario as a benchmark in our framework to determine
whether DBVT is still the most efficient algorithm.

6 Conclusion and Future Work

We have outlined the design of a framework for benchmarking col-
lision detection consisting of one generic benchmark that can be
adapted by means of parameters to define a wide range of practical
benchmarks. Using our framework, we tested three collision detec-
tion algorithms supplied with the Bullet Physics SDK. Our results
demonstrate that the three algorithms do not behave consistently
across all benchmarks, highlighting the utility of the framework.
We also determined that contrary to popular belief, the sweep and
prune algorithm is not the optimal solution for the benchmarks we
tested. Therefore, we believe that our framework should prove in-
valuable to collision detection algorithm developers wishing to de-
termine the performance of their algorithm across a wide spectrum
of benchmarks, and to interactive application developers who wish
to find the optimal algorithm for their scenarios.

To facilitate these developers, we are making our frame-

work available for download under the BSD licence from
http://gv2.cs.tcd.ie/benchmarkcd/. It compiles and exe-
cutes under both Linux and Microsoft Windows. We also provide
all of the experiments in this paper, which can either be used di-
rectly or as a starting point for more targeted evaluations. By pro-
viding our framework for download, developers do not have to re-
program the framework to test their own algorithms, allowing for
consistent results across different algorithms and reducing develop-
ment time.

In the future, we intend to analyse a further set of representative
interactive applications, with a view to determining a minimal but
complete list of parameters suitable for describing every scenario
likely to be encountered by a collision detection algorithm. Adding
these additional parameters will clearly make our framework more
comprehensive but it will also significantly increase the possible
test space. To manage this extra complexity, we intend to define
a small number of benchmarks that very closely approximate the
scenarios found in different types of interactive applications. Us-
ing these benchmarks, developers will be able to quickly test their
algorithms against the most likely scenarios, while the full set of
parameters will remain for those wishing to run more comprehen-
sive analyses. This will also facilitate researchers, since they will
be able to publish execution times of their algorithm for standard-
ised benchmarks, allowing for the easy comparison of algorithms
between papers.

We also intend to integrate additional collision detection algorithms
into our framework. By adding these additional algorithms, devel-
opers would be provided with a greater range against which to test
their new algorithms, without having to waste valuable develop-
ment time. These algorithms should be relatively easy to integrate,
as the framework’s API has been designed to facilitate extensibility.

We currently provide an effective and practical framework for
benchmarking the performance of rigid body collision detection.
However, there exists no comparable framework for analysing de-
formable bodies, particle systems or articulated rigid body colli-
sion detection. We believe our framework could be easily adapted



1000 spheres

2000 spheres

3000 spheres

4000 spheres

5000 spheres

5000 cuboids

5000 cylinders

5000 cones

5000 Stanford Bunnies

10 5000 Stanford Armadillos

11 5000 uniformly-distributed object types

12 5000 uniformly-distributed object types
location normal

13 5000 uniformly-distributed object types
size uniform 50/500

14 5000 uniformly-distributed object types
size normal 275/75

15 5000 uniformly-distributed object types
mass uniform 1/500

16 5000 uniformly-distributed object types
mass normal 249.5/83.5

17 5000 uniformly-distributed object types
acceleration uniform
(=250, —250, -250)/(250, 250, 250)

18 5000 uniformly-distributed object types
acceleration normal
(0, 0, 0)/(83.333, 83.333, 83.333)

19 5000 uniformly-distributed object types
linear velocity uniform
(=250, —250, -250)/(250, 250, 250)

20 5000 uniformly-distributed object types
linear velocity normal
(0, 0, 0)/(83.333, 83.333, 83.333)

21 5000 uniformly-distributed object types
angular velocity uniform
(=250, —250, -250)/(250, 250, 250)

22 5000 uniformly-distributed object types

angular velocity normal

(0, 0, 0)/(83.333, 83.333, 83.333)

O 001N W B Wi —

Table 1: Benchmarks used in the third experiment. All parameters
other than those specified are left at their defaults.

to support these object types, through the addition of parameters
such as joint types, number of particles, elasticity and plasticity,
while still supporting rigid bodies and parameterisation. Moreover,
the framework’s current support for detecting collisions between
polygonal objects could be expanded to include parametric sur-
faces, implicit surfaces and voxel objects. In this way, we could
extend our framework to comprehensively benchmark collision de-
tection algorithms for all aspects of modern interactive applications.
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