
Resource-Aware Contracts for Addressing Feature Interaction in Dynamic
Adaptive Systems

Yu Liu and René Meier

Lero @ TCD
Distributed Systems Group

Department of Computer Science
Trinity College Dublin

{yuliu, rmeier}@cs.tcd.ie

Abstract

Dynamic adaptive systems are becoming
increasingly popular due to their ability to adapt to
heterogeneous and changing environments. Such
systems must avert adverse feature interaction where
the adaptation of an existing feature or the
introduction of a novel feature may result in
unexpected and possibly adverse system behavior. This
paper proposes resource-aware contracts for
addressing adverse feature interaction in dynamically
adaptable systems resulting from resource constraints.
Resource-aware contracts explicitly capture the
resource requirements of the individual components
comprising a system. They are considered a
fundamental means towards detecting and ultimately
resolving adverse feature interaction and a key enabler
of dynamic system adaptation.

1. Introduction

Dynamic adaptive systems are becoming
increasingly popular with a number of recent trends
contributing to this popularity, including, expanding
industrial use of wireless technologies, reduced human
intervention, greater autonomy of software system, and
componentization of software system. Dynamic
adaptation enables systems to handle variations to their
operational conditions, for example, as a result of
changes to the system context, due to fluctuations to
the available communication resources, or as a result of
new user requirements.

Systems may adapt to such conditions by updating
existing system components or by introducing novel
components to the system. Such updated or new
software components are typically thoroughly tested
prior to their introduction to a system. However, due to
the ever-increasing scale and complexity of today’s
systems, where potentially vast sets of components,
parameters, and interactions are modeled, adaptation
may cause two (possibly independent) components to
disrupt each other’s behavior. This is referred to as

adverse feature interaction. Adverse feature interaction
describes a situation where the combination of two or
more components, or features, each of which
individually performs correctly results in adverse
behavior. Adverse Feature Interaction was first
identified in telecommunication systems [4] where
applications provided by independent third-party
developers are expected to collaborate to implement a
call protocol. Interaction between software components
have been mainly dealt with at structural and
behavioral level [1]. Structural level [5] interaction is
concerned with the violation of architectural rules
when updating existing components or adding new
components. Behavioral level [5] interaction is
concerned with the violation of the protocol
specification of a system in terms of pre-condition and
post-condition invariants. However, these approaches
fall short in addressing adverse feature interaction
arising from resource constraints. Resources-based
adverse feature interaction occurs when a new
component is added and the system cannot cater for its
resources requirements, for instance, the available
network bandwidth is insufficient. Moreover, other
components may not be able to adapt to the new
component’s resource usage pattern, for example,
where a component requires exclusive control over a
certain resource while other components are unable to
relinquish their control of same resource.

This paper proposes resource-aware contracts for
addressing adverse feature interaction in dynamic
adaptive systems resulting from resource constraints.
Such resources can be categorized as Exclusive
Resources, Fixed-Capacity Resources, Varying-
Capacity Resources and Shared Resources. Exclusive
resources, such as a single-core CPU, can only be used
by a single component at any given time and are shared
between components in a sequential manner. Fixed-
Capacity Resources, such as memory and thread pools,
can be used by multiple components in parallel, as long
as total use does not exceed resource capacity.
Network bandwidth and battery power may change
over time, and thus, are termed Varying-Capacity
Resources. Shared Resources, such as actuators, can

2009 Fifth International Conference on Autonomic and Autonomous Systems

978-0-7695-3584-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICAS.2009.24

346

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on December 14, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

receive requests from two or more components,
possibly at different times. Without coordination, a
shared resource might receive conflicting requests and
multiple shared resources may attempt to affect the
environment in a contradictory manner [6]. The usage
patterns of such resources are typically implicit to
component implementations.

The concept of contracts [2] can be used to
explicitly capture the resource requirements of the
individual components in a component-based system.
Resource-aware contracts model the semantics of
components in terms of their resource consumption
and separate the computation and coordination
constraints of components. Dynamic adaptation
necessitates explicit coordination between components,
as system behavior can be changed through the
addition of new components, the replacement of
existing components or the reconnection of existing
components. While contracts have been used for
resolving behavioral component conflicts [3], the novel
resource-aware contracts described in this paper are
essential to explicitly describe the requirements of
component’s resource needs and ultimately, to address
adverse feature interaction that may result from such
resource usage.

The remainder of this paper is structured as follows:
related work is described in Section 2; Section 3
discusses adaptation scenarios where resource based
adverse feature interaction arises; Section 4 describes
our resource-aware contracts; Section 5 describes an
initial approach for using resource-aware contracts in
dynamic adaptive systems; Section 6 presents
conclusions and future work.

2. Related Work

Different approaches have been proposed to address

adverse feature interaction. These approaches can be
grouped into two classes [4], namely, off-line
approaches and on-line approaches, according to the
stage of the software lifecycle to which the approach is
applied.

Off-line approaches rely mostly on formal models
describing features [10]. Many formal notations have
been proposed, including LOTOs, CSP, Promela [4].
The underlying assumption of this approach is that
formal models of features are obtainable and conflicts
can be detected at the design time and in an automated
fashion. Off-line approaches focus on dealing with
behavioral feature conflicts and do not consider
resource conflicts.

On-line approaches [7] depend on observable
behavior of features at runtime to analyze and reason
about potential adverse interactions. Observable

behavior of features can be in the form of either
exchanged messages among features or negotiation
proposals among communicating agents. Many on-line
approaches do not consider resource as a potential
source of adverse feature interaction. [8] is the first
work that shifted the focus of research from behavioral
conflict to resource conflict; it uses feature-resource
relationships to define resource consumption of
individual features, and describes the resource
constraints of a set of composed features through
goals. However, the resource specification proposed
only deals with Fixed-Capacity Resources and
Varying-Capacity Resources, and does not describe the
usage pattern of Exclusive Resources and Shared
Resources. Moreover, the resource specification does
not address resource requirements at component
assembly level. In contrast, this paper adopts resource-
aware contracts to explicitly define the resource needs
of individual components and of component
assemblies as well as of the resource constraints of the
system.

3. Adaptation Scenarios

Dynamic adaptation not only changes the
configuration of a component based system, by adding
or replacing components, but also has an impact on the
resources consumed. Dynamic adaptive systems
employ various adaptation strategies, which are
fundamentally driven by the resource constraints of a
system. A component needs a set of required resources
to perform its task. As a result of the execution of the
task, the properties of not only the required resources
but also of other resources can be changed. Different
components can share resources; however, un-
coordinated access can be problematic at times.
Resource-based feature interaction can be attributed
either to conflicting usage patterns upon the same
resource or to compromised resource constraints. The
following scenarios illustrate how resource-based
feature interaction emerges in the context of dynamic
adaptation.

Adaptation to Limited Resources: Consider an in-
vehicle entertainment system that allows backseat
passengers to play video games and browse the
Internet. A backseat passenger might be invited to join
a multiplayer network game, possibly by a passenger
in a car traveling in the same direction. As a result, a
new video game component might be downloaded via
roadside infrastructure and activated with the consent
of the passenger. Such an adaptation is likely to impact
another passenger, who happens to browse the Internet.
These two application components compete for
network bandwidth and there is possibility that one

347

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on December 14, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

application, for example, the video game, consumes
most of the bandwidth and thus interrupts Internet
browsing. One application is designed to adapt to
changes to the resources, in this case the available
bandwidth, without considering the consequence of
such adaptation upon other applications.

Adaptation to Conflicting Resource Constraints:
Consider a component that adapts to low battery level
by suspending activities that use network bandwidth
[9]. As a result, more bandwidth becomes available,
which in turn might trigger bandwidth adaptation that
avails of unused bandwidth by activating activities that
will use bandwidth. This bandwidth adaptation
conflicts with such a battery management policy as the
additional activities are likely to increase battery power
consumption.

4. Defining Resource-Aware Contracts

Resource-aware contracts express the resource
consumption of components without the need to refer
to their implementation. Resource-aware contracts are
considered an abstract part of components that can be
automatically processed during adaptation time.
Resource-aware contracts are used to describe the
resource usage patterns of components and component
assemblies, as well as inherent constraints of system
resources. Adverse feature interaction arises if resource
usage patterns of different components comprise each
other’s goal, or resource constraints are violated. To
define resource-aware contracts in a dynamic adaptive
system, the following concepts are used.

Resource [8] is required by software component in
order to execute its task. The execution of a task can
change certain properties of a resource. Each resource
has a set of constraints defining correct use of resource.

Component [11] is a basic unit in component-based
system and typically consists of required and provided
interfaces. There are one or more operations in an
interface. Each operation is seen as a single task.

Component Assembly is a way of structuring an
application from a set of independently developed
components.

System is a collection of component assemblies and
resources.

Two essential concepts, namely resource-aware
routine assertion and resource invariant, are used in
resource-aware contracts. Resource-aware routine
assertion comprises pre and post conditions associated
with each operation. An assertion defines the semantics
of the execution of either a single operation or a group
of operations. Resource invariant can be thought of as
common law regarding resource use and consists of a
set of rules prescribing correct use of a resource.

The resource needs of a single component can be

defined through a set of routine assertions. As is seen
from the above definition, RequiredResources defines
the set of resources needed for an operation. Pre-
Condition is a boolean function over the required set of
resources, defining entry conditions for this operation.
Typically, entry conditions can be the desired quantity
or state of each required resources. AffectedResources
identifies the set of resources being influenced by the
execution of an operation, and AffectedResources does
not necessarily overlap with RequiredResources. Post-
Condition is also a boolean function over
AffectedResources, defining the resource impact of the
operation execution, for instance, the amount of
bandwidth consumed. Only when a Pre-Condition is
satisfied an operation is allowed to be executed, the
implication of this is that valid resources are available.
Post-Condition should always hold immediately after
the execution of an operation.

Component = {
 componentName,
 (RoutineName, RoutineAssertion) *
}
Connector = {

(Component.RoutineName,
Component.RoutineName)

}
RoutineAssertion = {
 RequiredResources = (Resource)*
 Pre-Condition = P(RequiredResources)
 AffectedResources = (Resource)*
 Post-Condition = Q(AffectedResources)
}

comp1 = {VGameComp, (activate, assertion1), (execute,
assertion2)}
comp2 = {WBrowerComp, (activate, assertion3), (execute,
assertion4)}

assertion1 = {(memory, bandwidth), (memory > 100M &&
bandwidth >= 5 M/s), (memory), (allocated(memory) == 25
M)}
assertion2 = {(memory, bandwidth), (memory > 50M &&
bandwidth >= 5M/s), (memory, bandwidth),
(allocated(memory) == 25M && allocated(bandwidth) ==
5M/s)}
assertion3 = {(memory, bandwidth), (memory > 50M &&
bandwidth >= 2.5 M/s), (memory), (allocated(memory) == 10
M)}
assertion4 = {(memory, bandwidth), (memory > 50M &&
bandwidth >= 2.5M/s), (memory, bandwidth),
(allocated(memory) == 15M && allocated(bandwidth) ==
2.5M/s)}

348

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on December 14, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

For example, consider possible resource-contracts
for the two components, for video gaming and for
Internet browsing, of the proposed in-vehicle
entertainment system scenario. From the routine
assertions used for this scenario, we can derive the
bandwidth each operation is expected to consume. If
both components are executed concurrently, the total
bandwidth available must exceed 7.5M/s. The
proposed adaptation of the video game component
should be cancelled (or postponed) if these bandwidth
requirements cannot be met.

The resource contract for a Component Assembly
includes contracts for participating components and for
overall resource consumption. A component assembly
essentially defines an adaptive application. The
adaptive application is structured from a set of
components, LocalComponents. The way components
are interconnected is defined by LocalConnectors, and
each connector connects two operations in different
local components. A set of resources, LocalResources,
is assigned to the adaptive application and accessible
by local components. Adaptation strategies are used to
constrain adaptation. An adaptation is triggered by
changes taking place at local resources, as indicated by
a boolean function defined over LocalResources.
Adaptation typically has an impact on components,
connectors and resources. The impact of adaptation is
constrained by AdaptationPre-Condition and
AdaptationPost-Condition. AdaptationPost-Condition
can be seen as the goal of adaptation.

An important category of adverse feature
interaction is due to conflicting goals of adaptation
strategies manifested through conflicts at resource
level; therefore, an explicit description of the
adaptation goal supports the detection of adverse
feature interaction at a subsequent stage. For example,
consider the resource management where two
conflicting adaptation strategies are employed: battery
power adaptation and bandwidth adaptation. Battery
power adaptation is triggered initially. The goal of

battery power adaptation is to keep power consumption
under a certain threshold. As more bandwidth becomes
available, conditions in AdaptationTrigger of
bandwidth adaptation will eventually hold. The
intention of bandwidth adaptation is to avail of unused
bandwidth, and as a side effect, more power will be
consumed. Both the intention and the side effect are
described in the AdaptationPost-Condition of the
adaptation strategy. In this case, detection of
conflicting adaptation strategies is conducted through
examination of the conflicts in the AdaptationPost-
Condition.

System wide resource invariants are rules

associated with resources that must always be
enforced. The rational of having resource invariants is
to provide a system view of a resource profile which
otherwise would be implicit. Resource can be accessed
from a component and a component assembly.
Resource invariants apply wherever a resource is
accessed. As identified earlier, four types of resources
are available, each of which has unique invariants.
Abstract functions can be used to denote resource
invariant. Due to space limitation, only a brief
description of each of these abstract functions is
provided here.

For exclusive resources, AtMostOneClient means
this type of resources can only be locked and used by
one client exclusively. Typically, some scheduling
mechanism is used to serialize the use of exclusive
resources. For Fixed-Capacity Resources,
NeverExceedingFixedCapacity means the capacity of
this type of resources is fixed and it must be
guaranteed that the allocation of resource to different
components will never exceed its capacity. For
Varying-Capacity Resources,
NeverExceedingCurrentCapacity means the capacity of

ComponentAssembly = {
LocalComponents = (Component)*
LocalConnectors = {Connector)*
LocalResources = (Resource)*
AdaptationStrategies = (AdaptationStrategy)*

}
AdaptationStrategy = {
 AdaptationTrigger = T (LocalResources)
 AdaptationPre-Condition =
 P(LocalResourcs, LocalComponents, LocalConnectors)
 AdaptationPost-Condition =
 Q(LocalResources, LocalComponents, LocalConnectors)
}

Resource = {
ResourceID
ResourceType =

 Enum {Exclusive, Fixed-Capacity, Varying-Capacity, Shared}
ResourceInvariants(ResourceType)

}
ResourceInvariants(ResourceType) = {
 If ResourceType == Exclusive:
 AtMostOneClient

If ResourceType == Fixed-Capacity:
 NeverExceedingFixedCapacity
If ResourceType == Varying-Capacity:

NeverExceedingCurrentCapacity
If ResourceType == Shared:

 NeverAcceptConflictingValues
}

349

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on December 14, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

resources is determined from the current operational
context, and total use of this resource should not
surpass current capacity. For Shared Resources,
concurrent control requests can be in the form of either
boolean values or numerical values [6].
NeverAcceptConflictingValues means that conflicting
requests to change the shared resource should not be
allowed.

5. Enforcing Resource-Aware Contracts

Resource-aware contracts can be used at
adaptation time to ensure safe transition from the
existing component-based configuration to a new
component-based system configuration. Adaptation, in
response to an adaptation request, is expressed in terms
of adaptation strategies. An adaptation strategy
specifies the new configuration as well as the resource
goal of the adaptation. The resource goal of an
adaptation can then be verified against the resource
requirements of the components of the new
configuration as expressed in their respective resource
contracts. An adaptation request is considered invalid
if the adaptation would result in a violation of the
“resource invariants” that describe the constraints of
the resources. Such adaptation requests can then be
denied and adaptation to invalid compositions can be
prevented. An adaptation based on an alternative
adaptation strategy with a similar adaptation goal
might be considered instead.

6. Conclusion and Future Work

This paper describes our initial approach to using
resource-aware contracts for addressing adverse feature
interaction in dynamic adaptive system. We explicitly
capture the resource consumption of features in the
form of resource contracts, and apply these contracts to
different aspects in dynamic adaptive systems. From
the resource point of view, adverse feature interaction
can happen at either the same resource or different but
conflicting resources. From adaptation point of view,
adverse feature interaction takes place when either a
new component is integrated into an assembly or
multiple adaptation strategies are applied. Our future
work will refine and further evaluate what constitutes a
pair of conflicting resources and conflicting resource

usage patterns, and extend contracts accordingly. We
then intend to develop an approach for enforcing
resource-aware contracts.

Acknowledgments. The work described in this
paper was supported, in part, by Science Foundation
Ireland grant 03/CE2/I303_1 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie).

References

[1] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature Interaction:
the security threat from within software systems", Progress in
Informatics, No.5, pp.75-89, 2008

[2] B.Meyer, “Appying Design by Contract”, IEEE Computer,
pp.40-51, Oct.1992

[3] L.F. Andrade and J.L. Fiadeiro, “Feature modeling and
composition with coordination contracts”, Proceedings Feature
Interaction in Composed System (ECOOP 2001), pp.49-54, 2001

[4] M. Calder, M. Kolberg, E.H. Magill and S.R. Marganiec,
“Feature Interaction: A Critical Review and Considered Forecast”,
Computer Networks: The International Journal of Computer and
Telecommunications Networking, v.41 n.1, p.115-141, 15 January
2003

[5] A.Leicher, “Analysis of Compositional Conflicts in Component-
Based Systems”, PhD Thesis, Technischen Universitat Berlin, 2005

[6] A.L.Juarez-Dominguez, N.A.Day and J.J.Joyce, “Modelling
Feature Interaction in the Automotive Domain”, Proceedings of the
2008 international workshop on Models in software engineering,
pp.45-50, 2008

[7] S.R. Marganiec, “Runtime Resolution of Feature Interactions in
Evolving Telecommunication Systems”, PhD Thesis, Department of
Computer Science, University of Glasgow, 2002

[8] J. Bisbal and B.H. Cheng, “Resource-based Approach to Feature
Interaction in Adaptive Software”, Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, pp.23-27, 2004

[9] L. Blair, G. Blair, J. Pang and C. Efstratiou, “Feature Interaction
Outside a Telecom Domain”, Proceedings of Workshop on Feature
Interactions in Composed Systems (ECOOP’2001), 2001

[10] A.P. Felty and K.S. Namjoshi, “Feature specification and
automated conflict detection", ACM Transactions on Software
Engineering and Methodology, v.12 n.1, p.3-27, January 2003

[11] Kung-Kiu Lau and Zheng Wang, “Software Component
Models”, IEEE Transactions on Software Engineering, 33(10): 709-
724, 2007

350

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on December 14, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

