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ABSTRACT 
 

The paper investigates from the perspective of computer science the phase coherence theory (PCT) and phase 
coherent data-scatter (PCD-S). These techniques were originally developed for the area of optical tensiographic data 
mining and analysis but have a more general application in data mining.  These developments have recently been 
augmented with the engineering of a software toolkit called TraceMiner.  Although the toolkit was originally devised for 
tensiography it was developed to perform as a generic data mining and analysis application with PCT, PCD-S and a 
range of other data mining algorithms implemented.  To date the toolkit has been utilised in its main application area, 
tensiography, but has also been applied to UV-visible spectroscopy.  This work presents a critical investigation of the 
general utility of PCT, PCD-S and the toolkit for data mining and analysis.  A new application of PCT and the 
TraceMiner software toolkit to Raman spectroscopy is presented with discussion of the relevant measures and the 
information provided by the toolkit.  This provides more insight into the generic potential of the techniques for data 
mining.  The analysis performed on theoretical Raman data is augmented with a study of experimental Raman data.  
Raman spectroscopy is used for composition and fault detection analysis in semiconductor surfaces.  Finally, the utility 
of the PCT technique in comparison with traditional Raman spectroscopy methods is considered together with some 
more general applications in the field of imaging and machine vision. 
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1. INTRODUCTION 
 

The science of tensiography can simply be stated as the extraction of physical, chemical and product 
information from the instrumental tensiotrace using computer science methods. The tensiograph produces graphical data 
display, which is obtained from detecting the light injected inside a growing pendant drop by a source fiber and coupled 
to a collector fiber via various reflections inside the drop.  Phase Coherence Theory (PCT) was developed by McMillan 
et al. [1] for tensiographic data mining and analysis.  The data mining, data visualisation, statistical and data analysis 
package, TraceMiner V2.6, developed by Doyle and McMillan integrates the phase coherent data scatter algorithm and 
additional PCT techniques with many standard parametric and non-parametric statistical tests [2].  This software was 
developed as a generic, extensible, portable and easy to use data mining and analysis toolkit, supporting visualisation 
and statistics using object oriented software development techniques in the C++ programming language. 
 The advantage of the PCT data-scatter approach is that it allows the user to experimentally investigate a data 
mining and analysis problem and identify the most appropriate TraceMiner toolkit utility for the problem at hand.  This 
point is borne out by the fact that, of a large number of toolkit utilities available to the researcher, only a small number 
will typically be relevant to a specific data-mining problem.  The toolkit is designed to produce measurements from 
statistics, rather than merely posing the statistical question as to whether or not two data sets are the same. 
 The software toolkit has been used for tensiographic data mining and analysis.  The developers’ objective, 
however, to create a generic, cross-platform toolkit has now been realised with the application of the toolkit to Raman 
spectroscopy [3] for composition and defect analysis in semiconductor structures.  The sensitive nature of phase 
coherent data scatter and the other TraceMiner toolkit techniques provided the potential for small spectral changes 
observed to be identified and quantified successfully for Raman spectroscopy. 
 The work described in this paper involved investigating the practicality of the data-scattering method for the 
analysis of Raman spectra and establishing the dependence of changes obtained in all the spectral function 
characteristics on the measurands of data-scatter.  The experimental and modeling work was done in Perova and 
Unnkrishnan in Trinity and O’Neill in Carl Stuart using TraceMiner. The results provide support for the general utility 
of the data mining toolkit and the validation was done by O’Neill, McMillan and Doyle. 
 Raman spectroscopy is a widely used composition and defect analysis technique in semiconductor structures.  
The need for a sensitive analysis algorithm is apparent as the difference in Raman spectral characteristics such as the 
peak position (ωmax), the peak intensity (Imax) and the full width at half maximum (FWHM), which can be used to gain 
information on different properties of studied materials and in particular, at the stage of their fabrication, can be minute.  
For example, the shift of the phonon lines in stressed semiconductors from the unstressed value can be as small as 0.05 
cm-1 (at maximum spectral resolution of ~1 cm-1).  It is noted that this shift is directly related to the stress value, so it is 
important to estimate the shift with higher accuracy.  To date, the fitting of the phonon bands with Lorentzian or 
Gaussian functions is used in order to determine the peak position with accuracy < 0.1 cm-1.  Nevertheless, for certain 
types of semiconductors (particularly nanostructured ones) the shape of the phonon line is also distorted due to the 
confinement effect and stress, making the proper fitting of these lines quite difficult.  
 As the need for new methods of analysis to quantify small changes observed in the registered spectral function 
for a semiconductor surface is clear, the PCT data mining measurands of scatter radius, scatter coherence and scatter 
closeness are innovatively applied in this investigation to establish the dependence of spectral changes obtained in all 
Raman spectral characteristics previously mentioned. 
A model oscillator with spectral characteristics close to that of Si longitudinal optical (LO) phonon mode at ~520 cm-1 is 
used in the investigation with a family of Lorentzian spectral functions being created using variation in peak position 
(from 520 cm-1 to 530 сm-1 with steps of 0.1 and 1 cm-1), peak intensity and FWHM.  The measurands of data scattering 
analysis are produced from TraceMiner V2.6 by using the initial function in each set of Lorentzians as a reference.  In 
this way, the dependence of each of the data scatter parameters on changes observed in Raman spectra is established. 
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2. THEORY 

2.1 The data mining software 
The algorithm customised to meet the specific need to produce scatter of data points that gives visual 

representations of instrumental performance has been termed Phase Coherent Data-Scatter.  The term signifies the phase 
relationships in data-scatter between the ordinate and abscissa of the two data sets that are being studied.  The phase 
coherent algorithm offers a set of new measurements such as scatter coherence, scatter closeness, and scatter radius 
values.  According to phase coherence theory [1], the most significant measurement of data scatter is ‘coherence’ which 
gives a numerical measure of the individual error components for the two principal coordinates. 

Based on this theory, we have developed [2] software for data mining called TraceMiner.  The software allows 
the user to obtain values of coherence scatter for two different spectra (reference and test traces) with respect to their 
centroid. The centroid is found to be a stable point with respect to spectral variations. But this technique has a drawback 
that there is a possibility of two different spectra being projected to the same centroid. Hence, it is impossible to 
distinguish between traces using only the centroid. An exchange operation is employed as a solution to this problem [2]. 
Phase coherence theory also explains scatter closeness, which gives the Euclidean distance between the two centroids of 
the unexchanged data in the test and reference traces. This parameter provides a single simple measure of scatter-points. 
The new coherence theory gives birth to a novel interesting phenomenon, which arises from combinations of digital and 
propagation errors uprising from the algorithm used, called micro-scatter [2]. This phenomenon can be explained as the 
pattern observed with zooming magnification of what appeared to be a single centroid. Scatter radii, which gives a 
quantification of the scatter, is also given importance in the new coherence theory. 

 
Figure 1 TraceMiner toolkit software showing phase coherent data scatter and peak detection 
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The data mining issues considered in the following sections are the stages of data mining and how the 
TraceMiner software algorithms address them. 

2.2 Data Mining Issues 
 This section presents a detailed examination of the algorithms provided by the TraceMiner toolkit.  These 
algorithms are expounded in a manner that is not specific to the Raman spectroscopy application, allowing us to 
illustrate the generic utility of the techniques, framed in the context of the major identifiable stages of the data mining 
and analysis process. 

2.2.1 Data ingest (data presentation to the software) 
 The TraceMiner software is designed using an extensible object oriented design to handle two-dimensional data 
sets.  This is ideal for the problems that have so far been addressed using the software toolkit, namely tensiography 
where a trace is gathered as a two-dimensional data set (voltage over time), and UV-visible spectroscopy where the data 
sets gathered are also two-dimensional (absorbance over wavelength).  The software tests pairs of data sets where one 
set is termed the reference set (control set) and the other set is termed the test set and is compared against the reference.  
All PCT and statistical measures are taken in this context. 

Any data set gatherer needs to be cognisant of the fact that the current constitution of data sets for the software 
means that it can handle all two dimensional data sets that are presented as a white space separated text file.  The 
software will automatically calculate a significant number of statistical measures for the data sets. 

2.2.2 Data Cleansing/Smoothing 
 Data imported into the software toolkit can be smoothed using a moving average with window length from 1 
(no smoothing) to 30.   The maximum scaling factor is arbitrary and can be changed.  However, the developers felt that a 
larger smoothing factor than this would serve only to obfuscate the original data set to an unrealistic point.   

The researcher can choose to smooth the reference and test data sets using the same or different factors.  The 
software will inform the user if the smoothing factor is different when they attempt further processing on the data sets as 
this may affect the validity of results. Typically both data sets are smoothed to the same degree.  The difference curve 
for two data sets can also be smoothed.   

It should be noted that data sets in tensiography typically contain of the order of three thousand data points.  
The smoothing algorithm helps to enhance important features of a data set by smoothing peaks and filtering inaccurate 
outliers in the data.  The smoothing factor chosen will depend on the application under analysis. 

2.2.3 Feature Identification and Extraction 
 Data sets that have been imported into the software are processed using algorithms to identify the important 
features of the data sets and the differences between the data sets.  The software toolkit provides the researcher with a 
number of data mining algorithms that allow them to more easily identify and extract the important features of the data 
sets under investigation.  The algorithms are as follows. 
 

1 Phase Coherent Data Scatter. 
PCD-S offers tools for feature extraction.  The scatter diagram produced by the application of the algorithm when data 
points are projected back to a single centroid provides the researcher with a visualisation of the difference between two 
data sets that scatters the differences away from a centre point.  This provides a focus on the feature differences that is 
directly navigable back to the individual data set points and thus potentially important features such as peaks in the 
original data sets 1. 

� Un-exchanged Data Scatter. 
An un-exchanged scatter offers a view of the centroids produced by the reference and test data sets.  The 
Euclidean difference between these data sets is known as the scatter closeness.  Data sets that are identical will 
produce identical centroids; therefore the scatter closeness will be zero. 
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� Exchanged Data Scatter. 
Data sets that are not the same may produce identical centroids, leading to the inclusion of an exchange 
operation that guarantees that differing features in the data sets will be identified on the data scatter diagram. 
 

� Scatter Information 
The software affords information regarding the data scatter such as the centroid positions for each data set, the 
scatter closeness, scatter radii and the scatter coherence. 

 
2 Difference Tensiography. 

This algorithm performs a data point by data point subtraction of two data sets, reference from test, on the 
ordinate and thus highlights feature differences of the test data from the reference set and in particular the larger feature 
differences are identified.  If the data sets are of different lengths, the software will pad the shorter trace with zeros4.   

The identification and quantification of the point-by-point feature differences in the data sets allows data 
miners to be particularly focused on feature variations in the data sets and, possibly more importantly, where the 
maximum differences between the data sets occur, allowing focussed investigation on the divergences. 

 
3 Peak Match and Subtraction (MS) Values. 
MS values present a utility that identifies the major peaks in the reference and test data sets and compares them on 

the basis of how well they match (M values) 6 or how different they are (S values) 7 in terms of the ordinate and abscissa 
 

• Match Values 
Normalised M values are calculated by finding each peak in the test data set and comparing it to the equivalent 
peak, if any, in the reference data set.  An M value of one means that a peak in the test set is identical to the 
equivalent peak in the reference data set.  The closer the M value to zero, the less of a match the peaks are. 
 

• Subtraction Values 
S Values are complimentary to the M values and highlight how different corresponding peaks in the test and 
reference data sets are.  Adding the normalised MS values together will always produce a value of one.  It is 
possible to adjust the sensitivity of the S values. 

 
4 Statistical Measures 
The toolkit provides a range of relevant parametric and non-parametric statistical measures based on Johnson and 

Bhattacharyya 5 including the following: 
a. Basic Statistics 

i. Difference Mean 
ii. Standard Deviation of Difference 

iii. Standard Error of Difference Mean 
iv. Confidence Interval for the Mean Difference 

b. Normal Distribution Checks 
i. Fingerprint Test Using Normal Distribution 

ii. Normal Distribution Test 
c. Parametric Statistics 

i. Correlation Coefficient 
ii. Regression Line (Slope) 

iii. Regression Line (Intercept) 
iv. Residual Sum of Squares 

d. Non Parametric Statistics 
i. Wilcoxon Rank Sum Test 

ii. Wilcoxon Signed Rank Test 
iii. Spearman Rank Correlation 
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2.2.4 Pattern Extraction and Discovery 
The previous section details the feature identification and extraction algorithms in TraceMiner.  At this point 

the major data mining issue is results analysis and the identification of difference or similarities patterns or 
measurements that occur in the data sets.  The advantage of this approach is generally accepted at this stage to be the 
fact that visualisations of data differences are given together with measurements on the features and structure of the 
patterns themselves.  The best way of explaining this is to see these patterns as an analogue of x-ray diffraction patterns 
in that the symmetry and structure of a pattern can be traced back to actual difference and structure in the data sets under 
test.  The most obvious example of this structure is the testing of instrument performance such as a UV-visible 
spectrophotometer that gives scatter in the vertical direction if the y-errors are present (photometric in UV-visible) and 
scatter in the horizontal if there are x-errors (wavelength errors in the UV-visible) and loops if both are present.  Again 
with respect to instrument performance, a specific type of noise will give one pattern while another type produces 
another and thermal and shot noise can thus be differentiated visually. Much more complex patterns are observed than 
this example used to illustrate the visualisation issues here, but it can be simply stated that there is usually little problem 
in identifying a pattern with a specific problem. 

It is clearly significant that patterns represent local phenomenon within a data set and can thus be traced back to 
the original data that caused the pattern and investigated further8. Two of the more powerful and readily used methods 
for pattern recognition are the Hough9 and Radon10 transforms. The data-scatter technique produces recognizable scatter 
patterns based on the temporal data sets. It is important to qualitatively differentiate the various data groups associated 
with a feature in a pattern. The Hough or other technique will be used to partition the scatter data points (e.g. to 
differentiate a line from a curve). The subsequent quantification of this partitioned data can potentially have useful 
applications. 

2.2.5 Visualisation of Data and Results 
 The toolkit provides extensive visualisation capabilities for both the data sets and the results of the algorithms.  
These include visualisation of and supplementary information for: 

• Untreated imported data sets 
• Smoothed data sets 
• Difference results (unsmoothed and smoothed) 
• MS values 
• PCD-S values (unexchanged and exchanged) 

 
Each of the visualisation tools for data sets and results has a zooming feature to aid with identification and assessment of 
important and unimportant features.  On occasion differencing of the data sets using visualisation may be sufficient. 

2.2.6 Evaluation of Results 
 The evaluation of the results provided by the toolkit tends to be specific to the application under study.  For 
example, large parts of the evaluation of results for tensiography and UV-visible spectroscopy have been extensively 
researched11.  Investigation of the significance of results for Raman spectroscopy is ongoing and the results thus far are 
encouraging. 

3. APPLICATION TO RAMAN SPECTROSCOPY 
The work below is also presented elsewhere in these proceedings, but Perova et al3 has an experimental 

emphasis and deals with material science issues where here we restrict the discussion to computer science issues as far 
as possible.   

As previously stated, in the investigation a model oscillator with spectral characteristics close to that of 
longitudinal optical (LO) phonon mode of bare Si at 520 cm-1 was chosen for the purpose of phase coherent data-scatter 
analysis.  Raman spectra can in general be fitted best by a Lorentzian function 

 
I = I0 / [(ω-ω0 /w) 2+1]         (1) 
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where ω0 is the peak frequency, I0 is the intensity at ω0 and 2w is the FWHM.  A family of Lorentzian spectral functions 
have been modelled using variation in peak position (Raman shift), peak intensity and FWHM.  The analysis of these 
three sets of model spectra was carried out using TraceMiner to extract the parameters of data scattering analysis.  In this 
way, the dependence of each of the data scatter parameters on changes observed in Raman spectral characteristics such 
as the following was established: 
 

                         Raman shift, ω RS  = ω Test - ω Ref                                      (2) 
Raman intensity difference, IRID =ITest - IRef    (3) 
Raman FWHM difference, FWRFD = FWTest - FWRef.   (4) 

In this study the scatter closeness and scatter radii parameters of phase coherence theory were used.  

3.1 Frequency Monitoring 
The analysis was carried out by modelling a set of Lorentzian spectral functions by varying the peak frequency 

from 520 cm-1 to 530 cm-1 and keeping the peak intensity constant at 10000 A.U. and FWHM at 4 cm-1. A step of 0.1 
cm-1 from 520 cm-1 to 521 cm-1 and a step of 1 cm-1 from 521 cm-1 to 530 cm-1 were used (Fig. 2).  

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

For the above set of model spectra, the values of data-scatter parameters such as scatter radii and scatter 
closeness were calculated using phase coherence theory by using the model curve with peak frequency at 520 cm-1 as a 
reference. Fig. 3 shows the dependencies of data-scatter parameters on Raman shift (νRS).  

 
 
 

 
 
  
 
 
 

 
 
 

 
 

 
Figure 3 Dependence of scatter closeness (a) and scatter radii (b) on Raman Shift (peak frequency varied from 520 to 530 cm-1). Inset 
shows the corresponding plots for frequencies ranging from 520 to 521 cm-1 with a step of  0.1 cm-1 respectively. 
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Figure 2 Set of the Lorentzian spectral 
functions with peak position ranging from 520 
cm-1 up to 530 cm-1. 
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Scatter closeness gives perfect linear dependence (Fig. 3a) on Raman Shift in the whole frequency range from 
520 cm-1 to 530 cm-1 for different step values, which is given by the equation. 

Y = 0.989 X      (5) 
 

In the case of scatter radii (Fig. 3b), a linear dependence on Raman shift has been observed for frequency 
values ranging from 520 cm-1 to 521 cm-1 with a step of 0.1 cm-1. When the shift is increased to 1 cm-1, the data points of 
scatter radii for frequencies ranging from 521 to 530 cm-1 can be best fitted by a polynomial function. 
 Inspection of Fig. 3a and 3b from a data mining perspective provides some useful information.  It can be seen 
from Fig. 3a that the scatter closeness provides a large dynamic range with good coverage of the entire range of 
measurements.  Scatter radii provide a much smaller dynamic range although the calibration sensitivity is greater than 
that of scatter closeness (greater slope means greater sensitivity).  Examination of the detection limit provided by each 
measure demonstrates that the scatter closeness detection limit is more sensitive.  On balance scatter closeness provides 
a superior tool for analysing frequency shift as demonstrated here. 

3.2 Intensity Monitoring 
A group of Lorentzian spectral functions was modelled by varying the peak intensity from 1000 to 12000 

(A.U.) initially with a step of 200 from 1000 to 2000 and then with a step of 2000 from 2000 to 12000 A.U. (Fig. 4). 
Peak frequency is kept constant at 520 cm-1 and FWHM at 4 cm-1.  
 

 
Figure 4 Set of Lorentzian spectral functions with peak intensity ranging 
from 1000 to 12000 A.U. 
 

The curve with peak intensity 1000 A.U. is kept as the 
reference. Fig. 4 shows the correlation between the change in peak 
intensity and the data-scatter parameters obtained for the above set 
of spectral functions during analysis with Trace Miner.   

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 
 

Figure 5 Dependence of scatter closeness (a) and scatter radii (b) on Raman Intensity Difference (peak intensity varied from 1000 to 
12000 A.U) 
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Both the data-scatter parameters viz. scatter closeness (Fig. 5a) and scatter radii (Fig. 5b) give linear 
dependence on Raman intensity difference, which proves to be quite useful in further studies of nanostructures using 
Raman spectroscopy. 
 Inspection of Fig. 5a and 5b from a data mining perspective again provides useful information.  For example, it 
can be seen that scatter closeness provides the best measure for peak intensity shifts by providing the better calibration 
sensitivity.  The intercept on the scatter radii plot means that scatter closeness will provide a better detection limit.  As 
well as providing the previously mentioned linear dependence both measures also provide a large dynamic measurement 
range.  However again the scatter closeness provides the more useful measure because of the better calibration 
sensitivity. 

3.3 FWHM Monitoring 
By varying the FWHM values from 4 to 15 cm-1 with different steps of 1 cm-1, 2 cm-1 and finally 3 cm-1, a set of 

Lorentzian spectral functions was created (Fig. 6). The peak position and peak intensity are kept constant at 520 cm-1 at 
10000 A.U. respectively. 

 
 

 
 
 
 

 
Figure 6 Lorentzian Spectral Function with FWHM varied from 
4 cm-1 to 15 cm-1 
 

 
 
 
 
 
 
 
The dependence of data-scatter parameters on changes in FWHM of Raman spectra is shown in Fig. 7 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
Figure 7 Dependence of scatter closeness (a) and scatter radii (b) on Raman FWHM Difference (varied from 4 to 15 cm-1) 
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Scatter closeness (Fig. 7a) shows perfect linear dependence, which is in line with linewidth variation, while 
scatter radii (Fig. 7b) values fit exactly into the sigmoid-Boltzmann function given by the following expression. 

 
y = 884.898 + (-7182.081-884.898)/(1 + exp ((x+32.39)/15.403))       (6) 

Note that equation 6 is obtained by curve fitting the scatter radii data points using Origin scientific graphing and analysis 
software. 
However, as can be seen from Fig. 7b, the deviation of scatter radii from non-linearity is practically negligible up to 
FWHM difference of  ~6 cm-1. 
 Clearly, from a data mining standpoint scatter closeness again provides the more useful measure as it shows a 
linear dependence, a sensitive detection limit, a large dynamic range and good calibration sensitivity. 

3.4 Real Instrumental Data 
Similar data scatter analysis was performed on experimental Raman spectra of bare Si wafer as part of this 

work.  The experimental curve with peak frequency at 520 cm-1 is taken as a reference.  By shifting the reference curve 
from its initial position with a step of 0.2 cm-1 and 1 cm-1 in the regions of 520-521 cm-1 and 521-530 cm-1 respectively, 
a set of experimental Raman spectra similar to that shown in Fig. 8 was created.  
 
 
 
 

Figure 8 Experimental Raman spectra of bare  
Silicon at 520 cm-1 and the test curves shifted from the 
experimental curve with a step of 0.2 cm-1 and 1 cm-1 
respectively. 
 
 

 
 
 
 
As a result of the analysis of these test traces with the reference trace using phase coherence theory, the 

dependence of scatter closeness on Raman shift was obtained. As shown in Fig. 9, the scatter closeness obtained from 
the above set of data exhibits perfect linear dependence on Raman shift (ωRS from 0.1 up to 6 cm-1), which is very close 
to that obtained for model data shown in Fig. 3a. 

On comparison with equation (5), the dependence of scatter closeness obtained for both model and 
experimental Raman data are approximately coinciding.  
 
 
 
 

 
 
 
Figure 9 Dependence of scatter closeness on experimental 
Raman shift (in the range 520 cm-1 to 527 cm-1) 
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Based on the previous analyses, scatter closeness is found to be the data-scatter parameter that gives perfect 
linear dependence on all Raman spectral characteristics.  As expected the linear dependence of scatter closeness 
demonstrated using the model data has been shown for real experimental data, and demonstrates that analytical 
sensitivity is also provided by the use of this PCT measure. 
 

3.5. Conclusions on Raman Scattering Application 
 As is the case in all data-scatter applications to date, of the large number of PCT measures available it 
transpired that only scatter measurand (closeness) proved appropriate and useful in this study.  However, the study has 
demonstrated the linear dependence of scatter closeness and Raman spectral characteristics.  The optimum data mining 
result here is one that yields a linear relationship between measurement and measurand, because this gives a 
measurement error that is constant across the dynamic range.  A dependence of scatter radii and Raman spectral 
characteristics has proved not to be as useful because it was not linear. This result demonstrates for the reader a 
characteristic strength of the data-scatter method, there are horses (especially in the RDS) for courses amongst the 
measurands. Scatter radii have proved useful in other application areas13. 
  

4. CONCLUSIONS 
The main body of work undertaken in this study is based on simulation study, which has subsequently been 

experimentally confirmed.  This study follows perhaps an optimum methodology for computer science data mining 
projects in that there is almost a perfect match between the experimental and theoretical results.  The experimental work 
however was limited to Raman frequency shift measurement.  Work is ongoing that will follow through on the entire 
programme of measurements.  The assessment of the utility of the technique was made against the commercial software 
currently in use in Intel Corporation (Ireland) and shown to be as sensitive as the latter.  The space available here has not 
allowed for a broader view of the applications of the technique in other areas of spectroscopy and elsewhere by the 
authors has been indicated throughout. It is possible at this stage to be optimistic about the general efficacy of the new 
technique in both qualitative and quantitative analysis and in a range of computer science fields. 
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