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ABSTRACT 
Perhaps the most common distortion in degraded film or 
video material is the occurrence of Blotches of varying colour 
randomly dispersed in each frame. The Blotches are caused 
by the abrasion of the film or collection of dirt on the film as 
it passes through the projection apparatus. They manifest as 
flashes of bright and dark areas. The Blotches represent re- 
gions of missing data (ie they replace the original data), and 
the paper discusses a model based technique for suppressing 
this artefact. 

INTRODUCTION 
It is typical t o  remove impulsive distortion of this kind 
by applying a Median filter to each pixel in the degraded 
image sequence. Since Blotches tend to  be large in prac- 
tice (> I O  x 10 pixels) spatio-temporal operations are 
most successful [8, 21. However, the median operation 
tends to blur fine detail and it would be better to re- 
strict the processing to  Blotched sites only. Therefore 
the first part of the paper discusses methods for detect- 
ing Blotches. This approach was used in [8], in which 
a motion compensated detector was used to engage a 
motion compensated 3D MMF (ML3Dex) at the Blotch 
sites. 

The Median filter is not an interpolator however, and 
though it is effective in practice, it would be beneficial to 
develop techniques for interpolation that preserve image 
detail more effectively. This can be done using the 3D 
Autoregressive (AR) model t o  incorporate more spatio- 
temporal information in a coherent manner. 

Because the techniques discussed involve 3D (space/time) 
operations, it is necessary to direct the operation of the 
algorithm along motion trajectories. For this paper it is 
sufficient to note that a Multiresolution Block Matching 
technique was used that combines ideas from [4, 31 to 
achieve integer accurate motion estimates. The 3D AR 
model acts along motion trajectories and implicitly in- 
terpolates image information when fractional motion is 
observed. 

THE 3D AR MODEL 
This model has been used previously by Strobach [lo] for 
image segmentation and Efstratiadis et al. [6] for motion 

estimation. The model equation for image frame n is 
therefore 

N 

I ( i ,  j ,  n) = akl ( i  + &, j + q: 7 -k q;) + e( i ,  j ,  n) (1) 
k=l 

where the grey value at location ( i , j )  in frame n is 
given as I (z, j ,n) ;  the N model coefficients are defined 
as ak  (L = 1 . . . N ) ,  and the corresponding location of 
the kth offset support pixel is given by the support 
vector q k  = [qt ,  q:, q i ] .  It is assumed that the data 
has already been compensated for motion and this dis- 
placement is incorporated into the offsets required for 
the model support. 

DETECTION 

Blotches can be characterized as spatio-temporal discon- 
tinuities in grey level along a motion trajectory. Assume 
that the image is corrupted according to the following 
equation. 

g(x) = I(X) +b(x) 

(2) 
0 With probability (1 - Ps) 

where b(x) = { s With probability P, 

Here, s is a randomly distributed grey level representing 
a Blotch or impulse, occurring at random instants with 
probability P,. It is required to detect the occurrences 
of b(x)  # 0 in order to isolate the distortion for further 
examination. The solution is to assume that the undis- 
torted image I(z, j ,n), because of its temporal (and to 
some extent spatial) smoothness, obeys the AR model 
whereas b(x) does not. 

Suppose that the model coefficients for a particular im- 
age sequence were known. The prediction error could 
then be considered to be noise with some correlation 
structure (See [7]). If g(x) was filtered with the model 
prediction filter the output could be written as (using 
eq. 2) 
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N 

= g(x) - akg(x + qk) 
k = l  

N 

= f ( X )  + b(x) - akb(x + q k )  ( 3 )  
k = l  

where x is the position vector [i, j ,  I C ] .  Equation 3 shows 
that the undistorted samples in the degraded signal are 
reduced to the scale of the residual sequence. The dis- 
torted samples can be reduced in amplitude if there are 
other distorted samples nearby but this does not occur 
often. Therefore the prediction error generated at a dis- 
torted pixel site would be larger than that at uncorrupted 
sites. 

Therefore thresholding the prediction error is a useful - 
method of detecting local distortion. In practice, it is 
best to use a pair of AR models looking forward and 
backward in time; and observe the two prediction errors 
at each pixel. This avoids problems with occlusion and 
uncovering. 

Figure 1 compares the receiver operating characteris- 
tics when different 3D AR models are used to detect 
known distortion in an image sequence (U‘ESTERNl) 
of 60 frames of resolution 256 x 256. The Blotches were 
of varying size, shape, and grey level, with a probabil- 
ity of corruption of 0.007. The curves were created by 
measuring the correct detection and false alarm rates for 
20 different thresholds evenly distributed between 0 and 
2000. 

The models are described by the number of pixels of 
symmetric support in each frame. A support of 9 pix- 
els therefore refers to a square of 3 x 3. The models 
are described in the order past frame : current frame : 
neat frume. Therefore a model of the form 1:O:l yields a 
prediction equation 

i ( i , j , n )  = u- l I ( i , j , n  - 1) +u1l ( i , j , n+  1) (4) 

The detection system uses a forward predictor, N:O, and 
a backward predictor, 0:N. The two prediction error fields’ 
then flag a distortion when 

( [f1(X)I2 L t ,  ) AND ( [ E 2 ( 4 l 2  2 t ,  1 (5) 

Therefore, a Blotch is located when both predictors agree 
that a match cannot be found in either of the two frames. 
For figure 1 block sizes of 9 x9 were used in generating the 
prediction error and model coefficients were estimated 
using the Normal equations. 

Because this degradation is artificial, the actual model 
coefficients can be estimated from the original data prior 
to degradation. The curves corresponding to these ex- 
periments are labelled Known, the other model based 

, € 2  

detection curves refer to the the case where the model 
coefficients are estimated from the degraded images. It 
is clear that the presence of degradation biases the model 
coefficients adversely resulting in a much worse perfor- 
mance. 

Also shown is the result using the SDIa (Spike Detection 
Index) detector which is a special case of the general AR 
detector. It uses a 1:0/0:1 system with the model coeffi- 
cients fixed at 1.0. The result indicates that it performs 
better in a real situation than the model based approach. 
However, the performance gained with the ‘Known’ AR 
models shows that provided a technique can be found 
to suppress the effect of distortion in the modelling pro- 
cess [5], there is much to  be gained in a spatio-temporal 
approach. The SDIa can be seen to be similar to a mo- 
tion compensated version of the detector presented in [9]. 

INTERPOLATION 

The task is now to interpolate information in the blotched 
regions. This can be done by extending the techniques 
of [ll] to multidimensions. It is assumed that the im- 
age function in a block of Ad x M pixels is sufficiently 
stationary for a single model to be used for that block. 
Further, assume that arbitrary locations within the block 
are corrupted. 

Allowing for a border of pixels at the edge of the M x 
M block in the current frame, n say, (so that (x + qk) 
will never result in a location outside the M x M block), 
an equation for the error at every pixel within a centred 
B x B block in that frame can be written as below. (Note 
that a volume of motion compensated data is used.) 

e = Ai (6) 

where i represents an N M 2  x 1 column vector of row 
ordered pixels from the N M x M blocks’, e is a B2 x 
1 column vector of errors, and A a matrix of coeffi- 
cients satisfying the model equation at all the consid- 
ered points. This coefficient matrix is of size B2 x N M 2 .  
The vector i contains intensities of both known and un- 
known pixels. If this vector is separated into two vec- 
tors i, (U  for unknown) and i k  ( I C  for known), which 
represent the known and unknown pixel intensities, then 
equation 6 can be written as 

e = Akik + A,i, (7)  

Here, Ak. A, are the coefficient matrices correspond- 
ing to the known and unknown data vectors. They are 
submatrices of the A matrix, made by extracting the 
relevant columns. 

To derive an interpolation, i, must be found. Follow- 
ing Vaseghi [ll], this is done by minimizing the squared 

N frames are used 
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error ere with respect to i,. This yields the solution 

1, = - [ATA,]-'A; Akik (8) 

This equation implies knowledge of the model coefficients 
which must be estimated from the corrupt data. 

The prediction error at the suspected distorted points 
may be weighted to zero so that this 'doubtful' data does 
not affect the estimation process. The general approach 
is to weight the prediction error by some function w(x)  
such that the new prediction equation may be written as 

N 

%(X) = w(x) a k l ( x  -k q k )  (9) 
k=O 

Where a0 = 1.0, and E ~ ( x )  is the weighted error at po- 
sition x. Minimizing the squared error [ew(x)l2 with re- 
spect to Uk then yields weighted Normal equations, which 
can be solved as usual. A weighting function set to 0 for 
all the Blotch positions and 1 otherwise is found to be 
effective in practice. 

The figure 4 shows a photograph of one frame of the GO- 
RN sequence (fig. 3) artificially corrupted. The images 
are 256 x 256 and have been shrunk vertically to fit in 
the space provided. The sequence consists of 3 frames 
in which a main figure (the GORN) undergoes a small 
rotation, zoom and camera pan, amounting to a motion 
of less than 5 pixels per frame. Perfect detection was 
assumed. Only the second frame of the sequence was 
corrupted. All the' interpolators used the same motion 
vectors from the same motion estimator. 

Figures 5 and 6 show the result using ML3Dex [8] and 
3D AR interpolation respectively. The filters presented 
in [2, 11 are not compared since they cannot remove this 
size distortion in a non-recursive implementation. The 
3D AR algorithm used a 9:8 causal model with equations 
set up via the prediction error in the current and next 
frame. A block size of 17 x 17 pixels was used to gener- 
ate the model coefficients via weighted estimation. The 
restorations are virtually identical except for the right 
eye of the creature. The median operation replaces two 
blocks there with a fairly uniform intensity, but the AR 
interpolator restores the texture almost perfectly. It can 
be seen that ultimately, the median filter is not as accu- 
rate as the model based interpolator for textured regions. 
The MSE for each restoration is 5.2 and 1.86 for the me- 
dian and 3D AR processes respectively. 

Figure 2 compares the performance of the Median Vs 
the AR interpolators on the corrupted WESTERN1 se- 
quence (See fig. 1.) The motion estimation was done on 
the degraded sequence. The SDIa detector was used to 
give 80% Correct and 1% False Alarm rate. The curves 
show that the model based approach can give consis- 
tently better results than the Median operation. The 9:8 

model performs the best because it incorporates spatial 
as well as temporal information. Even though ML3Dex 
also does this, it is more sensitive to errors in motion esti- 
mation since it relies more heavily on spatial information 
from surrounding frames. 

CONCLUSIONS 

For detection, the 3D AR model is unlikely to be use- 
ful unless a technique is used to remove the effects of 
outliers [5]. The SDIa detector has been introduced and 
this performs better than previous techniques. For in- 
terpolation, the 3D AR model is able to reconstruct the 
image with high accuracy, and is better able to handle 
fine texture than a median operation. The success of the 
technique for image sequences indicates that the high 
temporal correlation in the image sequence allows the 
AR framework to cope with spatial non-stationarities. 
However, its computational complexity is higher than 
the Median operation and this restricts its usefulness in 
real time applications in the short term. 
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Figure 1: Detection performance. 
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Figure 2: Error in reconstruction 

Figure 3: Original Frame 2 of GORN. Figure 4: Corrupted Frame 2 of GORN. (Miss- 
ing patches are 5 x 5 large.) 

Figure 5:  Restored using ML3Dex. 
-- - 

Figure 6: Restored using 9:8 3D AR model. 
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