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Abstract

We present second steps in the construction of formal models of NAND flash memory, based
on a recently emerged open standard for such devices. The model is intended as a key part of
a pilot project to develop a verified file store system based on flash memory. The project was
proposed by Joshi and Holzmann as a contribution to the Grand Challenge in Verified Software,
and involves constructing a highly assured flash file store for use in space-flight missions. The
model is at a level of abstraction that captures the internal architecture of NAND flash devices.
In this paper, we focus on mechanising the state model and its initialisation operation, where
most of the conceptual complexity resides.
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1. Introduction

The “Grand Challenge in Computing” (Hoare, 2003) (GC) on Verified Software (Woodcock, 2006),
has a stream focussing on mission-critical file stores, such as may be required for space-probe missions
(Joshi and Holzmann, 2005). Of particular interest are file stores based on the relatively recent NAND
flash memory technology, now very popular in portable data storage devices such as MP3 players and
datakeys. Flash memory is seen as ideal for these kinds of missions as it has good physical handling
properties, being non-volatile, shock-resistant and capable of operating under a wide range of pressures
and temperatures. It also has the very valuable property, for space-borne vehicles, of having no moving,
and in particular, no rotating parts.

The data in flash memory is structured into pages that are then grouped into blocks, generally with
some higher levels of grouping in addition. There are two types of flash memory: (i) NOR flash memory,
which can be programmed (written) at byte level, but must be erased at block level, is relatively slow,
but suits random access; and (ii) NAND flash memory with higher speed, where programming must be
done at the page level, making it a sequential access device. The former suits non-volatile core-memory,
whilst the latter is suited to implementing data-stores and file-systems.

This paper is a follow-up to (Butterfield and Woodcock, 2007), which described an initial formal model
of NAND flash memory, based on the recently released specification from the “Open NAND Flash Interface
(ONFI)” consortium (Hynix Semiconductor et al., 2006). That paper focussed on the structural aspects
of the devices, i.e, their internal organisation, and an abstract view of the behaviour of those operations
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deemed mandatory by the standard. The model presented, using the Z notation (Spivey, 1992; Woodcock
and Davies, 1996), was hand-crafted, and intended for human consumption.

The Posix file store pilot project is more complex than the first pilot project, the correctness of the
Mondex smart card Woodcock and Freitas (2006). The top-level specification is rather larger, and the
amount of code will be much greater (Mondex has been implemented using about 700 lines of JavaCard
code). Flash memory is just one component in the Posix project. The others include the Posix interface
itself, the refinement through several layers to programming data structures, principally hash maps and
search trees, and the memory infrastructure, including device drivers, the flash translation layer, and the
model of flash memory itself. The flash memory model is at least as complex as the Mondex problem.

Nevertheless, a key goal of the grand challenge in verification is to develop a repository of mechanically
verified software and hardware, and so to this end we proceeded to mechanise the model, using the
Z/Eves theorem prover (Saaltink, 2004). This paper describes part of the mechanised model, placing
emphasis on how the model had to be elaborated in order to facilitate mechanisation. Here we describe
the reformulation of the schemas describing these devices as well as the process of marking defective
blocks in the device.

It should also be noted that the model presented in this paper is not an abstract specification of a
system to be developed, with a view to avoiding “implementation bias”, in order to allow a developer
freedom to seek the best solution. Instead, we are modelling an existing artefact (the ONFT specification),
and the real devices that already exist or that are likely to come into existence in the near future. As a
consequence there will be clear examples of implementation bias in this model.

This is the first work on modelling flash memory, to the extent of our knowledge. The file system is
implemented using the interface to flash memory. A formal model of flash memory is required to give
semantics to this interface. For example, the correctness of flash memory device drivers relies on a precise
understanding of how the memory actually works. There are many different algorithms used to manage
flash memory, including its mandatory command set, workload-related aging, wear-levelling algorithms,
and memory reclamation (garbage collection). Some of the algorithms involved are intricate and their
correctness is not obvious. This is the first step in constructing a more general domain model of memory
hardware, including new technologies, such as multi-layer flash and phase-change memory.

We briefly describe related work in §2, and then in §4 we describe the internal organisation of NAND
flash devices, while in §5 we discuss the modelling of the initial state of these devices. We finish with a
discission of the future progression of this work in §6.

2. Related Work

There has been a considerable body of work done on formal models of file systems, and the technical,
usage and reliability aspects of NAND flash devices, but there is little published work on the formal
modelling of NAND flash devices at present. Of recent interest, however, is the application of model-
checking techniques to Flash memory design (Kim et al., 2008) in collaboration with Samsung, one of
the world’s largest flash memory manufacturers. This looked at verifying a device-driver operation, using
model-checking on a model of a small flash device, and following this up with tests on a large real
flash device. A key point made in (Kim et al., 2008) is that testing was proving totally inadequate as a
verification technique for their software and it was only the introduction of model-checking techniques
that allowed the project to complete satisfactorily.

There has been a considerable body of work done on formal models of file systems, and the technical,
usage and reliability aspects of NAND flash devices.

Formal aspects of file systems have covered specifications (Morgan and Sufrin, 1987; Meira et al., 1994;
Heisel, 1995; Place, 1995) and approaches towards their verification (Arkoudas et al., 2004). Some recent
work has also looked at applying model-checking techniques to entire file systems (Yang et al., 2006), with
considerable success. The DAISY file system, implemented in about 1200 lines of Java, was used in 2004
as a case-study for a special joint CAV/ISSTA event Freund and Qadeer (2004). Intermediate findings
on using Promela/SPIN and Petri-Net/SMART to check part of the Linux file system is reported as a
technical report Andy Galloway and Liittgen (2007). At another extreme, a exercise applying software
model-checking to an entire Linux distribution Schwarz et al. (2005) uncovered 108 exploitable bugs, of
which 97 were associated with file system vulnerabilities.



There has been a wide range of material published regarding the implementation of file systems on
NAND flash memory, most of which utilise some form of log-structuring (Kim and Lee, 1999; Woodhouse,
2001; Manning, 2002; Intel, 2004; Lim and Park, 2006). Of interest to a potential space-borne application
are techniques that use NAND flash to implement low-power file caches for mobile devices (Marsh et al.,
1994; Kgil and Mudge, 2006). A key feature of these schemes is the need to cope with the accumulation
of errors over time, a mechanism which is very well understood (Aritome et al., 1993; Sikora et al., 2006).

3. Z/Eves

The choice of Z for the Posix interface was made for legacy reasons, as the original Morgan & Sufrin
specification (Morgan and Sufrin, 1987) was in Z. It seemed most straightforward to stay in one language
so as to avoid a semantic gap, leaving a choice of either Z/Eves (Saaltink, 2004) or ProofPower-Z as a
theorem prover. Given the experience in using Z/Eves, this was adopted for tool-support.

We give a brief overview of the Z/Eves theorem prover Saaltink (2004). The prover works on a goal
predicate, which is transformed by proof commands into a logically equivalent goal — hence it effectively
supports equational reasoning. This has an impact on how witnesses are used, so for example, let w be a
witness for goal G = 3z e P(x), then applying this witness results in the new goal P(w) V 3z e P(x),
rather than just P(w).

Z-Eves applies a high degree of automation in many of its proof steps, usually exploiting various
rewrite and reduction techniques, driven by a database of rules. These commands traverse the goal, left-
to-right, top-to-bottom, and either transform sub-parts, or extends a context contain predicates that can
be assumed true(e.g. goal P = @ will transform to context P and goal Q).

The rules come from a variety of sources, most notably toolkit libraries supplied with the tool, and
from theorems posited and proved by the users themselves. A variety of mechanisms are provided to give
the user control over rule usage:

Rule enabling/disabling Theorems and predicates in schemas can be labelled as named rules (keyword
rule), and marked if so desired as disabled. An enabled rule is applied automatically, if applicable,
by the various automation steps, whereas the use of a disabled rule has to be explicitly invoked by the
user.

Assumption Rules Any rule of a certain form, containing a trigger, can be labelled with the keyword
grule. If a trigger is encountered, the rule, or a suitably modified form of it, is added to the context,
or applied to the trigger.

Forward Rules An theorem whose form is an implication (P = @) can be designated a forward rule,
using the frule keyword. If predicate P is added to the context, this triggers the rule, which also
extends the context with Q.

For further details, see the Z/Eves Reference Manual Meisels and Saaltink (1997). In Z paragraphs, we

can add rule annotations as special “comments”, (e.g. {(disabled rule dDataElems)) ).

4. Flash Memory Structure

In this section we present the various layers representing the way NAND flash devices are organised.
At the top level, a NAND flash chip, or Device, is composed of a number (1-4) of independent cores, each
with their own off-chip communication facilities, called Targets. Within a target, there are a number (1-4)
of Logical Units (LUNs) which can process commands concurrently, but which share communication links
with the outside world(see Figure 3, p7).

The memory inside a LUN is arranged as a large number (1024-4096) of Blocks, each of which is itself
a number (32-96) of Pages. In addition, a LUN contains a special page called the Page Register (PR),
used as a staging post for data transfers, and a single-byte Status Register (SR), used to report progress
and failure of memory operations(see Figure 2, p6).

A page is an array of Bytes, conceptually split into two parts: the main page whose size is a power of 2
(1024,2048), plus a spare part typically 16-64 bytes in length(see Figure 1, p5). The purpose of the spare
section is to facilitate error detection and correction, as well as to play a role in marking defective blocks.

We now present the Z model of this structure, working from the bottom level upwards.



4.1. Data Unit

The basic data unit in a flash memory is either a Byte (8 bits), or a Word (16 bits), depending on the
type of device. We are going to abstract away from this detail, and assume a given type called Data that
denotes the basic information unit. From previous experience in modularising operations in schemas (i.e.,
the Mondez case-study (Woodcock and Freitas, 2006)), we need witnesses in order to discharge existence
proofs, and the ONFI model requires at least two distinguishable Data values zeroed and erased. To this
end we introduce a given set Datum, where Data is defined as its non-empty subset, with the added
invariant on Data, required later on, that at least two elements exist:

[Datum]

Data : P, Datum
{(disabled dDataElems ) 3d1,d2: Data e d1 # d2

We add a type weakening lemma indicating that elements of Data are actually Datum. This is important
to increase proof automation and avoid problems with Z’s maximal type inference.

theorem grule gDatalsDatum (§B)
d € Data = d € Datum

The Z/Eves keyword grule is used here to indicate that this is to be used as an assumption rule, so
any addition to a proof context asserting membership in Data also adds a context assumption regarding
Datum membership. The notation (§B) indicates that the proof is to be found in Appendix B.

4.2. Modelling Memory Structure

The structure of an ONFI-compliant NAND flash device has five levels of hierarchy, but we cannot
abstract away from details of this hierarchy because each level captures some boundary of possible be-
haviour, with implications for how various operations can be interleaved.

A flattened structure, as presented in the ONFI standard, would be quite complex to reason about,
therefore, we have chosen to use promotion (Woodcock and Davies, 1996, Chp 13). This gives benefits in
the separation of concerns within the proof effort required for operations, particularly the precondition
calculations. Also, as many operations over the memory space affect different entities (i.e., operations
over pages, blocks, or logical units), it seems a quite natural choice for promotion. A beneficial side-effect
is that the specification becomes easier to follow and read.

In most cases, the promotion is relatively trivial, as each layer of the state component has nothing else
but the part to be promoted, and hence there is no need to promote to a schema binding (Woodcock and
Davies, 1996, p152). Nevertheless, an interesting discovery was that, although the operations are suitable
for promotion, one of them requires quite an elaborate definition. In Z, promotion is usually defined
when local operations are used pointwise within some global state. Due to the heterogenous nature of
one flash memory operation, we have to define what we call bulk promotion. That is, we promote local
state changes (e.g., at page, block, logical unit, and target levels) into the global flash device at multiple
addresses (e.g., all "bad” and all ”good” addresses) at once. To the extent of our knowledge, this kind of
use of promotion in Z is new.

4.2.1. Pages

A page is an array of data items, consisting of a main page, plus some “spare” locations. (Figure 1).
This is the basic unit for writing, or programming. The spare locations are designed to assist with error
detection and correction. The page size (pageCount) must be a power of two!, and the column address
bits (colAddrSize) must be sufficient to address both the main page as well as the spare area. The page
count is not a global constant, but is in fact part of the (fixed) state of an ONFI device that characterises
it.
1

memory page sizes are traditionally always a power of two, as this optimises the use of the address bits, whose range is
always a power of two.
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Fig. 1. NAND Flash Structure (Bottom levels)

In Z/Eves we first have to define a function power for integer exponentiation, and prove some con-
sistency theorems about the existence of integers related by this function in various ways, as well as
useful rewriting rules. Function power is defined inductively on the size of the exponent, and we omit it
here. Full details about the model and the proofs can be found in Freitas (2007). We can then capture
the relationships between page and spare sizes, and the number of bits required to address them in a Z
axiomatic definition.

pageAddrSize, colAddrSize, pageCount, spare : Nq

(( disabled rule dPageCount )) pageCount = power (2, pageAddrSize)
(( disabled rule dSpareRange )) pageCount + spare < power (2, colAddrSize)

These rules are marked as disabled to prevent them being applied automatically by the Z/Eves prover,
and so have to be explicitly invoked if required. In Z, axiomatic definitions may introduce inconsistencies,
and these contradictory axioms may lead to proofs of other inconsistent properties. To avoid this, it is
good practice to add consistency theorems for all axiomatic definitions. For instance, before introducing
an axiomatic definition, one needs to prove an existential conjecture about the axiom being introduced.
If the conjecture is proved, then the axiom is consistent with respect to the preceding specification.

We want to define an axiom on column addresses to represent the addressable space of a page. For this,
first we prove an existential conjecture ensuring that column addresses are not empty. This is possible by
the definition of the constants above, since they represent strictly positive natural numbers.

theorem tColAddrConsistency (§B)
Jeca:TF, Neca=0..pageCount 4 spare — 1

We can now give an axiomatic definition of the (finite) set of all column addresses:

colAddr : F; N
(( disabled rule dColAddr ) colAddr =0 .. pageCount + spare — 1

As before for Data, to aid with automation, it helps to prove that the column address maximal type is Z:

theorem grule gColAddrMaxType (§B)
x € colAddr =z €7

This makes it easier, for instance, to reason about the use of power, defined on Z, when applied to values
of type colAddr. Now, we define addressable data as a total function from column addresses to data:

AddrData == colAddr — Data

Finally, we define a Page as containing addressable data ranging over the available column addressing
space. We use schemas since schema bindings are easier to automate than the usual cross products of
various addressing spaces, as used in the original published model (Butterfield and Woodcock, 2007).

Page = [info: AddrData]

At this point we have defined a page as a mapping from column addresses to data items. Similarly, we
also have to define a block as a mapping from page addresses to pages, a logical unit (LUN) as having
a mapping from block addresses to blocks, a target as having a mapping from LUN addresses to LUNs,
and finally (!) a device as a mapping from target identifiers to targets. In each case the relationships
between addresses and entities has to be set up with the sequence of axioms and consistency theorems
shown above. In the sequel we do not describe all of this but simply concentrate on the parts of Z that
differ at the various levels of hierarchy. The complete details, together with proof scripts are available as
a technical report (Freitas et al., 2007).
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Fig. 2. NAND Flash Structure (Middle levels)

4.2.2. Blocks
A block is a collection of pages, and is the smallest unit to which an erase operation can be applied.
The number of pages per block is constrained to a multiple of 32.

pagesPerBlock : Ny
pageAddr : F; N

(( disabled dPagesPerBlock ) In : N; e pagesPerBlock = 32+ n
(( disabled rule dPageAddr )) pageAddr =0 .. pagesPerBlock — 1

AddrPage == pageAddr — AddrData

Block = [pages : AddrPage]

Similarly to Page, Block is given as a schema with a function on the appropriate addressable space.

4.2.3. Logical Units

A logical unit (LUN) is the smallest sub-entity within a device that is capable of operating indepen-
dently. It comprises a collection of blocks, along with at least one page-register and a status register. The
page-registers are used as temporary locations while data is being transferred to and from the LUN. (see
Figure 2). For present purposes we assume a single page-register, as ONFI is not specific on this issue
(Hynix Semiconductor et al., 2006, p21).

The status register has 8 bits, of which 5 bits currently have defined meanings. Two of these (FAILC,
ARDY) are out of the scope of the current model leaving the following three to be considered: FAIL, set
if a program or erase operation failed; RDY, set when the LUN is ready to perform a command; and WP,
the write-protect flag. Note that the FAIL flag is only valid when RDY is being asserted, while WP is
always valid.

Flag = fail | ready | writeProtected
Status == P Flag
validStatus == {s : Status | fail € s = ready € s}

The power-up status is that the device is not ready and is write-protected. Once reset (as a result of
either power-up or the reset command) is complete, then the status becomes ready and write-protected.
We model LUNs as follows:

blocksPerLUN : Ny
blockAddr : F; N

{( disabled rule dBlockAddr )) blockAddr =0 .. blocksPerLUN — 1
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Fig. 3. NAND Flash Structure (Upper levels)

AddrBlock == blockAddr — AddrPage

LUN = [blocks : AddrBlock; SR : Status; PR : Page]
LUNSs are addressable blocks together with the extra page register and status flag.

4.2.4. Targets

A target, within a device, is the smallest unit that can communicate independently off-chip. It is made
up of one or more logical units.

‘ LUNsPerTarget : Ny

lunAddr : F; N
{( disabled rule dLunAddr )) lunAddr =0 .. LUNsPerTarget — 1

AddrLUN == lunAddr — LUN

Target = [luns : AddrLUN ]
We then view a Target as a map from LUN addresses to LUNs.

4.2.5. Flash Devices

A device (single NAND flash chip) encapsulates a number of targets, numbered from 1 upwards. Devices
are supplied with a guarantee from the manufacturer regarding an upper bound on the number of bad
blocks present. We capture this guarantee as the natural number maxBadBlocksShipped.

‘ targetsPerDevice : Ny

targetlds : F; N
{( disabled rule dTargetIds )) targetlds = 1 .. targetsPerDevice

IdTarget == targetlds — AddrLUN

— NANDFlashDevice
targets : IdTarget;
maxBadBlocksShipped : N
badBlocks : targetlds < (lunAddr x blockAddr)

badBlocks € F (Z x (Z x 7))
# badBlocks < maxBadBlocksShipped

When a device is being used, the application has to maintain a table of bad block addresses for each
LUN within all targets. The table size is bounded by the maximum number of blocks, and hence must be



finite. As described by ONFI (Hynix Semiconductor et al., 2006, p24), there are algorithms that detect
and create this initial table of bad blocks. We abstract from this step and assume this table will be given
to the defect marking operation defined below (see Section §5.2). When a device is shipped, it contains
an internal representation of the initial state of this table, as the bad blocks are marked as such by the
manufacturer.

4.3. Memory Addressing

The address data sent into a device conceptually splits into two parts, the row and column addresses.
The column address corresponds to an index into a page, while the row address identifies which page is
currently being accessed. The row address is itself obtained by concatenating the LUN, block and page
addresses in that order. We avoid using tuples as this requires the use of multiple tuple projections when
mechanised, so we define equivalent schema representations for the basic address components, and then
use schema conjunction to build up the composite addresses:

ColAddr = [ca: colAddr]
PageAddr = [pa: pageAddr]
BlockAddr = [ba : blockAddr]
LUNAddr = [la: lunAddr]

Targetlds = [tid : targetlds]

RowAddr = (LUNAddr A BlockAddr N PageAddr)

[
[
[
[
[
DataAddr = (BlockAddr A PageAddr N ColAddr)
(
Address = (RowAddr A DataAddr)

The use of DataAddr in Address rather than the full expanded version as
Address = (RowAddr N (BlockAddr N PageAddr N ColAddr))

is simply to reduce the amount of schema expansion required in the prover — it has no semantic signifi-
cance.

Proofs involving bulk promotion repeatedly require the proviso of witnesses for certain types of address.
Thus, we prove some theorems about the non-emptiness of these address spaces, and that the mappings
from addresses to addressed entities are total within the specified addressing spaces.

theorem tExistsColAddr (§B)
Jeca : colAddr e true

theorem frule tBlockPagesAreTotal (§B)
Y Block e pages € pageAddr — colAddr — Data

Here we also indicate, using frule, that this theorem should be used as a forward proof rule. This
means related schemas do not need to be expanded in order for the prover to infer the fact the theorem
establishes. This allows surgical expansion of specific schemas whilst proving more complicated goals,
such as precondition calculation or refinement simulations. The result of this is that the list of hypotheses
are considerably smaller, hence making the whole proof exercise easier to carry out.

4.4. Promoting Memory Entities

We detail below how the framing schemas for the promotion at various levels are laid out. These
schemas define how local changes at various levels can be mapped into the global state one or more levels
above. That is, how pages are promoted into blocks; blocks into LUNs; LUNs into targets; and targets
into devices.

The promotion here is quite subtle, yet trivial. It is subtle because it is not like a normal promotion
where sets of bindings are identified, as here we are using promotion to “un-flatten” different addressable



spaces. It is trivial because the local states are simple bindings with one component (except for logical
units), so we just project the appropriate element, given the right address. As available operations affect
specific parts of the state, this layered approach proves to be clear and elegant, yet simple and easy to
mechanise. Different concerns are distinctively and modularly separated, whilst proof scripts are quite
trivial for the complexity of the data type.

First, we “promote” data within a page given a column address. Although this is more projection rather
than promotion, bearing in mind our abstraction from Byte and Word as fixed-size sequences of bits into
Data. We could replace PhiPD with a more concrete (raw) data type.

__ PhiPD
A Page; ColAddr?; d!: Data

info’ = info® { ca? — d!'}

We now prove the following as lemmas:

info’ ca? = d!
{ca?} qinfo’ = {ca?} <info

That is, the data output (d!) at the given column address (ca?) comes from the updated pages (info’),
while the data associated with the remaining column addresses within the page remain unchanged. Next,
we do the same for pages within a block given a page address. As the Page schema only contains one
element, we avoid the need to promote into bindings and do it directly into info’ instead. The before state
of Page is linked with the corresponding before state of Block, since the page at the given address (pa?)
within the block pages is pages pa? = info.

__ PhiBP
A Block; A Page; PageAddr?

pages pa? = info
pages’ = pages & { pa? — info’ }

Again, we promote blocks within a logical unit given a block address, and without referring to Block
bindings but to pages’ directly.

— PhiLB
A LUN; A Block; BlockAddr?

blocks ba? = pages
blocks’ = blocks © { ba? — pages’ }

Logical units are promoted within a target given a LUN address. This is the only “traditional” promotion
(Woodcock and Davies, 1996, Chp.13) in the sense that we are mapping lunAddr to LUN bindings. That
is the case because logical unit schemas also have status and at least one page register, instead of just a
function addressing the space where the various levels are laid out.

— PhiTL
A Target; ALUN; LUNAddr?

lunsla? = 0 LUN
luns’ = luns & { la? — § LUN' }

We now use the schema version of memory addressing to define data operations over a logical unit of
a target:

PhiTargetData = (PhiTL A PhiLB A PhiBP A PhiPD A Address?)

That is, given a full Address? as input, which contains column, page, block, LUN, and target addresses,
we can perform, in this case, a page-level operation. Similarly, for operations at other levels, we provide
varied versions of conjoined schemas representing the right framing with corresponding addressing.



4.5. Structure Summary

The model as presented matches very closely the levels of hierarchy described in the ONFI specification,
and it may appear that: (i) this is hierarchy for hierarchy’s sake; and (ii) this is at too low a level for
formal modelling. Nevertheless, each step of the hierarchy captures a distinct change in how the device is
accessed and operated, and awareness of these distinctions is important when developing systems where
performance is crucial. The ONFI specification also gives descriptions of finite state machines (FSMs) that
capture the behaviour of targets and LUNs, viewing these as separate machines communicating with one
another. By capturing the target/LUN distinction at this level, we facilitate future work in showing that
the FSM view is a refinement of this one. At the level of this model, the only real complexity is the nesting
of the various addressing spaces and their mechanisation. This is one example of the implementation bias
alluded to in the introduction.

5. Device Initial State

When shipped from the factory, a device will be completely erased (all logic ‘1’s). The only exception
to this is for those blocks identified as bad at manufacture time. These blocks will have zeros programmed
into specific locations of the spare parts of either their first or last pages. We need to introduce the notion
that Data has two distinct values zeroed and erased, among others.

Here there are three instances of Data, with erased and zeroed being different, and this was why Data
was introduced as having at least two distinct members. Bad block marking is nondeterministic: either
the first or the last page address of a block is marked. Also, within the chosen page, any column address
in the spare area of a page can be marked, but only one such column address is marked by being zeroed.
Therefore, we do not know what the value of the other (not chosen) spare column addresses are. In our
original specification, we assumed non-zero values in this case to be erased, but were unable to complete
the proofs. The inherent assumption that non-zeroed values were in fact erased was too strong, and so
we had to introduce a third possibility, that the value might be arbitrary and unknown (any).

erased, zeroed, any : Data
{(rule dInitalDataRel )) — erased = zeroed

For mechanisation, we start by modelling a device with a manufacturer’s quality guarantee (i.e., bad
block maximum), where the bad-blocks table is left undefined, as we do not yet know what the table is.
Subsequently we define a defect marking operation that captures the true state of a shipped NAND flash
device.

First we initialise a device with a quality guarantee.

__ NANDFlashDevicelnit
NANDFlashDevice’
quality? : N

mazBadBlocksShipped’ = quality?

We then capture the fact that this guarantee on maximum bad blocks never alters for a given device.

__ShippedNANDZFlash
A NANDFlashDevice

mazBadBlocksShipped’ = maxBadBlocksShipped

At this point we can prove precondition theorems for the schemas characterising these defect-free devices.

theorem tNANDFlashDevicelnitPRE (§B)
Y quality? : N e pre NANDFlashDevicelnit

theorem tShippedNANDFlashPRE (§B)
V NANDFlashDevice e pre Shipped NANDFlash

10



Finally, targets are promoted within a shipped device (i.e., those initialised devices with maximum bad
blocks set).

__PhiDT
Shipped NANDFlash; A Target; tid? : targetlds

targets tid? = luns
targets’ = targets & { tid? — luns’ }

5.1. Precondition Proof Constants

A precondition calculates the exact set of before-states in which an operation will re-establish the
state invariants in any after-state. This involves a theorem in which the after-state and outputs are
existentially quantified, and whose proof therefore requires witnesses to these existential values. We supply
these witnesses as theta and lambda terms that return particular instances of interesting data structures,
layered according to our definitions above.

ANY_PAGE_INSTANCE == (Aca: colAddr e any)

ERASED_PAGE_INSTANCE == (Aca: colAddr e erased)

ERASED_BLOCK_INSTANCE == (Apa : pageAddr « ERASED_PAGE_INSTANCE)
(

ERASED_LUNBLK_INSTANCE == (Aba : blockAddr e
FERASED_BLOCK_INSTANCE)

ERASED_PR_INSTANCE == OPage[info := ERASED_PAGE_INSTANCE)]
ERASED_LUN_INSTANCE == OLUN|PR := ERASED_PR_INSTANCE,

SR := { ready },

blocks := ERASED_LUNBLK _INSTANCE]
ERASED_TARGET_LUNS_INSTANCE == (Ala: lunAddr e

ERASED_LUN_INSTANCE)
ERASED_TARGET_INSTANCE == (Atid : targetlds e

ERASED_TARGET_LUNS_INSTANCE)

The assignments to #-expressions above are syntactic sugar in Z/Eves for expression (rather than name)
substitution

34 : AddrData | i = ERASED_PAGE_INSTANCE e 6 Pageli/info]

With these constants, it is now possible to provide witnesses for the specific NAND layers in the var-
ious precondition proofs that follow. These constants are just syntactic sugar for a somewhat larger
A-expression representing, say, erased addressable targets (i.e., all LUNS within it are erased, which leads
to all blocks and pages to be erased as well).

5.2. Defect Marking

The flash memory manufacturing process is not perfect, and so virtually every device shipped will have
some bad blocks. The manufacturer tests each device and marks the bad blocks by writing zeros into key
locations within the defective blocks. All the good blocks are erased (contents set to all ones).

We model this bad block marking as the operation NANDFlashMark whose input is a set of bad
block addresses, and whose result is a NAND flash device with those blocks marked as defective, and the
complementary blocks marked as erased. This heterogeneous nature of the operation, together with the
fact that it updates different parts of the (layered/promoted) states at many points (in bulk) makes this
a rather complex operation overall.

Let us first initialise the smallest addressable space: a Page. It is defined by the next four schemas
below.
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5.2.1. Marking data within a page

At first, we define a schema used as the signature for the declaration of the Page marking operations.
This is a useful separation of concerns in case we need to change this signature in the future due to
changing requirements. That is, in case of a change in the operation signature, only one place needs to
be changed, and hence both the definition of further operations and the related proof scripts will be less
affected.

PageMarkOp = [A Page]
Usable pages are all those with their addressable space erased.

__ PageMarkErased
PageMarkOp

YV ColAddr e info’ ca = erased

The bulk promotion is clearly visible in the universal quantifier above. When one needs to prove the
precondition of such an operation, this universal quantifier appears within the existential quantifier of
the precondition theorem which becomes a hindrance within the proof, which in itself is quite complex.
Thanks to the way the constants above were layered, and the fact that automation for A-expressions is
quite high, the (initially intractable) proof becomes much more amenable.

Bad pages are those with at least one zeroed data in its spare area (i.e., the column address beyond
pageCount). Also, it must be a specific page within a block (i.e., either first or last).

Again to separate concerns, and make defining predicates and related theorems more readable, we add
constants that pinpoint what the domains are for bad column addresses within a page, and page addresses
within a block.

BAD_COLADDR_DOMAIN == {bca : colAddr | bca > pageCount }
FIRST_PAGEADDR == 0
BAD_PAGEADDR_DOMAIN == {bpa : pageAddr | bpa = FIRST_PAGEADDR V

bpa = pagesPerBlock — 1}

Rules like the ones below are crucial in order to allow automatic proof without expanding the definitions,
when abbreviations like the above are used.

theorem grule gBadColAddrDomainMaxType (§B)
BAD_COLADDR_DOMAIN € PZ

theorem rule rBadColAddrDomainElem (§B)
x € BAD_COLADDR_DOMAIN = x > pageCount

We need weakening rules to keep BAD_XXXADDR_DOMAIN disabled without affecting further proofs,
e.g:

theorem rule rBadColAddrDomainIsColAddr (§B)
z € BAD_COLADDR_DOMAIN = z € colAddr

It is important that bad addressable domains are not empty, otherwise, it is impossible to mark a particular
page as bad, so we prove witness theorems, for example, such as:

theorem rule IPageCountInBadColAddrDomain (§B)
pageCount € BAD_COLADDR_DOMAIN

theorem grule gFirstPageAddrMaxType (§B)
FIRST_PAGEADDR € 7Z

theorem rule IBadPageAddrDomainElem (§B)
FIRST_PAGEADDR € BAD_PAGEADDR_DOMAIN

12



We also state some general theorems, useful in precondition proofs of each stage where we need to provide
witnesses, such as:

theorem tExistsBadColAddr (§B)
3 ColAddr e ca € BAD_COLADDR_DOMAIN

theorem tExistsBadPageAddr (§B)
3 PageAddr e pa € BAD_PAGEADDR_DOMAIN

As the first and last pages of a block are where defect marking is done, we actually need a theorem that
deals with the pathological case of a block that has only two pages:

theorem tPageAddrDomainBounds (§B)
if (pagesPerBlock > 2) then
(3 PageAddr e pa ¢ BAD_PAGEADDR_DOMAIN)
else
pageAddr = BAD_PAGEADDR_DOMAIN

We can now characterise a marked bad page:

— PageMarkBad
PageMarkOp

3 ColAddr | ca € BAD_COLADDR_DOMAIN e info' ca = zeroed

In order to determine which pages get marked as bad we need a more global view, namely that of the
bad blocks within a given LUN. Nevertheless, with the assistance of about six theorems and three further
abbreviations, we can prove the precondition:

theorem tPageMarkBadPRE (§B)
V Page o pre PageMarkBad

The theorems and abbreviations, related to A-expressions for bad pages/blocks/luns, are similar to those
above for erased instances.

5.2.2. Marking pages within a block
Once we know how to defect-mark a page, we “promote” it to the defect marking of blocks.

BlockMarkOp = [A Block ]

We initialise page addresses (PageAddr) by marking them accordingly as good or bad and associating such
page information with the pages’ the block represents. The addressable page (pa?) chosen is initialised
with PageMarkBad or PageMarkFErased, accordingly.

BlockMarkBad = (3 PageMarkOp; PageAddr? | pa? € BAD_PAGEADDR_DOMAIN e
PageMarkBad N PhiBP)

BlockMarkErased = (3 PageMarkOp; PageAddr? | PageMarkErased e PhiBP)
We can prove the preconditions of these schema below
theorem tBlockMarkErasedPRE
V Block e pre BlockMarkFErased

theorem tBlockMarkBadPRE
V Block e pre BlockMarkBad

5.2.3. Marking blocks within o logical unit

A LUN mark operation requires a bulk promotion to take place. Again, bulk here in the sense that
more than one point of the local state of pages’ for the Block is being updated within the global state of
blocks for the LUN, where the points are all those within bas?.
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__ PhiBulkLB
A LUN; Block'; bas? : P blockAddr

blocks' = blocks & { ba : bas? e (ba, pages’) }

We must have the format above for constant lambda function automation, as the alternative, { ba :
blockAddr | ba € bas? @ ba — pages’ }, is much harder to prove.

At the LUN level we are finally in a position to provide a input badBA? that describes the blocks found
to be bad. We need a further invariant stating that good blocks (i.e., all those blocks addressed outside
badBA?) have no zeroed column in any page. That is important, otherwise we could wrongly confuse good
blocks with bad. This is an interesting invariant since, although quite obvious, it only appeared during
precondition proofs, and is not mentioned in ONFi.

_ LUNMarkSig
LUN; badBA? : P blockAddr

Y DataAddr; Block; Page |
pages = blocks ba N
info = pages pa N\
ba ¢ badBA? e

info ca # zeroed

We then define schemas to assist in the description of marking bad blocks in LUNS. It took a degree of
experimentation to establish the best schema layer to declare the badBA? input. So we we developed a
general marking schema, with the declaration signature separate, so keeping changes to a minimum, in
particular minimising changes to proof scripts.

LUNMarkOp = [ALUN; badBA? : P blockAddr]
We then capture that the page-register is not affected by such bad-block marking, because it is not

implemented with the kind of floating-gate technology that is prone to the kind of defect currently under
consideration.

— LUNMark0
LUNMarkOp

LUNMarkSig
(3 PageMarkOp | PageMarkErased PR’ .info = info’ A PR.info = info)

Finally, blocks in badBA? are marked as bad, whilst the rest are erased:

_ LUNMarkBad
LUNMark0

(3 BlockMarkOp e BlockMarkBad A PhiBulkLB[badBA?/bas?])

— LUNMarkErased
LUNMark0

(3 BlockMarkOp e BlockMarkErased A PhiBulkLB[bas? := blockAddr \ badBA?])

The preconditions for these have also been successfully proven, but we omit further details.

5.2.4. Marking logical units within a target
To do defect marking at the target level we need to supply a relation badLBA? between LUN and block
addresses:

TargetMarkOp = [ATarget; badLBA? : lunAddr < blockAddr]
We can then define the bulk promotion of LUN blocks within a target.
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— PhiBulkTL
A Target; LUN'

luns’ = luns & { la : lunAddr e (la,0LUN') }

__ TargetMark
TargetMarkOp

luns' = luns & (M la : {z : lunAddr | z € dom badLBA?} e
(3LUNMarkOp | badBA? = badLBA?({la} ) ¢ LUNMarkBad))
U
(Ma : {z : lunAddr | = € dom badLBA? } e
(3 LUNMarkOp | badBA? = {} ¢ LUNMarkErased)

Despite the above override covering the whole of lunAddr, and hence being a total function, unfortunately
this format is not helpful to use lambda abstraction rules about constant functions. Instead, to prove this
precondition we need to explicitly show that such set is indeed (partial) functional.

luns’ = luns @ { la : lunAddr; LUN' |
if (la € dom badLBA?) then
(3 LUNMarkOp | badBA? = badLBA?( {la} ) ¢ LUNMarkBad)
else
(3LUNMarkOp | badBA? = {} ¢ LUNMarkErased) }

This complicates the proof considerably. To avoid that, we rewrite the predicate above as a \-expression:
TargetMarkSig = [ Target; badLBA? : lunAddr < blockAddr |

which is similar to TargetMarkOp, but without the after-state

5.2.5. Marking targets within a NAND flash device
Finally, we get to the level where we can describe defect marking at the device level, here given an
input badTLBA? relating target-ids to bad LUN/block address pairs:

__NANDFlashMarkOp
Shipped NANDUFlash
badTLBA? : targetlds < (lunAddr x blockAddr)

badTLBA? € F (Z x (Z x 7))

and the corresponding bulk promotion:

__ PhiBulkDT
Shipped NANDFlash; Target'

targets’ = targets @ { tid : targetlds e (tid, luns’) }

As the bad blocks within the Shipped NANDFlash device are finite due to its limit on the number of
allowed bad blocks, we also need to add the constraint that our table of bad blocks is finite. We define
the signature as:

__ NANDFlashMarkSig
NANDFlashDevice
badTLBA? : targetlds < (lunAddr x blockAddr)

bad TLBA? € F(Z x (Z x 7))
# badTLBA? < maxzBadBlocksShipped

and the defect marking operation itself:
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_ NANDFlashMark
NANDFlashMarkOp

badBlocks' = badTLBA?

V Targetlds?
(3 TargetMarkOp | badLBA? = badTLBA?( { tid? } ) e TargetMark N PhiDT)

At last, we state the precondition for the device level marking operation:

theorem tNANDFlashMarkPRE
VY NANDFlashMarkSig e pre NANDFlashMark

5.3. Comparison against the original model

The original model as presented in Butterfield and Woodcock (2007) described the state of a shipped
device with bad blocks marked using the following two schemas:

—_ShipFlash
ANANDFlash
quality? : N
badblocks? : F(Tgtld x LUNAddr x BlkAddr)

#badblocks? < mazbad’
mazbad’ = quality?
Vit: Tgtld; ¢: LUNAddr; b: BlkAddr e
if (,0,) € badblocks?
then defectMarked(device’, ¢, ¢, b)
else (device’ (t)(£)).blks(b) = erasedBlk

A defective page is indicated by having a zeroed data item somewhere in the spare area of its first or last
page:

__defectMarked
NANDFlash

Ip : PageAddr; c: ColAddr e (p =0V p = pagesperblock — 1)
A ¢ 2> pagecount
A (dev(t)(1)).blks(b)(p)(c) = zeroed

In this model, entire addresses were built up as products of the various components: row, page, block,
LUN and target, and the device was effectively modelled as as a curried mapping from these address
components to state values. However, as automation using Z/Eves proceeded,it became clear that this
structure, deeply nested in the way that it was, made the proof process very cumbersome, mainly because
of the continual need to expand and unpack parts of the model in order to carry out proofs.

The solution, described in this paper, was to extensively re-factor the model, making use of schemas
(and particularly schema conjunction) and promotion to capture the hierarchical structure of both the
state and the address spaces.

6. Future Work

This is still only early work and there is a lot more to be done. Formal models will be needed to
capture the fact that individual targets within a device can be operating concurrently, with interleaving
of data-transfers. Also, the behaviour of these devices is described in the specification document using
two finite-state machines, one for target behaviour, the other for LUN activity. A model of these needs
to be shown as a refinement of the abstract operation model presented in this paper. This requires that
the existing operators need to be expressed in terms of basic host/device communication actions, which
transfer a single item of information, such as a command, address or data byte/word. The model needs
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to be extended to cover the non-mandatory operations of the standard, many of which provide improved
performance, via various forms of caching and interleaving. It is to be anticipated that any file store will
make extensive use of these in order to meet mission performance targets. In many cases a useful model
of these will require that the operations are broken down to a smaller granularity.

NAND flash devices are prone to the unrecoverable failure of blocks over time, through what basically
amounts to an ageing process, that is strongly workload related. This requires so-called “wear-levelling”
algorithms to minimise the failure rate, as well as some form of fault tolerance to cope with the failures
that do occur. This requires us to model failure properly, with a particular emphasis on the fact that such
failures have a persistent and lasting effect.

We also need to look upwards (in an abstract sense) from the NAND devices to model how they are
used to give an illusion of ideal behaviour. Whilst the spare area associated with each data page is there
to assist with error detection and recovery, the flash devices themselves have no fault-tolerant mechanisms
built-in. Instead the devices have to be interfaced to a controller that manages the faults, and presents
a fault-free model of data storage to the level above. A good overview of these issues is Gal and Toledo
(2005), which surveys algorithms for flash memory, and will be a key reference for developing models of
the file store software levels closest to the hardware.

7. Conclusions

We have described the process of automating part of a hand-crafted Z model of NAND flash memory,
using the Z/Eves theorem prover. The mechanised model described here covers the modelling of the
NAND flash memory device structure, quite complex in itself, and describing an initialisation operation
that characterises the way any real device has bad blocks, scattered at random, but marked by the
manufacturer in a certain way. Modelling the patternless nature of this marking proved to be quite a
challenge, with the need to explore new forms of promotion.

The key lessons learnt here have been the need to both (i) understand the Z idioms that work best
with that prover and (ii) to build up a collection of theorems and lemmas tailored to the proofs that are
required, both by the formal methodology involved, as well as the nature and structure of the model.
Examples of the former are the use of schema conjunction to describe compound address structures,
rather than nested products. For the latter, a series of theorems were required to deal with the issue of
maximal types in Z — Z only has the integers as a basic type, so any variable constrained to belong to a
defined subset of the integers, ultimately has to be described as being of integer type, with an associated
(invariant) predicate.

However, there is an interaction between these two key lessons: the preference for schema conjunction
over nested products relies on the following two observations: First, the schema calculus is an integral
part of the Z language and methodology, so it is not surprising that it is well supported by the prover.
Secondly, the difficulty in using nested product arose largely due to the lack of useful theorems about
pairs, triples, pairs of pairs, etc., in the mathematical toolkit supplied with Z/Eves. The issue highlighted
by these observations is that the useability of a theorem prover is determined by the collection of pre-
packaged theorems and lemma with which it is supplied, plus any extra material added in by users. The
key point to take home is that different tools, even if all based on first-order predicate calculus (say), may
be quite different in their ability to prove any given theorem.

We draw some more general lessons from all of these observations. The success of mechanising formal
models will encourage an approach where models are built hand-in-hand with a tool, rather than following
the “handcraft-then-mechanise” approach used here. Modellers will need to be familiar with the idioms
best suited to these tools. Also, in building a repository of verified software (with hardware models as
well), there will inevitably develop an interest in using different provers/formalisms to model the same
thing, or to build a large system from various components, each developed with a different formalism
or prover. Even if the various tools have the same or similar underlying logic, and same or similar type
systems, the different idioms used for the various tools could present a barrier to success. We anticipate
that getting effective interoperability across various mechanised reasoning platforms will require some
“standardisation” of the idioms used.
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Appendix A. Exponentiation

We define an auxiliary function used to compute exponentiation of positive natural numbers inductively.
power : (N; x N) — Ny

(( disabled rule dPowerBase )) Vb : Ny e power (b,0) =1
{( disabled rule dPowerInduc ) V base, exp : Ny e power (base, exp) = base * power (base, (exp — 1))

We need to prove this operation is satisfiable:

proof[power$domainCheck|
prove by reduce;

]
The following theorem assists in its use:

theorem disabled rule [Power
Vbase : Ny; exp : N o power (base, exp) =
if exp = 0 then 1 else base * power (base, (exp — 1))

We prove its domain is OK:
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proof[[Power]
with enabled (dPowerBase, dPowerInduc) prove by reduce;
]

We need the above definitions and rules to show that the page count is consistent:

theorem tPageCountConsistency
IpCnt, paSize : Ny o pCnt = power (2, paSize)

proof[tPageCountConsistency]
instantiate pCnt == power (2, 1), paSize == 1;
with enabled (dPowerInduc, dPowerBase) prove by rewrite;

|
We also need it for the spare range consistency theorem:

theorem tSpareRangeConsistency
I paSize, caSize, s : Ny o power (2, paSize) + s < power (2, caSize)

proof[tSpareRangeConsistency]
instantiate paSize == 1, caSize == 2, s == 1;
prove by rewrite;
with enabled (dPowerInduc, dPowerBase) prove by rewrite;

|
Appendix B. Proofs

We present here a selection of some of the theorems proved, and their proofs.

theorem grule gDatalsDatum
d € Data = d € Datum

proof[gDatalsDatum]
prove by reduce;

theorem tColAddrConsistency
Jca:F, Ne ca=0..pageCount + spare — 1

proof[tColAddrConsistency]
prove by rewrite;
apply extensionality;
prove by rewrite;
instantiate x == 0;
prove by rewrite;
use pageCount$declaration;
use spare$declaration;
apply inNat1;
rewrite;

theorem grule gColAddrMaxType
x € colAddr = x € Z

proof[gColAddrMaz Type]

prove by reduce;

20



theorem tExistsColAddr
Jca : colAddr e true

proof[tEzistsColAddr]
instantiate ca == 0;
apply dColAddr;
prove by rewrite;
use pageCount$declaration;
use spare$declaration;
apply inNat1,;
simplify;

|

theorem frule tBlockPagesAreTotal
Y Block e pages € pageAddr — colAddr — Data

proof[tBlockPagesAre Total]
prove by reduce;

theorem tNANDFlashDevicelnitPRE
V quality? : N e pre NANDFlashDevicelnit

proof[tNANDFlashDeviceInitPRE]
prove by reduce;
instantiate targets’ == FERASED_TARGET_INSTANCE;
prove by reduce;

with enabled (ERASED_PAGE_INSTANCE, ERASED_BLOCK _INSTANCE)
prove by reduce;

theorem tShippedNANDFlashPRE
V NANDFlashDevice e pre Shipped NANDFlash

proof[tShipped NANDFlashPRE)

instantiate targets’ == targets, badBlocks’ == badBlocks,
maxBadBlocksShipped’ == mazBadBlocksShipped;
prove by reduce;

theorem grule gBadColAddrDomainMaxType
BAD_COLADDR_DOMAIN € PZ

proof]gBadColAddrDomainMaz Type]
with enabled (BAD_COLADDR_DOMAIN) prove by reduce;
[ |

theorem rule rBadColAddrDomainElem
x € BAD_COLADDR_DOMAIN = z > pageCount

proof[rBadColAddrDomainElem)
with enabled (BAD_COLADDR_DOMAIN) prove by reduce;
[ |

theorem rule rBadColAddrDomainIsColAddr
2 € BAD_COLADDR_DOMAIN = z € colAddr
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proof[rBadColAddrDomainIsColAddr]
with enabled (BAD_COLADDR_DOMAIN) prove by reduce;
[ |

theorem rule IPageCountInBadColAddrDomain
pageCount € BAD_COLADDR_DOMAIN

proof[lPageCountInBadColAddrDomain)
use pageCount$declaration;
use spare$declaration;
apply inNat1,;
with enabled (BAD_COLADDR_DOMAIN, dColAddr) prove by reduce;
|

theorem grule gFirstPageAddrMaxType
FIRST_PAGEADDR € Z

proof[gFirstPage AddrMazType]
with enabled (FIRST_PAGEADDR) prove by reduce;
[ |

theorem rule 1BadPageAddrDomainElem
FIRST_PAGEADDR € BAD_PAGEADDR_DOMAIN

proof[lBadPageAddrDomainElem)
use pagesPerBlock$declaration;
apply inNat1;
with enabled (FIRST_PAGEADDR, BAD_PAGEADDR_DOMAIN, dPageAddr)
prove by reduce;

theorem tExistsBadColAddr
3 ColAddr ¢ ca €¢ BAD_COLADDR_DOMAIN

proof[tEzistsBadColAddr)
instantiate ca == pageCount;
prove by reduce;

theorem tExistsBadPageAddr
3 PageAddr e pa € BAD_PAGEADDR_DOMAIN

proof[tEzistsBadPageAddr]
instantiate pa == FIRST_PAGEADDR,;
prove by reduce;

theorem tPageAddrDomainBounds
if (pagesPerBlock > 2) then
(3 PageAddr e pa ¢ BAD_PAGEADDR_DOMAIN)
else
pageAddr = BAD_PAGEADDR_DOMAIN
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proof[tPageAddrDomainBounds]
nstantiate pa == 1;
with enabled (BAD_PAGEADDR_DOMAIN, FIRST_PAGEADDR, dPageAddr)
prove by reduce;
use pagesPerBlock$declaration;
apply inNat1;
rewrite;
apply extensionality;
prove by rewrite;

theorem tPageMarkBadPRE
V Page e pre PageMarkBad

proof[tPageMarkBadPRE)|
instantiate info'! == BAD_PAGE_INSTANCE;
prove by reduce;
instantiate ca == pageCount;
prove by reduce;
|
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