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Langevin equation approach to diffusion magnetic resonance imaging
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The normal phase diffusion problem in magnetic resonance imaging (MRI) is treated by means of the
Langevin equation for the phase variable using only the properties of the characteristic function of Gaussian
random variables. The calculation may be simply extended to anomalous diffusion using a fractional gener-
alization of the Langevin equation proposed by Lutz [E. Lutz, Phys. Rev. E 64, 051106 (2001)] pertaining to
the fractional Brownian motion of a free particle coupled to a fractal heat bath. The results compare favorably
with diffusion-weighted experiments acquired in human neuronal tissue using a 3 T MRI scanner.
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I. INTRODUCTION

During signal acquisition in magnetic resonance imaging
(MRI), nuclear magnetic moments are manipulated via a
combination of static, gradient, and radiofrequency magnetic
fields. These fields and their relative timing (or pulse se-
quences) can be varied in many ways in order to create im-
age contrast based on characteristics of the medium, tissue,
or pathology. In addition to varying the tissue contrast, flow-
ing, diffusing, and perfusing spins can be encoded in the
image signal. The clinical applications of diffusion MRI are
numerous, and changes in water diffusion in neuronal tissues
have been associated with alterations in physiological and
pathological states. These include the early detection of acute
stroke [1], functional brain imaging [2], white matter fiber
tracking [3], the detection of multiple sclerosis [4], and tu-
mors [5].

The precession and relaxation of the net magnetization, as
a result of the spin manipulation, is described by the phe-
nomenological Bloch equations [6]. In liquids, however, the
positions of the molecules fluctuate due to Brownian motion,
so that the Larmor precession is affected, causing dephasing
of the resonance signal. In other words, the magnetic field is
not constant in space, but has a field gradient G defining the
magnitude of the field at the site of a nucleus given by the
position vector r, which is now a stochastic process causing
phase fluctuations,

AD(r) = fl o(t)dt' = yft r(t') - G(¢")dt', (1)
0

0

where v is the gyromagnetic ratio. Dephasing due to random
modulation of the Larmor frequency w(¢) was first observed
by Hahn [7], who noted the attenuation of the observed tran-
sient signals in NMR experiments due to the self-diffusion of
“spin-containing liquid molecules.”

The Bloch equations as originally formulated [6] ignore
the Brownian motion of the liquid nuclei. Consequently, nu-
merous attempts to incorporate it have been made [7,8], e.g.,
that of Carr and Purcell [9]. Their treatment (effectively Ein-
stein’s theory [10,11] adapted to the phase fluctuations) as-
sumes that a nucleus in a liquid executes a discrete-time

1539-3755/2009/80(6)/061102(12)

061102-1

PACS number(s): 05.40.—a, 87.19.1f, 82.56.Pp, 05.45.Df

random walk, due to the cumulative effect of very large num-
bers of impacts of the surrounding particles, so that the phase
is a sum of random variables each having arbitrary distribu-
tions. The only random variable is the orientation of the
walker, i.e., the direction of the jump-length vector [11] as it
has finite variance and the waiting time between jumps has
finite mean. The problem is always to find the probability
that the walker will be in state n at some time ¢ given that it
was in a state m at some earlier time, giving rise in general to
a difference equation [12—-14]. However, by the central limit
theorem [11] the dephasing effect may be calculated explic-
itly in the continuum limit of extremely small mean-square
displacements in infinitesimally short times. The above
analysis was later much simplified by Torrey [15]. He
avoided the problem of explicitly passing to the continuum
limit by simply adding (adapting a method of Einstein; see
Ref. [11], Chap. 1) a magnetization diffusion term to the
transverse magnetization in the Bloch equations, resulting in
a partial differential equation, now called the Bloch-Torrey
equation [15,16]. Moreover, by the introduction of appropri-
ate boundary conditions, this equation is ideally suited to
describing restricted diffusion in a confining domain [17].
The Bloch-Torrey equation may be easily solved for nuclei
diffusing freely in an infinite reservoir. Thus, Torrey obtained
for the dephasing following the application of a step gradient
of magnitude G in a liquid characterized by a diffusion
coefficient D,

(™) = A(1)/A(0) = ¢ PYC13, 2)

Moreover, for a simple bipolar gradient echo experiment
with gradients of strength G and duration 7,

(€)= AQ27)/A(0) = 2PV TR, (3)

The spin-echo diffusion experiment case is slightly different
[18] and the calculations are considerably more involved
than in the gradient echo one where the second gradient
pulse has the effect of resetting the dephasing caused by the
first pulse. By applying the 180° pulse in the spin-echo ex-
periment, the phase is reset by double the extent to which it
was advanced [18], so that
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In Eq. (4) &is the gradient spacing and A is the time interval
from the starting time of the first gradient to the starting time
of the rephasing gradient. The notation b=>G>8(A— 5/3) is
traditionally used as in Eq. (4) for the simplification and the
degree of diffusion weighting in an MRI acquisition is set
using a b value. The diffusion weighting (or b-value) is in-
creased, typically by increasing the strength of the diffusion-
weighting gradient G.

Now Eqgs. (2)—(4) describe precisely the signal loss due to
the translational motion of the magnetic moments in unre-
stricted (free) water in a magnetic resonance experiment.
However, difficulties arise when these equations are applied
in vivo because these simple single exponential equations fail
to describe the diffusion of water in tissue. An empirical
approach to this problem has been to assume that fast and
slow diffusion components exist [19], so that the decay may
be described by the simple equation

A(D)/IA(0) = V,e™PP1 4+ Ve PPz, (5)

Here, V| and V, are considered as the volume fractions of
protons in intracellular and extracellular spaces in neuronal
structures with the distinct diffusion coefficients D and D,.
This equation, which is useful in practice [20], has a simple
theoretical explanation, namely, the signal from two separate
compartments is the sum of the signals from each compart-
ment although this statement should be regarded as approxi-
mate because of the presence of a boundary. Yet another
approach is that of Bennett e al. [21] who used the
stretched-exponential expression or Kohlrausch-Williams-
Watts form [11]

A(t)/A(0) = =P (6)

where a# 1 is the stretch parameter and Dp is the distrib-
uted diffusion coefficient arising from fitting Eq. (6) to data.
The parameter « could be used to measure the heterogeneity
of the dephasing process in tissue, which appears to exhibit
anomalous diffusion behavior, signified by a mean-square
displacement of the form 7% In general the motion can be
either subdiffusive (@< 1), which signifies a slow relaxation
process, or superdiffusive (a> 1), which leads to turbulence.
As far as one possible explanation of Eq. (6) based on the
microscopic origins of anomalous diffusion is concerned, we
remark that the finite jump-length variance and the finite
average jump time, in the theory of the normal Brownian
motion, define a physical length scale and a physical time
scale [22,23] so that the central limit theorem applies. In
anomalous diffusion, however, either the second moment of
the jump-length distribution or the first moment of the jump
time distribution diverges or indeed both of them. Such mo-
tions are invariably characterized by heavy tailed probability
distributions (i.e., power-law tails) so that the central limit
theorem no longer applies [24,25]. They are known by the
generic title of continuous-time random walks (CTRWs)
[26]. Examples are the Lévy stable motion for which the
mean-square displacement diverges due to the occurrence of
very long jumps [27], and the specialized CTRW with a
long-tailed waiting time probability distribution where the
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walker may remain in a given configuration for an arbitrarily
long period before undertaking a jump of finite mean-square
length, so that the mean waiting time diverges. Here, « is
[22,23] the fractal dimension of the set of waiting times,
which is the scaling of the waiting time segments in the
random walk with magnification. Hence, it is impossible to
attribute underlying physical scales to such processes. For
example, the origin of the divergent first moment of the jump
times may be due to a random distribution of impurities
within a matrix, so that a spatial disorder corresponding to
an energetic disorder will give rise to a temporal disorder
resulting in anomalous diffusion. Yet another microscopic
explanation (the one which will be used in this paper) is that
the anomalous behavior simply arises from the inclusion of
memory effects [11] in the normal Brownian motion, so de-
stroying its Markovian character.

The use of anomalous diffusion to describe relaxation be-
havior is very well established in many fields of physics,
including biophysics and physics in medicine [23,27,28]. In
the particular case of subdiffusive transport, for example, we
mention such diverse phenomena as charge carrier transport
in amorphous semiconductors, diffusion in percolative or po-
rous systems, transport in fractal geometries, as well as pro-
tein conformational dynamics [24,29-33]. In the NMR con-
text the anomalous diffusion approach was expanded upon
by Magin et al. [34], where the Bloch-Torrey equation was
converted to fractional form.

However, in using random-walk models in the context of
microscopic explanations, it should be noted that diffusion in
tissue is restricted or hindered; that is, it does not take place
in an infinite reservoir and so may lead to very different
signal attenuations [17]. For instance, Robertson [35] de-
scribed the motional narrowing long-time regime for diffu-
sion between parallel planes when the signal decays expo-
nentially in time, unlike £ as it is for unrestricted diffusion.
Stejskal and Tanner [36] showed that the signal has oscilla-
tory behavior for narrow gradient pulses and the related
diffusion-diffraction patterns were observed by Callaghan et
al. [37]. The localization regime predicted by Stoller et al.
[38] exhibits a stretched-exponential behavior. In these and
many other cases [17,39], diffusion may be considered as
normal, and it is a geometrical restriction alone that may lead
to deviations from the classical unrestricted diffusion.

Hitherto virtually all the microscopic approaches to
anomalous diffusion in the context of resonant imaging ulti-
mately rely on the probability distribution of the phase, a
notable exception being that of Widom and Chen [32] who
used a frequency domain analysis based on the spectral func-
tion characterizing fractal Brownian motion. However, since
the underlying stochastic process is the position of a nucleus,
it appears that a much more transparent treatment of the
phase diffusion could be achieved by means of the Langevin
equation. For normal diffusion, this is simply the Newtonian
equation of motion of the nucleus, augmented by a system-
atic frictional force proportional to the velocity, superim-
posed on which is a very rapidly fluctuating random force,
both representing the effect of the surrounding heat bath on
the nucleus. Here, we outline how the normal phase diffusion
problem may be treated by means of the Langevin equation
using simply the properties of the characteristic function of
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Gaussian random variables. Moreover, in order to provide a
possible theoretical explanation for the empirical equation
(6), in terms of the memory effects alluded to above, we
shall show how that treatment may be simply extended to
anomalous diffusion using a fractional generalization of the
Langevin equation proposed by Lutz [33]. This equation per-
tains to the fractional Brownian motion of a free particle
coupled to a fractal heat bath, and so [33] unlike the CTRW
it describes Gaussian transport with the non-Markovian char-
acter being expressed via a memory function. The results
will then be compared with diffusion-weighted experiments,
which were acquired in human brain tissue using a 3 T MRI
scanner.

I1. PHASE DIFFUSION DUE TO THERMAL AGITATION

The starting point of our treatment of dephasing is the
work of Bloch [6]. He proposed in his phenomenological
treatment of nuclear induction the differential equation for
the time dependence of the macroscopic nuclear magnetiza-
tion M(#) under the influence of an external field H(z), viz.,

dM M, M, M.-M
=M XH-i——j— - k—2, (7)
dt T, °T, T,

where y=u/Ih is the gyromagnetic ratio of the nuclei under
consideration with magnetic moment x and spin / and i, j,
and k are the usual triad of unit vectors along the Cartesian
axes. The external field has the form

H(t) =kH0+H1(t), (8)

where H, is strong and constant while H; is relatively weak
and an arbitrary function of time. M|, is the equilibrium mag-
netization in the field H, and the establishment of thermal
equilibrium is in Eq. (7) described by two relaxation time
constants 7 and 7,—the longitudinal and transverse relax-
ation times, respectively—meaning that in the absence of the
transverse field H; the x and y components will vanish with
a time constant 7,, while the equilibrium magnetization will
be attained with a time constant 7. To study relaxation we
suppose that H, is zero while H|, is slightly altered in order to
induce relaxation; then the Bloch equations become

d M. M, M.-M
M = y(iM Hy — jM Hy) —i— — j— - k——2,
dt 7( yHo JM 0) T2 .]T2 T]

9)

Clearly the transverse (M,,M,) and the longitudinal M, com-
ponents of M decouple in the absence of H; and forming the
complex variable M | (1)=M (t)+iM,(t) we then have

M, =—iyM Hy—-M IT,. (10)

The solution of this differential equation following perturba-
tion of the constant field H,, is simply

M (1) = M, (0)e oot V)t (11)

where wy=yH, is the Larmor precessional frequency. Equa-
tion (11) represents a decaying oscillation. In practice H,, is
not constant in space and so it has a field gradient defining
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the magnitude of the field at the site of a nucleus given by
the position vector r(z),

H(r,t)=r(t) - VH(z,t) =x(1) - G(z,1), (12)

so that solution (11) alters to

M | (r,t) :Mi(r,O)expl— T, — iyf r(') - G(z,l’)dt’].
0

(13)

Hence, the transverse magnetization is now a function of the
position of the nucleus. However, Eq. (13) omits the Brown-
ian motion of the particles in the liquid, which carry the
nuclei. This must be taken account of in resonant imaging.
Thus, r is now a stochastic process. Hence, Eq. (10) becomes
the stochastic differential equation,

M, ==(iyr- G+ 1/T)M | . (14)

Equation (14) now represents the Langevin equation of the
process [11]. We can simplify the problem, so that the damp-
ing term is incorporated into the time derivative, and simply
calculate the dephasing effect. Hence, we see that the
dephasing due to the thermal motion of the nuclei bearing
the magnetic moments is obtained by calculating the mean
value of the functional (¢’®?), where

AD=- th 1ﬁ(t1)ft1 G(t")dt' dr, (15)
0 0

is the dephasing. Equation (15) is obtained by integration by
parts from Eq. (1) by imposing the so-called “rephasing con-
dition” [{G(t')dt'=0. Clearly, the calculation of (e"*®)
merely amounts to determining the characteristic function of
the centered random variable A®. This is particularly easy
for centered Gaussian processes because then one may write

[6]
<eiACI>> — e—<A<I>2)/2. (1 6)

Thus, if we regard the particles carrying the nuclei as free
Brownian particles, we can determine the dephasing by
means of Eq. (16). It should be noted that the treatment
proposed here differs from that of Torrey [15] and Magin et
al. [34(a)] although ultimately leading to the same result as
they started by writing down Eq. (10) and, following Ein-
stein [10], added a term DV?M | to account for the average
dephasing, where D is the diffusion coefficient. It follows
that D can then be measured via the amplitude of the echo
signal from nuclear spins subject to an appropriate sequence
of magnetic field pulses.

III. NONINERTIAL DIFFUSION

In order to illustrate the calculation of the dephasing from
the Langevin equation we consider for simplicity the Brown-
ian motion of a free particle along the x axis. We shall first
derive Eq. (2) for the phase diffusion, which corresponds to
the noninertial limit, where the inertia of the particle may be
ignored. Here, the Langevin equation is simply [11]
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X(1) =\ ). (17)

where X(z) is the coordinate of the Brownian particle; A(z) is
a random force with white noise properties

AN =0,  (Nt)Mtp)) = 28kT 1, — 1),

with the angular brackets denoting the average over the re-
alizations of \(¢); { is the viscous drag coefficient imposed
on a translating molecule by its surroundings and Stokes’ law

is assumed to apply; X(1) represents the average retarding
effect of the heat bath and the noise, \(¢), the extremely rapid
fluctuations about this average value due to molecular colli-
sions; &(¢) is the Dirac delta function; k is Boltzmann’s con-
stant; and T is the absolute temperature. Equation (17) fol-
lows from the inertial Langevin equation for the velocity

v(1)=X(t) of the Brownian particle of mass m, viz.,
mu(t) + Lv(t) = \(1), (18)

by neglecting the inertial term.
According to Eq. (15) the noninertial Langevin equation
for the phase ®(¢) is

d(1) =- yX(t)f G(t)dt' = - y{’l)\(t)f G(t')dr'.
0 0

(19)

These equations simply express the fact that the only way the
phase can change is via the equation of motion of X(z). In the
Brownian motion of a free particle, the phase ®(7) is a cen-
tered Gaussian random variable with variance o?=(Ad?)
=(®?) since (®)=0 and #,=0. Noting that

D (1) = 2jt q’(tl)d)(fl)dtl’ (20)
0

because we may take ®(0)=0, we have for a step field gra-
dient

—
0oJ0 Jo

X J ? G dr"{\(t,)\(t,))dt,dt,
0

t 1 2
=2Dy f [ J G(t")dt":| dr,
0 0

2
= gDyszﬁ, (21)

where D=kT/{ is the diffusion coefficient, which is defined
via the mean-square displacement ([X(¢)—X(0)]>)=2Dt of
the Brownian particle in a time interval ¢. Hence, from Eq.
(16) we have the known result (2) for the dephasing [9]
following the application of a step gradient.

The gradient echo result (3) may be obtained in the same
manner. For the spin-echo case Eq. (4) may be obtained by
writing the left-hand side of Eq. (21) in the notation of Ste-
jskal and Tanner [18]
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27
(AD?*)(27) =2DY* J [F(t)) +2(£- DE - F(2)) + f2ldr,
0
(22)

with é=+1 for t<7and ¢é=-1 for > 7, where F(¢) is defined
by

F(r) = Jt G(t")dr'
0

and f=F(7), where 7 is the time of application of the 180°
pulse.

IV. PHASE DIFFUSION INCLUDING THE INERTIA

The analysis given above ignores the inertia of the
Brownian particles. If the inertial effects are included the
translational process, X(f) now possesses two characteristic
times. One characterizes the slow diffusion associated with
the noninertial motion, which we have already analyzed. The
other is the correlation time 7,=m/{ of the velocity correla-
tion function. It is of interest to include these in the phase
diffusion and therefore we show how the calculation just
outlined using the noninertial Langevin equation [Eq. (17)]
may be extended for a free particle of mass m. In the inertial
motion of a Brownian particle described by Eq. (18), an
explicit formula for the displacement X(z) is available from
the Ornstein-Uhlenbeck theory [11,40]. We have from Eq.
(18), where without loss of generality we may set x,=0 when
t0=0,

) (! ,
X(t)=vee P+ — J e PN Ydr (23)
mJo

X(t) = ”—[;’(1 —e P+ miﬁ fo (1 - e PN )dt', (24)

where B={/m. If we now assume a Maxwellian distribution
of velocities for the initial velocity vy, we have [11] from
Egs. (23) and (24) the Ornstein-Uhlenbeck result [40] for the
mean-square displacement of a Brownian particle including
the inertia

2kT
(X)) =——(Br=1+e#), (25)
Bm
as well as the velocity correlation function

(X(t)X (1)) = (KT/m)e "2, (26)

Now for a step field gradient we again have

O(t) = - yGiX(1), P(1)=- yGf 1, X(t))dt, .
0

Hence, using Egs. (20) and (26), we can evaluate the mean-
square value of the phase (AD®?)(¢) as
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(A‘ble‘):z)’szf f1t1f2<X(t1)X(t2)>dt1dt2
0Jo

2
= i;—ffm +23%(2tB-3) - 67 P(1 +1B)],

(27)

which reduces to the Carr-Purcell-Torrey result [Eq. (21)] for
long times 73> 1. For short times, t3<<1, we have the purely
kinematic result

<A<I>2>(t) ~ @#_

(28)
Again A® is a linear transformation of a Gaussian random
variable, so that by the properties of characteristic functions

(AP = A%

Hence, Eq. (27) yields the inertia corrected dephasing for a
step gradient. In general an infinity of fast relaxation modes
will be generated due to the double transcendental nature of
this function and one dominant much slower mode, which is
that associated with the slow diffusive motion [c.f. Eq. (2)].
An obvious generalization of the left-hand side of Eq. (27)
for arbitrary gradient shapes defined by

F(t):JG(t')dt' (29)
is
(AD?) (1) =2 f f (X(1))X(t,))F (1)) F(t,)dt,dt,. (30)

Hence, in order to calculate the dephasing for a Gaussian
process all that is required is a knowledge of the velocity
correlation function and the precise form of the field gradi-
ents. We remark that Eq. (30) was previously derived by
StepiSnik and Callaghan [41-43] in connection with mea-
surement of flow by NMR spectroscopy and long-time tails
of the molecular velocity correlation function in a confined
fluid.

V. FRACTIONAL DIFFUSION

Here, our objective is to provide one of many possible
microscopic explanations for the empirical stretched expo-
nential (6) of Bennett ef al. [21]. Our particular hypothesis is
that it may be explained via memory effects giving rise to
fractional Brownian motion (which preserves a few of the
features of the CTRW) and its associated Langevin equation.
Thus, we note that Lutz [33] introduced the following frac-
tional Langevin equation for the translational motion of a
free Brownian particle:

m%v(t) +mp, OD;l_lv(t) =\(1), (31)

where 3, is the friction coefficient and mg, ,D* 'v(r) and
\(7) are, respectively, the generalized frictional and random
forces with the properties
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mkTf,

(\(0)=0, T-w

AEND) =

lt—1'

(I' denotes the gamma function). The Riemann-Liouville
fractional derivative is defined by [44]

oD, %g(1) = 1,(10) £ (tf(tt”))]_"dt,’ 0<o<l (32)

and has the form of a memory function, so that Eq. (31) may
be regarded as a generalized Langevin equation [11,33]

m%v(r)+f K, (t=t")v(t")dt' = \(1).

0

The memory function K () is given (in accordance with the
fluctuation dissipation theorem) by the autocorrelation func-
tion K ,(£)=(\(0)\(r))/(kT). Lutz also supposed that the ran-
dom force A\(r) is Gaussian; thus, Eq. (31), which describes
Gaussian transport, is capable of reproducing the stretched-
exponential behavior associated with anomalous diffusion
and has the merit unlike possible CTRW treatments that Eq.
(16) still applies, i.e., a knowledge of the first two moments
is sufficient to calculate all the higher-order moments and so
the characteristic function. Nevertheless, the process de-
scribed by the Langevin equation has a mean-square dis-
placement which is the same as that ensuing from the CTRW
and reproduces some of its features however failing to repro-
duce many others such as weak ergodicity breaking [29]. We
remark that the fractional Langevin equation (31) may also
be used to study both subdiffusion and superdiffusion of a
particle coupled to a fractal heat bath [33].

The formal exact solution of Eq. (31) may be obtained
using Laplace transforms [33] [c.f. Eq. (11.76) of [11]]; we
have

t

X(1) = X(0)E,y_p 1 (- 79B,) + m™" J A(t')

0
XE,y_ il (t=1") B ldt’ (33)
and

t

X(1)=X(0) + f X(¢")dt'

0
=X(0) + X(0)1E5_o 5 (= Bot>™ ) +m™! J t f : D)
0J0

XEy o[- (t- ") B,Jdt' dr”,

where E, g(z) is the generalized Mittag-Leffler function
defined by [11,44-46]

©

k
Epfd)=> —

< F(,B+ka)’ a,3>0.

Here, the Mittag-Leffler function E,(z) is E, (z); further-
more,
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t
f By (= Bat"*)dt" = tEx_ap(= But™™).

0

Thus, we have from Eq. (33) the velocity correlation func-
tion for fractional Brownian motion

(X(0)X(1)) = (KT/m)Ey_o(— Bot*™), (34)

where the Mittag-Leffler function E,,
the initial stretched-exponential form

EZ—a(_ Batz_a) -~ exp[_ ﬁatz_a/r(?’ - (1)] (35)

and the long-time inverse power-law  behavior
(B> °T(a=1)]"". Thus, the angular velocity correlation
function has initial stretched-exponential behavior accompa-
nied by a slowly decaying long-time tail representing a
memory of the initial conditions. Furthermore, noting that
X2(t) is given by

interpolates between

X%ﬂ:ZJqXUUXQOdﬂ,
0
[for X(0)=0], we have [33]

<X2([)> = EJ ft E2—a[_ Ba(t, _ l/,)z_a]dt"dl‘,
m JoJo

_Ez g KTt
tEZ a3( :Ba ) Bar(1+ ) (36)

in the long-time limit B> 1, because for large z the gener-
alized Mittag-Leffler function E, ;(z) has the inverse power-
law behavior E, ,(-z) ~[zI'(b—a)]™" [33]. According to the
definition, the range 0 < a <1 corresponds to subdiffusion in
configuration space signifying a slow relaxation process. We
remark that Eq. (34) for the velocity correlation function for
fractional Brownian motion is identical to the velocity corre-
lation function rendered by the diffusion limit of the CTRW
with a power-law distribution of waiting times [11]. Lutz
[33] also showed that these completely different forms of
non-Markovian anomalous diffusion share a few common
characteristics. In particular, they satisfy the same general-
ized Einstein relation and their lowest moments are all equal
with the exception of the second moment of the velocity
[11].

Again proceeding for a step field gradient and noting Eq.
(27), we have the mean-square phase,

(AD*)(1) = 23’2G2J f | tl’2<X(11)X(Iz)>dt1df2
0Jo

29°GkT [ (1
= JJ 112Ey_ o[ Bty — 12)*“1dtydt.
0Jo

(37)

In the noninertial limit, i.e., at long times, 13> 1, again not-
ing the asymptotic behavior of the Mittag-Leffler function at
long times, we have
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Y'G*kT2(1 + a) o

(AP0 ~ mB, T'G+a)

(38)
In the normal diffusion limit, «— 1, Eq. (38) reduces to Eq.
(21). For short times, t8<<1, Eq. (37) yields

Y'GkT , 8B, 1%
1= +
4m 6-a)'(5-a)

(A1) =

(39)

The leading term of expansion (39) coincides with the purely
kinematic result (28). Moreover, the gradient echo dephasing
(cf. Egs. (2) and (3)) is simply the r.h.s of Eq. (38).

The spin-echo dephasing is calculated in a similar man-
ner. However, a step function must be introduced to allow for
the gap between the gradient pulses. Rather than rectangular
gradients, F(t;) and F(r,) now represent arbitrary gradient
shapes, #; and t, are arbitrary intervals of integration, and for
convenience we define #,>1,. For the spin-echo case, these
functions are defined by

F(t)) — F(t,)0(t,) = 26(t, — ) F(7), (40)

F(ty) — F(t) 0(ty) = 26(t, — 7)F(7) (41)

(0 representing the unit step function) so that

2kT 2 F(tl)F(t2)dt1
Bml(a— 1)] J -1 42

This expression is evaluated over all regions of integration
for the spin-echo sequence (Fig. 1), which employs two posi-
tive diffusion gradients of duration & around the 180° rf
pulse (at 7=7), where the second gradient begins at t=A. We
obtain,

(AD)(1) =

(AD?) =

29T G2 {25‘1

mB, T(1+a) 2+a+(A_5)a]‘ “3)

(See Appendix B for details). In the normal diffusion limit
(a=1) this reduces to the Stejskal-Tanner equation (4).

The fractional Brownian motion we have just discussed
assumes that the driving force A(¢) is Gaussian so that the
characteristic function (16) still applies as in the normal
Brownian motion. Hence, the decay of the phase remains
(albeit stretched) exponential. Thus, the phase as calculated
from the fractional Brownian motion unlike that resulting
from the diffusion limit of the CTRW, with a power-law
distribution of waiting times, does not exhibit the character-
istic long-time tail often associated with anomalous diffusion
processes, signifying that the diffusion process depends
strongly on the initial conditions. If this phenomenon is in-
cluded it appears no longer possible to treat the dephasing
process using the Langevin equation and a fractional diffu-
sion equation similar to that treated in Refs. [25,30,33,46]
adapted to the phase must be used, rendering the solution
much more complicated.

VI. COMPARISON WITH EXPERIMENT

The aim of the experimental component of this work was
to demonstrate the fractional nature of the diffusion of water
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FIG. 1. Plots of data (symbol) and fit (solid line) for (a) gray
matter and (b) white matter regions of interest for subject 1. The
image intensity was normalized by dividing by the b, image. The
fractional diffusion model [Eq. (44), solid line] was fitted to the
experimental data to determine D and « (Tables T and II). The
experimental data are plotted against £°.

in tissue using MRI. To this end the customized pulse se-
quence used an increasing duration of the diffusion gradients
to increase the diffusion weighting, instead of the more usual
increase in the field gradient strength, in a similar approach
to that of Latour er al. [47] when the time dependence of
water diffusion was investigated. Image data were collected
with a 3 T Philips Achieva clinical MRI system, with a gra-
dient coil system which could produce linear field gradients
up to 50 mT/m. The rf coil employed was a Philips SENSE
head rf transceiver coil. Diffusion-weighted experiments
were performed on nine healthy volunteers: five males and
four females. They ranged in age from 19 to 29, with a mean
age of 27.

The first experiment employed a customized diffusion-
weighted gradient echo multishot echo-planning imagining
(EPI) sequence, which was carried out on each subject in
order to compare Eq. (38) with experiment. The strength of
the trapezoidal diffusion-weighting gradients was set to 48
mT/m and the duration ranged from 12 to 24 ms in incre-
ments of 1.5 ms. The gradients were applied in the axial
direction only. The second experiment also used a custom-
ized gradient echo EPI sequence; however, the bipolar
diffusion-weighting gradients now had a fixed duration of 24
ms and the gradient strength was varied over eights steps
from 8 to 48 mT/m. For both experiments this would equate
to a maximum b value of 1460 s/mm? as defined in Eq. (2).
An image with no diffusion weighting (a b, image) was ac-
quired at the start of each weighting sequence. A sensitivity
encoding a factor of 2 was applied. The repetition time was 2
s and the echo time was 64.2 ms. Ten 4 mm axial slices with
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FIG. 2. Plots of data (symbol) and fit (solid line) for (a) gray
matter and (b) white matter regions of interest for subject 2.

a field of view of 23X 23 cm? were acquired to encompass
the whole brain. The ten diffusion weightings were repeated
sequentially a total of 30 times for each slice for averaging
purposes. Inversion recovery images of each subject were
also acquired as a map of gray and white matters.

Postprocessing and fitting were performed using IDL 7.0
(ITT Visual Information Solutions, Boulder, CO, USA). The
experiments were averaged over the 30 repetitions. Small
regions of interest (ROIs), ranging from 4 to 25 pixels, were
then chosen within gray and white matter regions, as indi-
cated in the inversion recovery images. These regions were
fitted using the gradient echo (38) in the form of the loga-
rithm of the dephasing, namely,

A0 ] 292 G2Di+e
1“{ Ao }‘ C+al(l+a) (“44)

The fitting was performed using the Levenberg-Marquardt
algorithm as implemented in IDL to provide values for D, a,
and A,. This algorithm minimizes the cost function

C=2 [yi-fE.a)]% (45)
i=1

where y; is the experimental diffusion data of length n and
f(x;,@) is the fitting function to evaluate the variables d
=[D,a,A]. The A, term was determined in order to further
validate the accuracy of the fit of the equation to the data.
When the model is accurate, the image created of each of the
A, values, as calculated for each pixel, should represent a
copy of the image acquired with no diffusion weighting.
We found the fractional model to fit the experimental data
very accurately, with chi-squared values for goodness of fit
of <1X107. Figures 1-3 show decay curves of the image
signal in a region chosen in (a) gray matter and (b) white
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FIG. 3. Plots of data (symbol) and fit (solid line) for (a) gray
matter and (b) white matter regions of interest for subject 3.

matter tissues of three of three subjects. The graphs illustrate
fits of Eq. (44) to ROIs drawn in the gray and white matters
of three subjects. The values of the fitting parameters D and
« are listed in Table I. The image intensity has been normal-
ized by division with the b, image. The curves are plotted
versus the time parameter £, with a fixed parameter G. Plot-
ting the data in this way shows the nonlinearity of the decay
with respect to cubic time and illustrates why the single ex-
ponential (3) does not accurately describe the decay. The
complexity of the tissue structure causes the water diffusion
to change from its free behavior where a=1. The diffusion in
these experiments exhibited subdiffusive behavior character-
ized by the fractional parameter a<<1 with @=0.28-0.75.
Table II illustrates average values produced for D and « for
all subjects in the study. The results from the gradient
strength varying experiment are shown in Fig. 4. This experi-
ment demonstrates that, for the more typical diffusion-
weighted sequence where the degree of diffusion weighting
is varied by changing the strength of the applied gradients,
the fractional time equation also fits. For this experiment D
=0.52x 107 mm?s~' and @=0.31. Maps of the diffusion
coefficient D, the normalization constant A,, and the fractal
dimension parameter a were obtained for each voxel in the

TABLE I. Values of D and « for Figs. 1-3 as obtained using the
Levenberg-Marquardt algorithm to fit Eq. (44).

Gray matter White matter

Dx1073 DX1073
Subject (mm?2 s a (mm?2s71) a
1 0.34 0.81 0.16 0.69
2 0.4 0.87 0.11 0.42
3 0.38 0.72 0.25 0.66

PHYSICAL REVIEW E 80, 061102 (2009)

TABLE II. Mean values of D and a with their standard
deviations.
DX 1073
(mm? s71) a
Gray matter 0.48*+0.15 0.77+0.12
White matter 0.19+0.08 05*+19

images. Figure 5 illustrates some examples of these maps for
a selected anatomical slice.

VII. CONCLUDING REMARKS

In this paper we have shown how the magnetization
dephasing in magnetic resonance imaging arising from the
Brownian motion of the nuclei in a reservoir of infinite ex-
tent may be determined by simply writing the Langevin
equation for the phase random variable and then calculating
its characteristic function. The method yields in transparent
fashion, from the properties of the characteristic function of
Gaussian random variables, the classical dephasing results of
Carr and Purcell [9], Torrey [15], and Stejskal and Tanner
[18] for normal diffusion, which are based on the diffusion
limit of the discrete-time random walk proposed by Einstein
[10]. Moreover, it is easily generalized to include the inertia
of the nuclei, in which the underlying statistics are governed
by the Ornstein-Uhlenbeck process [40] and to other more
complicated situations where the nuclei move in a field of
force of potential V(r). Hence, we have a microscopic expla-
nation of the dephasing process in free water, namely, it re-
sults from the nucleus behaving as a random walker execut-
ing a jump of finite mean-square length at uniform time
intervals, so that the only variable is the orientation of the
walker.

The method may also be extended to anomalous diffusion
in a transparent fashion in order to provide a possible micro-
scopic justification for the use of stretched exponentials to
describe the dephasing in tissue. Namely, the anomalous dif-
fusion may ultimately have its origin in memory effects giv-
ing rise to fractional Brownian motion [48]. This process

IIWIIIIIIIIIIIITlll

5.8

(4]
o
—IIIIIIIIIIIMIIIIII|IIIIIII

o e e b e Ly

0.0005 0.0010 0.0015 0.0020
Gradient Strength® (T/m?)

FIG. 4. The data plotted against diffusion-weighting gradient
strength squared, with the fit overlaid as a solid line. The region of
interest for this plot is chosen from gray matter.
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FIG. 5. (Color online) These images illustrate the success of the fit of the fractional model to the experimental in vivo data, for each voxel
in a selected slice. (a) The image acquired with no diffusion weighting, or the b, image. (b)—(d) show maps of the fitting parameters A, D,
and « respectively, for each voxel in a given anatomical slice. (b) The representation of each A, produced during a fit of each voxel is the
predicted b, image from the fit. (e) This image is an example of an inversion recovery image, which was used to select the regions of interest

in gray and white matters for fitting.

naturally introduces the fitting parameter «, indicating the
role played by fractional dynamics in the time for the com-
plex diffusion, which is observed in human neuronal tissue.
In normal diffusion, =1, and we have the classical expres-
sions [9,15,18] once more.

The calculation is accomplished using the fractional
Langevin equation for the translational Brownian motion
proposed by Lutz [33] which supposes that the random force
in that equation is Gaussian, so that the properties of charac-
teristic functions of Gaussian random variables may once
again be used to calculate the dephasing yielding a fractional
generalization of the results of Refs. [9,15,18]. Finally, we
may conclude that the fractional diffusion dephasing (44) fits
experimental data from gray and white matter accurately and
in this complex environment the time dependence of the sig-
nal decay is not cubic but falls in the range of />! — >3, Such
a behavior indicates that one may be observing subdiffusion.
This conclusion must always be tempered, however, by the
fact that other relaxation mechanisms ultimately resulting
from restricted normal diffusion may give rise to seemingly
anomalous behavior [17].
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APPENDIX A: DIFFUSION EQUATION FOR THE PHASE

The diffusion equation for the evolution of the probability
density function P(x,f|xy,%y) of the random variable x rep-
resenting the stochastic displacement X(7) in Einstein’s
theory of the Brownian motion is

P PP
E:Dﬁ. (A1)

By means of the transformation (1) and the chain rule the
corresponding diffusion equation for the distribution function
f(¢,1) of the phase ¢ is

if_ If
at D‘Dédf’ (A2)

where ¢ represents the stochastic phase variable ®(z) and we
suppose that A® and Ar approach zero (extremely small dis-
placements in infinitesimally short times) in such a way that

[11]

Dg = lim (A3)

At—0 2At '

The diffusion coefficient Dg, in Eq. (A3) is obtained as fol-
lows. The change in the phase @ is defined by the Langevin
equation (19), so that

B(1) = - ¢! f A1) f GWhdrdn (A4)
0 0

assuming that ®(0)=0. In general, taking account of inertia
we would have

@(z):—yJ X(tl)flG(t’)dt’dtl. (A5)
(

) 0

In order to see how Eq. (A4) allows one to evaluate the
diffusion coefficient D4 from Eq. (A3), we consider the
change A®?(f) in a small time Ar. According to Egs. (19),
(20), and (A4), we have

AP (1) = 2D (1) D() At

= ¥ f t J ) G(t")dt’ J tG(t”)dt"h(t]))x(t)dtlAt.
& JoJo 0

On taking expectation values, remembering that G(z) is not a
stochastic variable and using the properties of the white
noise force \(z), we obtain,
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<ACI>2>=4§IZ—2Ty2f flG(t’)dt’f G(!")dt"8(t — t,)dt, At
0YJ0 0

—2Dy2(f G(t") dt)zA.

Hence, the desired result is

t 2
Dy = {(AD?)/(2A1) :Dy2< f G(t')dt’) .
0

APPENDIX B: SPIN-ECHO CALCULATION

The most significant difference between the spin and
simple bipolar pulse sequences is the timing gap between the
first and second rectangular gradients. We follow the Stejskal
and Tanner method [18] and with the notation of Egs.

(2)-(4),

d—‘[‘ —— DIF()6(1) - 260 - DF(D A, (B1)

where F(1)=[{G(¢')dt' and 6(z) is the unit step function. The
180° refocusing pulse is placed midway between the two
gradient pulses at t=7. Each of the gradient functions has
duration 7 and the second pulse begins at t=A. The solution
of Eq. (B1) is

A(r) =A(O)expl— Jlg(t')dt’] , (B2)
0

where

f "o = — 'yzD{ J P2\t — 4F (1) J " R
0 0

+4(7 - T)FZ(T)]. (B3)

The fractional evaluation becomes more complicated, as we
must integrate over two arbitrary time intervals #; and 7, and,
therefore, must define the two gradient integrals, F(z;) and
F(1,), viz.,

F(t)) — F(t,)0(t;) = 26(t, — ) F(7),

F(ty) — F(t,) 0(t,) = 26(t, — T)F(7).
Recalling Eq. (42), we have
2 2 F(1,)F(rp)
W= 1)f f e

(B4)

Here, the product of F(¢;) and F(t,) can be presented as
F(t))F(ty) = [F(t;)0(t;) = 26(t; = 7)F(7)]
X[F(t,) (1) = 26(t, — ) F(7)]
=F(1))F(1;) (1)) 6(t,) = 2F (D) F(2,) 6(t,) 6(t, — 7)

PHYSICAL REVIEW E 80, 061102 (2009)

—2F(t,)F(1)6(t,) 6(t, — 7) + 4F*(7)
XO(t,— 1) 60(t, — 7). (B5)

The evaluation of integrals in Eq. (B4) can then be per-
formed in piecewise fashion provided we can write F(z) ex-
plicitly in four intervals of integration, viz.,

(0,0),(8,A),(A,A + 6),(A+ 6,27).

The contribution of each term of Eq. (B5) in Eq. (B4) must
be evaluated separately for all intervals of integration.

We take, as an example, the first term only, viz.,
F(t,)F(t,) 6(t,) 6(t,); other terms can be evaluated likewise.
The first interval of integration (0, ) in Eq. (B4) falls over
the first rectangular gradient pulse and, therefore,

F(t))F(t;) 6(t,) 0(t;) = G*t,1,6(t,) 0(t,). (B6)

Inserting Eq. (B4) into Eq. (B6) and performing the integra-
tions yields

2kTy f f Gy,
mBI'(a-1) (fz—fl)z ad

2Ty G? 5+
TmB2+aT(1+a) (B7)

AP (D)1 1) =

During the second time interval from &§to A, G=0 and thus
F(z;) and F(t,) remain constant, so that F(¢,)F(t,)6(z,) 6(t,)
=G2520(t|)0(t2) and

) _%TY f f G*&
(AD >(t)|1(2) mB(a—1) (fz—f1)2 ad
2kTY'G*S o
= m(A - 9)“. (BY)

The third time interval includes the second gradient pulse,
from A to A+ 6. Here,
F(tl)F(tz) 0(t1)9(t2) = (th - GA + G5)(Gt2 - GA
+Go)0(t) 6(t)

and

2kT‘y2G2 A+S

) _ 2Ty G”
(ADH(1)y (3 = mBI(a-1)J,

2(t,-A+9)
X(t —A+5)dtf ———dt
? )y (—r)¥e!

_ 2kTY’G*(5+2a)
T mB 2+ a)(1+a)

(B9)

Finally, in the interval from the end of the second gradient at
t=A+61o 27, G=0 and F(¢,) and F(t,) are constant, so that
F(t;)F(1,) 0(1,) 0(1,) =4G> 5 6(1,) 6(1,) and
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2k 2G6)?
APy =~ T’; f f C L
A+5 A+S (tZ_tl)
8kTy2G252 N
=m(27— 5—-A)“. (B10)

The sum of Egs. (B7)-(B10) yields the contribution of the
first term,

2Ty’ G*&
mB (1 + a)

23+ a)
2+«

(AD*(1)|, =

—— 8+ (A-9)“+4(27-6- A)“}.

Each of the remaining three terms in Eq. (B7) must be
treated similarly, however, only in the range from 7to 27, as

PHYSICAL REVIEW E 80, 061102 (2009)

they are zero for << 7. The results are, respectively,

(AD*)(1)], = (AP (03
4kTy*G* &
- mBI(1 + @)
(1+2a)6”
1+«

+(A-7n*+2Q27-A- )"

8kTv*G? &8

27|, =
(A1), = mBT(+a)

[0+ (A-7)*+(27-A-6)"].

When all of them have been evaluated and summed, the
resulting equation for the fractional diffusion spin-echo ex-
periment is given by Eq. (43).
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