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M any Internet security mechanisms depend 
on the use of cryptographic algorithms 
for various forms of authentication and 

confidentiality. Even when well-known and 
standardized cryptographic algorithms are used 
in well-known protocols, some parameters must 
be specified, the most important of which are 
usually algorithm identifiers and key or hash-
output lengths. Here, I review some recent key 
length recommendations and compare those to 
current usage.

Strength Is Not Quite Length
Because this is an area where I’ve had to explain 
things to nonsecurity folks several times over 
the years, I’ll start with a quick explanation of 
what we mean when we talk about key lengths. 
(Actually, this is also a useful way to spot peo-
ple who don’t know what they’re talking about 
— if someone’s marketing materials make great 
claims as to why they’re better because they use 
40,000-bit keys, then don’t buy that product!)

Many Internet security mechanisms at some 
level use cryptography. Take, for example, ac-
cessing a secure Web site via an “https://” URL, 
which involves running the HTTP protocol over 
the Transport Layer Security (TLS) protocol (also 
known as Secure Sockets Layer [SSL]). This 
typically uses the Rivest, Shamir, and Adleman 
(RSA) asymmetric cryptographic algorithm to 
check the signature on the Web server certificate 
and to exchange a session key. In fact, that part 
of the protocol also requires a digest algorithm, 
such as the secure hash algorithm (SHA-1). After 
the key exchange, the browser and Web server 
use a symmetric algorithm such as the Advanced 
Encryption Standard (AES) to protect the infor-
mation exchanged between the browser and the 
Web server. In this protocol as well as others, we 
often talk about using a suite of algorithms and 
sometimes call that ensemble a ciphersuite.

For each of these cryptographic uses, we 

should be concerned about the cryptosystem’s 
strength. Not only are there different algo-
rithms that can be configured (for example, 
Diffie-Helmann key agreement is an alternative 
to RSA), many of the algorithms they use can 
support different key lengths, which have dif-
ferent strengths.

By strength here, I mean something that in-
dicates the amount of work that a knowledge-
able and well-funded adversary would have to 
do to break the algorithm’s security, as used in 
the protocol in question. So, for example, if I 
could quickly factor any number that’s roughly 
2,100 bits long, then I could masquerade as al-
most any Internet bank using RSA. Thankfully, 
we don’t think this is practical for any adver-
sary at this time.

These algorithms generally require a crypto-
graphic key as input, or produce a certain size 
of output, and were those inputs or outputs very 
short, then the adversary probably wouldn’t 
have much work to do at all. For example, if an 
algorithm can only accept 40-bit keys, then the 
system has only 1,099,511,627,776 (2 to the pow-
er of 40) keys in total, which, although a large 
number, isn’t large enough: an adversary could 
simply try all possible keys until one works — a 
so-called “brute force” attack. Similarly, if a di-
gest operation’s output were small, say only 32 
bits long, then an adversary could simply guess 
possible inputs until it found a matching output, 
probably after only roughly 65,000 attempts.

For most cryptographic algorithms, we can 
approximate the amount of work for the adver-
sary via a single number, often directly related 
to the key length, or the output length for a hash 
algorithm. That’s a good thing — it lets us com-
pare different sets of parameters for the same 
algorithm and also ensure that we use sensible 
algorithm combinations — that is, sets of algo-
rithms with commensurate strengths.
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It’s important to use commensu-
rate strengths because an adversary 
always attacks the weakest link. 
There’s a corollary to that — if you in-
crease the strength for only one algo-
rithm, the attacker will simply attack 
elsewhere, and because increasing 
strength generally requires more 
computation, we don’t want to do that  
without benefitting from it.

However, you must understand 
that these numbers take into ac-
count only currently known attacks 
against the algorithms. For example, 
the SHA-1 algorithm has a 160-bit 
output and was designed to have 80 
bits of strength against collisions. 
However, recent attacks1 have dem-
onstrated that, in fact, the adversary 
is really only up against roughly 63 
bits of strength.

Similarly, different algorithms, 
say RSA and AES, have radically 
different reasonable key lengths as-
sociated with them because their 
internal designs are radically differ-
ent. For example, a 128-bit AES key 
is considered strong today, whereas 
a 128-bit RSA key would be trivial 
to break — for RSA, we should be 
somewhere around 2,048 bits of key 
length, which is roughly equivalent 
to 112 bits of strength when com-
pared to the AES algorithm. So, it’s 
not entirely trivial to translate key 
length into algorithm strength, but 
a well-known relationship exists for 
all useful algorithms.

Why Worry?
Well, we’ve already seen one thing 
that system designers should con-
sider — that is, the use of commensu-
rate strengths for all the algorithms 
in a ciphersuite. However, we also 
need to bear in mind that all reason-
able cryptographic algorithms can, 
in principle, be broken — just try 
all the keys in turn until you find 
the right one (the brute-force attack 
I mentioned earlier). If we increase 
the key strength and length, then we 

generally increase the work for the 
adversary, so longer keys equate to 
stronger ciphersuites. For most al-
gorithms, we’d expect that each ad-
ditional bit would essentially double 
the adversary’s work because each 
additional bit doubles the number of 
possible keys. Of course, variations 
for different algorithms exist, but 
the basic idea that longer is stronger 
is, other things being equal, correct.

However, we don’t usually increase 
key lengths by one bit at a time. First, 
having key lengths map well to vari-
ous boundaries is often beneficial — 
for example, AES keys can be 128, 
192, or 256 bits long but not 131 bits 
long due to the algorithm’s internal 
design. For other algorithms, includ-
ing RSA, the output size also depends 
on the key length. In fact, there are 
some so-called side-channel attacks 
in which unusual output lengths that 
don’t fit on byte boundaries would 
make the attack easier. So, we pre-
fer to deal with well-known lengths, 
such as 2,048 or 3,072 and not, for 
example, 2,051. (So, we don’t grow 
keys in threes.) Basically, we’re not 
dealing with a continuum here but 
with a fairly small range of well-
 analyzed lengths and strengths for 
each algorithm in our ciphersuites.

Because we don’t want to allow 
practical brute-force attacks, we must 
estimate a reasonable set of strengths 
for each algorithm in our ciphersuites. 
But reasonable lengths change over 
time, as Moore’s law increases the 
amount of work that the adversary 
can do for each unit of currency.

We can make some predictions 
based on Moore’s law, but we gen-
erally can’t predict advances in 
cryptanalysis (the art or science of 
breaking this kind of thing). For some 
algorithms, experts might be willing 
to recommend a change due to their 
expectation of future developments, 
based on the current state of the art. 
In this context, we also need to bear 
in mind that attacks never get worse 
— they only improve over time — so 

if an adversary has attacked some 
algorithm at some strength in some 
algorithm-specific manner, then we 
could guess that similar attacks will 
have some predictable effect on other 
algorithm strengths.

The main point is that, as time 
goes on, what was once a reasonable 
ciphersuite could become insecure. 
And if we trade off performance or 
bandwidth for strength, as we usu-
ally do in any real system, it’s quite 
likely that we’ll have to increase the 
strengths used in a matter of years, 
not decades.

Are We There Yet?
So, who’s making recommendations, 
and what are they? Well, several 
cryptographers have tackled aspects 
of the problem, but various govern-
ments (including the US, Germany, 
and France) have also made more 
systematic recommendations. Da-
mian Giry maintains a nice Web site 
(www.keylength.com) that summa-
rizes and provides references for the 
various recommendations in an easy-
to-compare form — this is helpful, 
given that commensurate strength 
is a goal here. The US National In-
stitute of Standards and Technology 
(NIST) recommendations are perhaps 
the best known and date from 2007; 
they suggest, for example, that by 
the end of 2010, deployments should 
move to 2,048-bit RSA keys, whereas 
the current most common key size in 
use is a 1,024-bit RSA. In addition, 
NIST recommends moving to 112-bit 
strength for symmetric keys, though 
it’s probably better to move to 128-bit 
AES keys. For hash algorithms, the 
position is perhaps a little different 
because the required strength de-
pends on the purpose for which the 
hash function is used. In most cases, 
using SHA-256 (with a 256-bit out-
put and, hopefully, roughly 128 bits 
of collision-resistance strength) is 
probably the best choice.

So, we have recommendations 
since 2007, and we have a set of 
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widely supported algorithms that 
match those recommendations. You 
might therefore ask how well de-
ployments match those recommen-
dations. In 2005 and 2006, Homin 
Lee and his colleagues2 conducted a 
survey in which they probed roughly 
19,000 Web servers supporting SSL 
or TLS and then logged the range of 
algorithms available, and preferred, 
for use with those servers. Perhaps 
the most notable finding there was 
that 88 percent of the servers they 
polled were using a 1,024-bit RSA 
with only 6 percent using a 2,048-
bit RSA. Oddly, and perhaps for mar-
keting reasons, 55 percent of servers 
supported AES-256, even though its 
design strength is vastly higher than 
the other cryptosystems in use. The 
versions of SSL and TLS tested didn’t 
fully support different hash func-
tions, so this survey didn’t produce 
interesting results in that respect.

Updating
It therefore looks like we have some 
work to do to update the set of ciphers 
used on the Internet, and, if we follow 
the recommendations, we should start 
in 2009 for deployment in 2010.

Probably the first practical thing 
to do is to make an inventory of the 
use of cryptographic algorithms in 
your deployed environment. Al-
though this sounds easy, in many 
real deployments, it could be time-
consuming and messy. For example, 
various Web services might use load-
sharing devices that actually termi-
nate TLS connections, and it could be 
hard to inventory the set of services 
that use that TLS termination point. 
Similarly, virtual private network 
gateway devices might not easily list 
the set of algorithms they support 
— or getting that list might require 
work — and privileged access to the 
device in question could be difficult 
to obtain. System administrators 
could also use various network log-
ging and analysis tools to determine 
which algorithms their systems ac-

tually use. Of course, depending on 
the protocol concerned, that might 
not be the full story — for example, 
if some aspect of algorithm negotia-
tion actually occurs as part of an 
encrypted session. However, the fact 
that all protocols layered on top of 
TLS and IPsec use certificates at least 
makes the deployment of longer RSA 
keys and new certificate-signing 
algorithms (for example, RSA with 
SHA2) relatively easy. However, the 
equipment concerned must support 
the relevant algorithms.

With SSH keys, on the other hand, 
the situation is a little harder. Part of 
the beauty of SSH is the ability to 
take the leap of faith independently 
of other infrastructure, so that the 
administrator of a single server (or 
desktop) can enforce secure access 
without much overhead. That, how-
ever, can cause issues when it comes 
time to replace multiple keys or al-
gorithms in that many hosts might 
need to be manually updated before 
the job is done.

The SSH update case also high-
lights a problem that’s common when 
changing cryptographic parameters 
or algorithms. If one side makes a 
change (for example, generating a 
new, longer SSH RSA server key), but 
the other is unaware of that change, 
this could result in undesirable effects 
at the user interface on the unchanged 
side. With SSH, this occurs when a 
user attempts to log in to a previously 
known sever that has changed its key 
and results in the display of a some-
what scary warning message because 
the client can’t distinguish a valid 
server key change from a man-in-the-
middle (MITM) attack. If a site makes 
piecemeal changes to such server 
keys, then it’s essentially training us-
ers to ignore those warnings, which 
can undermine the system’s overall 
security in the event of a real MITM 
attack. Avoiding this problem might 
call for educating local users, which 
is, in any case, worthwhile.

It’s also worth considering the 

possible effects of human error if ad-
ministrators make wholesale chang-
es to the cryptographic algorithms. 
Even with certificate-based systems 
— and certainly with manual sys-
tems such as SSH — administrators 
might make configuration errors 
when changing keys or selecting 
algorithms, and such errors could 
result in opening up an otherwise 
well-protected system when using 
the older settings.

T he overall conclusion we can 
draw is that it’s worthwhile for 

system and application administra-
tors to take an inventory of their use 
of cryptography (or, more general-
ly, of deployed security measures) 
and to maintain that inventory so 
that they can plan changes well in 
advance (or even in a hurry if the 
cryptographic sky does fall). This 
way, they can test the changes and 
circulate relevant information to us-
ers in advance of the actual chang-
es. And, of course, administrators 
should plan to include updates to 
their cryptographic infrastructure 
as part of normal release cycles, 
taking into account the recommen-
dations that the cryptographic com-
munity has developed. 

References
X. Wang et al., “Finding Collisions in the 1. 

Full SHA-1,” Advances in Cryptology — 

Crypto 2005, LNCS 3621, Springer, 2005, 

pp. 17–36.

H.K. Lee et al., “Cryptographic Strength 2. 

of SSL/TLS Servers: Current and Recent 

Practices,” Proc. 7th ACM Sigcomm Conf. 

Internet Measurement, ACM Press, 2007, 

pp. 83–92.

Stephen Farrell is a research fellow at Trin-

ity College Dublin. His research interests 

include security and delay/disruption 

tolerant networking. Farrell has a PhD 

in computer science from Trinity College 

Dublin. Contact him at stephen.farrell@

cs.tcd.ie.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 23,2010 at 11:05:51 EST from IEEE Xplore.  Restrictions apply. 


