
Practical Security

96 Published by the IEEE Computer Society 1089-7801/09/$25.00 © 2009 IEEE IEEE INTERNET COMPUTING

M any Internet security mechanisms depend
on the use of cryptographic algorithms
for various forms of authentication and

confidentiality. Even when well-known and
standardized cryptographic algorithms are used
in well-known protocols, some parameters must
be specified, the most important of which are
usually algorithm identifiers and key or hash-
output lengths. Here, I review some recent key
length recommendations and compare those to
current usage.

Strength Is Not Quite Length
Because this is an area where I’ve had to explain
things to nonsecurity folks several times over
the years, I’ll start with a quick explanation of
what we mean when we talk about key lengths.
(Actually, this is also a useful way to spot peo-
ple who don’t know what they’re talking about
— if someone’s marketing materials make great
claims as to why they’re better because they use
40,000-bit keys, then don’t buy that product!)

Many Internet security mechanisms at some
level use cryptography. Take, for example, ac-
cessing a secure Web site via an “https://” URL,
which involves running the HTTP protocol over
the Transport Layer Security (TLS) protocol (also
known as Secure Sockets Layer [SSL]). This
typically uses the Rivest, Shamir, and Adleman
(RSA) asymmetric cryptographic algorithm to
check the signature on the Web server certificate
and to exchange a session key. In fact, that part
of the protocol also requires a digest algorithm,
such as the secure hash algorithm (SHA-1). After
the key exchange, the browser and Web server
use a symmetric algorithm such as the Advanced
Encryption Standard (AES) to protect the infor-
mation exchanged between the browser and the
Web server. In this protocol as well as others, we
often talk about using a suite of algorithms and
sometimes call that ensemble a ciphersuite.

For each of these cryptographic uses, we

should be concerned about the cryptosystem’s
strength. Not only are there different algo-
rithms that can be configured (for example,
Diffie-Helmann key agreement is an alternative
to RSA), many of the algorithms they use can
support different key lengths, which have dif-
ferent strengths.

By strength here, I mean something that in-
dicates the amount of work that a knowledge-
able and well-funded adversary would have to
do to break the algorithm’s security, as used in
the protocol in question. So, for example, if I
could quickly factor any number that’s roughly
2,100 bits long, then I could masquerade as al-
most any Internet bank using RSA. Thankfully,
we don’t think this is practical for any adver-
sary at this time.

These algorithms generally require a crypto-
graphic key as input, or produce a certain size
of output, and were those inputs or outputs very
short, then the adversary probably wouldn’t
have much work to do at all. For example, if an
algorithm can only accept 40-bit keys, then the
system has only 1,099,511,627,776 (2 to the pow-
er of 40) keys in total, which, although a large
number, isn’t large enough: an adversary could
simply try all possible keys until one works — a
so-called “brute force” attack. Similarly, if a di-
gest operation’s output were small, say only 32
bits long, then an adversary could simply guess
possible inputs until it found a matching output,
probably after only roughly 65,000 attempts.

For most cryptographic algorithms, we can
approximate the amount of work for the adver-
sary via a single number, often directly related
to the key length, or the output length for a hash
algorithm. That’s a good thing — it lets us com-
pare different sets of parameters for the same
algorithm and also ensure that we use sensible
algorithm combinations — that is, sets of algo-
rithms with commensurate strengths.

Keys Don’t Grow in Threes

Stephen Farrell • Trinity College Dublin

cont. on p. 94

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 23,2010 at 11:05:51 EST from IEEE Xplore. Restrictions apply.

Practical Security

94 www.computer.org/internet/ IEEE INTERNET COMPUTING

It’s important to use commensu-
rate strengths because an adversary
always attacks the weakest link.
There’s a corollary to that — if you in-
crease the strength for only one algo-
rithm, the attacker will simply attack
elsewhere, and because increasing
strength generally requires more
computation, we don’t want to do that
without benefitting from it.

However, you must understand
that these numbers take into ac-
count only currently known attacks
against the algorithms. For example,
the SHA-1 algorithm has a 160-bit
output and was designed to have 80
bits of strength against collisions.
However, recent attacks1 have dem-
onstrated that, in fact, the adversary
is really only up against roughly 63
bits of strength.

Similarly, different algorithms,
say RSA and AES, have radically
different reasonable key lengths as-
sociated with them because their
internal designs are radically differ-
ent. For example, a 128-bit AES key
is considered strong today, whereas
a 128-bit RSA key would be trivial
to break — for RSA, we should be
somewhere around 2,048 bits of key
length, which is roughly equivalent
to 112 bits of strength when com-
pared to the AES algorithm. So, it’s
not entirely trivial to translate key
length into algorithm strength, but
a well-known relationship exists for
all useful algorithms.

Why Worry?
Well, we’ve already seen one thing
that system designers should con-
sider — that is, the use of commensu-
rate strengths for all the algorithms
in a ciphersuite. However, we also
need to bear in mind that all reason-
able cryptographic algorithms can,
in principle, be broken — just try
all the keys in turn until you find
the right one (the brute-force attack
I mentioned earlier). If we increase
the key strength and length, then we

generally increase the work for the
adversary, so longer keys equate to
stronger ciphersuites. For most al-
gorithms, we’d expect that each ad-
ditional bit would essentially double
the adversary’s work because each
additional bit doubles the number of
possible keys. Of course, variations
for different algorithms exist, but
the basic idea that longer is stronger
is, other things being equal, correct.

However, we don’t usually increase
key lengths by one bit at a time. First,
having key lengths map well to vari-
ous boundaries is often beneficial —
for example, AES keys can be 128,
192, or 256 bits long but not 131 bits
long due to the algorithm’s internal
design. For other algorithms, includ-
ing RSA, the output size also depends
on the key length. In fact, there are
some so-called side-channel attacks
in which unusual output lengths that
don’t fit on byte boundaries would
make the attack easier. So, we pre-
fer to deal with well-known lengths,
such as 2,048 or 3,072 and not, for
example, 2,051. (So, we don’t grow
keys in threes.) Basically, we’re not
dealing with a continuum here but
with a fairly small range of well-
 analyzed lengths and strengths for
each algorithm in our ciphersuites.

Because we don’t want to allow
practical brute-force attacks, we must
estimate a reasonable set of strengths
for each algorithm in our ciphersuites.
But reasonable lengths change over
time, as Moore’s law increases the
amount of work that the adversary
can do for each unit of currency.

We can make some predictions
based on Moore’s law, but we gen-
erally can’t predict advances in
cryptanalysis (the art or science of
breaking this kind of thing). For some
algorithms, experts might be willing
to recommend a change due to their
expectation of future developments,
based on the current state of the art.
In this context, we also need to bear
in mind that attacks never get worse
— they only improve over time — so

if an adversary has attacked some
algorithm at some strength in some
algorithm-specific manner, then we
could guess that similar attacks will
have some predictable effect on other
algorithm strengths.

The main point is that, as time
goes on, what was once a reasonable
ciphersuite could become insecure.
And if we trade off performance or
bandwidth for strength, as we usu-
ally do in any real system, it’s quite
likely that we’ll have to increase the
strengths used in a matter of years,
not decades.

Are We There Yet?
So, who’s making recommendations,
and what are they? Well, several
cryptographers have tackled aspects
of the problem, but various govern-
ments (including the US, Germany,
and France) have also made more
systematic recommendations. Da-
mian Giry maintains a nice Web site
(www.keylength.com) that summa-
rizes and provides references for the
various recommendations in an easy-
to-compare form — this is helpful,
given that commensurate strength
is a goal here. The US National In-
stitute of Standards and Technology
(NIST) recommendations are perhaps
the best known and date from 2007;
they suggest, for example, that by
the end of 2010, deployments should
move to 2,048-bit RSA keys, whereas
the current most common key size in
use is a 1,024-bit RSA. In addition,
NIST recommends moving to 112-bit
strength for symmetric keys, though
it’s probably better to move to 128-bit
AES keys. For hash algorithms, the
position is perhaps a little different
because the required strength de-
pends on the purpose for which the
hash function is used. In most cases,
using SHA-256 (with a 256-bit out-
put and, hopefully, roughly 128 bits
of collision-resistance strength) is
probably the best choice.

So, we have recommendations
since 2007, and we have a set of

cont. from p. 96

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 23,2010 at 11:05:51 EST from IEEE Xplore. Restrictions apply.

MAY/JUNE 2009 95

Keys Don’t Grow in Threes

widely supported algorithms that
match those recommendations. You
might therefore ask how well de-
ployments match those recommen-
dations. In 2005 and 2006, Homin
Lee and his colleagues2 conducted a
survey in which they probed roughly
19,000 Web servers supporting SSL
or TLS and then logged the range of
algorithms available, and preferred,
for use with those servers. Perhaps
the most notable finding there was
that 88 percent of the servers they
polled were using a 1,024-bit RSA
with only 6 percent using a 2,048-
bit RSA. Oddly, and perhaps for mar-
keting reasons, 55 percent of servers
supported AES-256, even though its
design strength is vastly higher than
the other cryptosystems in use. The
versions of SSL and TLS tested didn’t
fully support different hash func-
tions, so this survey didn’t produce
interesting results in that respect.

Updating
It therefore looks like we have some
work to do to update the set of ciphers
used on the Internet, and, if we follow
the recommendations, we should start
in 2009 for deployment in 2010.

Probably the first practical thing
to do is to make an inventory of the
use of cryptographic algorithms in
your deployed environment. Al-
though this sounds easy, in many
real deployments, it could be time-
consuming and messy. For example,
various Web services might use load-
sharing devices that actually termi-
nate TLS connections, and it could be
hard to inventory the set of services
that use that TLS termination point.
Similarly, virtual private network
gateway devices might not easily list
the set of algorithms they support
— or getting that list might require
work — and privileged access to the
device in question could be difficult
to obtain. System administrators
could also use various network log-
ging and analysis tools to determine
which algorithms their systems ac-

tually use. Of course, depending on
the protocol concerned, that might
not be the full story — for example,
if some aspect of algorithm negotia-
tion actually occurs as part of an
encrypted session. However, the fact
that all protocols layered on top of
TLS and IPsec use certificates at least
makes the deployment of longer RSA
keys and new certificate-signing
algorithms (for example, RSA with
SHA2) relatively easy. However, the
equipment concerned must support
the relevant algorithms.

With SSH keys, on the other hand,
the situation is a little harder. Part of
the beauty of SSH is the ability to
take the leap of faith independently
of other infrastructure, so that the
administrator of a single server (or
desktop) can enforce secure access
without much overhead. That, how-
ever, can cause issues when it comes
time to replace multiple keys or al-
gorithms in that many hosts might
need to be manually updated before
the job is done.

The SSH update case also high-
lights a problem that’s common when
changing cryptographic parameters
or algorithms. If one side makes a
change (for example, generating a
new, longer SSH RSA server key), but
the other is unaware of that change,
this could result in undesirable effects
at the user interface on the unchanged
side. With SSH, this occurs when a
user attempts to log in to a previously
known sever that has changed its key
and results in the display of a some-
what scary warning message because
the client can’t distinguish a valid
server key change from a man-in-the-
middle (MITM) attack. If a site makes
piecemeal changes to such server
keys, then it’s essentially training us-
ers to ignore those warnings, which
can undermine the system’s overall
security in the event of a real MITM
attack. Avoiding this problem might
call for educating local users, which
is, in any case, worthwhile.

It’s also worth considering the

possible effects of human error if ad-
ministrators make wholesale chang-
es to the cryptographic algorithms.
Even with certificate-based systems
— and certainly with manual sys-
tems such as SSH — administrators
might make configuration errors
when changing keys or selecting
algorithms, and such errors could
result in opening up an otherwise
well-protected system when using
the older settings.

T he overall conclusion we can
draw is that it’s worthwhile for

system and application administra-
tors to take an inventory of their use
of cryptography (or, more general-
ly, of deployed security measures)
and to maintain that inventory so
that they can plan changes well in
advance (or even in a hurry if the
cryptographic sky does fall). This
way, they can test the changes and
circulate relevant information to us-
ers in advance of the actual chang-
es. And, of course, administrators
should plan to include updates to
their cryptographic infrastructure
as part of normal release cycles,
taking into account the recommen-
dations that the cryptographic com-
munity has developed.

References
X. Wang et al., “Finding Collisions in the 1.

Full SHA-1,” Advances in Cryptology —

Crypto 2005, LNCS 3621, Springer, 2005,

pp. 17–36.

H.K. Lee et al., “Cryptographic Strength 2.

of SSL/TLS Servers: Current and Recent

Practices,” Proc. 7th ACM Sigcomm Conf.

Internet Measurement, ACM Press, 2007,

pp. 83–92.

Stephen Farrell is a research fellow at Trin-

ity College Dublin. His research interests

include security and delay/disruption

tolerant networking. Farrell has a PhD

in computer science from Trinity College

Dublin. Contact him at stephen.farrell@

cs.tcd.ie.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 23,2010 at 11:05:51 EST from IEEE Xplore. Restrictions apply.

