
SEPTEMBER/OCTOBER 2009	 1089-7801/09/$26.00 © 2009 IEEE	 Published by the IEEE Computer Society� 91

Practical Security

M any Web 2.0 services offer Web 2.0 APIs
for developers to use. In this article, I
review one of the security mechanisms

that’s often included in such Web 2.0 APIs — the
use of API keys — and some of the deployment
issues associated with their use.

Web 2.0 APIs
From a security viewpoint, Web 2.0 APIs are
different from more traditional APIs that pro-
grammers use when calling a library from a
running process. In the case of traditional APIs,
significant trust boundaries aren’t often crossed
due to the API call because both the calling and
called code generally have access to the same
memory and so are effectively equivalent in
terms of security.

However, with Web 2.0 APIs, we’re really
dealing with application protocol interfaces
because they involve accessing some application
functionality over HTTP. This generally involves
crossing various trust boundaries. For example,
the calling code could be JavaScript running in
a browser environment, the called code might be
running on some Web server machine in a demil-
itarized zone (DMZ), and the HTTP requests and
responses used to implement the API might pass
through various HTTP proxies between the call-
ing and the called code.

The typical Web 2.0 API involves a client
calling a service with parameters passed as a
mixture of query string parameters — that is, as
part of the URI in the HTTP request — or as XML
or even tag-value pairs inside POST data. In most
cases, responses consist of XML-structured data
passed in the body of the HTTP response, with a
variety of MIME content types.

Many Web 2.0 services provide APIs in vari-
ous “flavors,” which offer equivalent function-
ality via HTTP or SOAP. With SOAP APIs, some
security standards (see www.w3.org/TR/SOAP
-dsig) are available to cover authentication and

authorization. However, in many cases,1 devel-
opers apparently find SOAP-variant APIs to be
too resource intensive, so the HTTP or Represen-
tational State Transfer (RESTful) variants tend to
be more commonly used. Variants of these APIs
exist that use JavaScript Object Notation (JSON)
for one or both request or response parameters,
rather than pass parameters as XML-structured
data. In neither the HTTP case nor the JSON case
are there standards for how to use cryptography
to provide security services specifically for the
API calls.

Of course, many security issues associated
with the use of Web 2.0 style development and
APIs exist. However, in this article, I only con-
sider the use of API keys. So, for example, this
article doesn’t consider issues related to cross-site
scripting attacks or other implementation vul-
nerabilities. As a matter of terminology, I refer to
the service provider as the entity that supplies a
service via the API and the API consumer as the
entity that calls the API to use the service.

API Key Mechanism
With many Web 2.0 APIs, service providers
might wish to constrain or control access to the
service by issuing what they call API keys to
approved partners. Sometimes, service provid-
ers require the API key to use the service. In
other cases, it’s optional because the service
provider simply uses it for logging and to con-
tact the API consumer in the event of failures.
Other cases arise in which the API key acts like
a password that grants access to the service,
and in yet other situations, the service provider
uses a secret associated with the API key as a
cryptographic key to both authenticate the API
consumer and to partially protect API requests.

There is often some loose use of terminology
associated with API keys (as you can see from
the last paragraph). Sometimes the API key is
essentially a hopefully hard-to-guess combined

API Keys to the Kingdom

Stephen Farrell • Trinity College Dublin

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 06:54:09 EST from IEEE Xplore. Restrictions apply.

Practical Security

92 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

account identifier and password; at
other times, it’s used as a secret key
identifier, in which the secret-key is
either distributed out-of-band or in-
band via some other API call.

When a service provider uses an
API key and secret to authenticate
and integrity-protect an API request,
many API specifications talk of using
the secret to “sign” the request or talk
about generating a “signature.” Cryp-
tographically, these are in fact not
signatures (which require the use of
asymmetric algorithms like RSA) but
rather are message-authentication
codes (MACs), which, in most APIs,
only partially protect the API request.

One common method is to cat-
entate the API key (acting in this
case like a key identifier) with some
request parameters, append the secret,
and then input that string to the MD5
hash algorithm. For example, the
last.fm API (see www.last.fm/api/
webauth) uses this, but it’s commonly
used elsewhere. This particular way
of generating MACs is cryptographi-
cally weak, especially because the
MD5 algorithm is essentially broken
for collisions so that an attacker could
probably, with some work, generate
different API requests that would dif-
fer but use the same MAC value.

Although such a weak MAC
scheme is cryptographically undesir-
able, developers have justified their
use in the past by claiming that they
should be simple so that they can
easily implement them in the broad
range of environments that API con-
sumers require — which include PHP
scripts and other less capable devel-
opment environments. However, at
a minimum, APIs should use a bet-
ter MAC algorithm — for example,
HMAC-SHA1 (http://tools.ietf.org/
html/rfc2104/).

It’s also worth noting that ser-
vice providers generally use these
schemes only to partially authen-
ticate requests, and responses are
totally unprotected or else protected
only via Transport Layer Security

(TLS). The result is that requests are
vulnerable to manipulation, and
responses are vulnerable to spoof-
ing. The use of partial protection
for requests also raises an issue of
understanding — developers using,
defining, or modifying an API defi-
nition might not understand which
fields are actually protected and
which aren’t, and this can lead to
vulnerabilities. This is especially
true because API consumer devel-
opers aren’t security experts, nor
should we expect them to be.

API Keys and SSL/TLS
When developers use API keys in
conjunction with the Secure Sockets
Layer (SSL) or TLS protocols, a couple
of issues arise. Many Web deploy-
ments don’t actually terminate the
SSL or TLS session at the API server.
Instead, they terminate in load-
balancing equipment an IP hop (or
so) upstream from the API server.
The point is that the API server
that handles sensitive information
is then trusting that no other route
exists for HTTP requests to arrive at
that API server — other than via the
load-balancing device. It also trusts
the load-balancing configuration to
enforce the requirement that SSL or
TLS is enabled and properly used.

The consequence is that many
API designers, in fact, simply assume
that requests and responses are
already sufficiently protected for
integrity and confidentiality. Hence,
they take no steps to directly protect
sensitive information passed via the
API. Although this approach is prob-
ably justifiable, given many Web 2.0
services’ current infrastructure and
relative lack of sensitivity, it might
not be appropriate in the future as we
access more sensitive data via Web
2.0 APIs or use the services provided
on larger and larger scales.

A second issue relates to how API
consumers manage certificate and
certificate-authority information. If
the API consumer is actually running

as a service itself, then using server-
authenticated TLS (the norm between
browsers and Web sites when using
HTTPS) requires that the API con-
sumer use a TLS library that’s properly
configured with information about
the certification authority that issued
the service provider’s certificate.

Because most TLS libraries also
support mutual authentication based
on certificates, service providers and
such API consumers should be able
to use this much stronger form of
authentication — no intrinsic reason
exists why managing certificates for
API consumers should be any harder
than managing API keys and secrets.
In fact, one could argue that manag-
ing API consumer certificates would
be better because the service provider
would no longer be vulnerable to
accusations of using API consumer’s
secrets, thanks to the nature of the
public key cryptography that mutu-
ally authenticated TLS uses. That
said, there would still be the issue of
terminating the TLS session at the
load balancer, in which case the load
balancer would have to assert the API
consumer’s identity to the service.

Key Life Cycle
Given the API key scheme’s broad
use and likely continuation for some
time to come, its worthwhile to con-
sider the life cycle of these API keys
and secrets, just as we would any
cryptographic key or password.

The first point is that, because
API keys are intended for develop-
ers, it’s likely there will be a stage
in which developers use the API
during development before using it
with a “live” service. To reduce the
exposure of API key values, service
providers should have a set of devel-
opment API keys and secrets for such
a situation. When the API consumer
has debugged their implementation
using the development version of the
API key, they can then switch over
to use “live” API key values. In many
operational environments, this sim-

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 06:54:09 EST from IEEE Xplore. Restrictions apply.

SEPTEMBER/OCTOBER 2009� 93

API Keys to the Kingdom

ple step can significantly reduce API
keys’ exposure because different
people will be involved in develop-
ing and operating the live service.
So, the developers need not access
the API keys and secrets that will be
used in the live service.

Of course, we should only securely
transfer API keys and secrets — for
example, using encrypted mail sys-
tems such as S/MIME, which can be
easily set up for the numbers involved
here, or via some Web site accessed
over TLS (preferably with mutual
authentication). However, it’s impor-
tant to remember that these values
are as sensitive within API consumer
organizations as they are when sent
between the service provider and the
API consumer. In fact, API keys and
secrets transmitted via internal email
or version-control systems are prob-
ably at their most exposed, given the
type of infrastructure that many API
consumers typically use.

Second, it should be possible to
change API keys and secret values
without impacting the operational
service. This implies that some kind
of key versioning is required and that
API consumers should provide tools
to let consumer developers add new
API keys and secrets and remove or
deprecate old ones. Service provid-
ers should publish a policy on how
they manage API keys and secrets in
this respect and could, for example,
reduce the level of access granted for
old or development keys compared
to the set of currently “live” ones.
However, when supporting changes
in these values, API consumers must
also be vigilant to not introduce new
phishing opportunities — for exam-
ple, via user interfaces that accustom
end-users to seeing changes that a
phishing attack could exploit.

All these issues require service
providers to establish some, albeit
lightweight, infrastructure for key
management, but that’s an inher-
ent part of offering a secure service,
there being no free lunches.

API Keys and Open Source
The Web 2.0 services that use the
API key approach have a problem
with open source implementations
that might have to include API key
values in the code. They also have a
problem with downloadable applica-
tions in which they must embed the
API key values into the distributed
application. Consumer developers
can handle this situation in a couple
of ways, depending on the type of
API consumer.

For API consumers that run as a
service (for example, as part of a Web
application framework), it might be
reasonable to include a development
API key with the open source version
and require that the installer request
a new “live” API key from the ser-
vice provider. In this case, the keys
that the consumer developers distrib-
ute with the code are similar to the
development keys I referred to earlier
and could reasonably result in a lower
level of access compared to live keys.

However, in other cases, the API
consumer might be a downloadable
application (or plug-in) that’s intended
for end users. In such cases, it’s hard
to simultaneously meet security and
usability requirements if the down-
loaded application must have access
to the API key values. One possibil-
ity would be for the API consumer
to offer a service that authenticates
the user, so that the API key values
remain under the consumer’s con-
trol. However, this, again, could cause
deployment, performance, or usability
issues. In the end, the API key scheme
doesn’t really handle this case well.
Therefore, we should really consider
such API key values to be publicly
available because, for a popular appli-
cation, even obfuscating the key val-
ues in the downloadable application
won’t keep them confidential.

Going Forward — OAuth
So, I’ve described a range of ways
in which service providers and API
consumer developers use this API

key scheme in practice, with sig-
nificant variability both in terms of
functionality and security. So, you
might wonder whether any stan-
dards-development activities are
relevant here, and the answer, as
usual, is “yes.” Probably, the main
current focus in this area relates to
the OAuth specification (www.oauth.
org), which various service provid-
ers are successfully using with quite
a large range of API consumers.
The IETF is also developing a stan-
dards-track set of RFCs for OAuth
(see www.ietf.org/dyn/wg/charter/
oauth-charter.html) that should sig-
nificantly improve its security and
interoperability properties so that
service providers and API consumers
can use the resulting specification to
meet the goals of the various ad hoc
API key schemes currently in use.

I recommend that service provid-
ers and API consumers look at the

OAuth specification when develop-
ing new Web 2.0 APIs. Addition-
ally, they should consider whether
they can, in fact, use mutually
authenticated TLS. In any case, ser-
vice providers should provide some
infrastructure for managing API key
values’ life cycles to reduce their
systems’ vulnerability.�

Reference
1.	 C. Pautasso, O. Zimmermann, and F.

Leymann, “Restful Web Services vs.

Big Web Services: Making the Right

Architectural Decision,” Proc. 17th Int’l

Conf. World Wide Web (WWW 08), ACM

Press, 2008, pp. 805–814; http://doi.acm.

org/10.1145/1367497.1367606.

Stephen Farrell is a research fellow at Trin-

ity College Dublin and chief technolo-

gist with NewBay Software. His research

interests include security and delay/

disruption tolerant networking. Farrell

has a PhD in computer science from Trin-

ity College Dublin. Contact him at ste-

phen.farrell@cs.tcd.ie.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 06:54:09 EST from IEEE Xplore. Restrictions apply.

