
Practical Security

84 	 Published by the IEEE Computer Society	 1089-7801/10/$26.00 © 2010 IEEE� IEEE INTERNET COMPUTING

T he Secure Sockets Layer (SSL) protocol and
its standards-track successor, the Transport
Layer Security (TLS) protocol,1 were devel-

oped more than a decade ago and have generally
withstood scrutiny in that the protocols them-
selves haven’t been found to have security flaws.
Until now. In August 2009, Marsh Ray and Steve
Dispensa discovered a design flaw in the TLS pro-
tocol (and published it in November 2009 due to
independent rediscovery of the flaw by Martin
Rex)2 that affects all versions of the protocol up to
and including the current version.

Whereas the vulnerability itself is seri-
ous, it need not affect many deployments once
administrators apply suitable patches to disable
renegotiation, leaving TLS sufficiently secure in
most cases because exploiting the vulnerability
requires the attacker to be an active man-in-the-
middle, redirecting traffic between victims (for
example, a browser and a Web server). However,
because security problems only ever get worse,
a change to the protocol is required and is now
being developed as a high priority in the IETF
(http://tools.ietf.org/wg/tls). If all goes well, a
new RFC with the fix might be published soon
after this article appears.

The vulnerability is an interesting attack in
itself, but perhaps more interesting is the ques-
tion, why didn’t we see this earlier? In this article,
I explore this question but, unfortunately, can’t
answer it. Hopefully, simply asking the question
might prompt developers to re-examine assump-
tions they’ve forgotten they’ve even made.

The Recently Discovered Problem
The TLS protocol starts with the so-called
“handshake” phase in which two parties agree
on the types of cryptography and on the keys
to use for protecting application data. The
handshake requires a couple of roundtrips, as
the client and server exchange and then ver-
ify parameters after they’ve established shared
keys. After the handshake, the keys established

during the handshake protect the application
data (for example, HTTP traffic). Figure 1 —
modeled on figures from Eric Rescorla’s Inter-
net draft3 — provides an abstract view of such
an exchange, showing the initial handshake
messages that aren’t encrypted, followed by
protected application-layer traffic between the
client and server.

The problem arises due to the fact that TLS
also lets clients and servers renegotiate or, in
other words, do a second handshake, and this
second handshake isn’t cryptographically bound
to the initial one.

TLS allows this for a couple of reasons. Per-
haps its most common use today is to enable
protection of clients’ identities in the (currently
rare) case that the public-key-certificate-based
client-authentication option built in to the
TLS protocol is in use. (This particular use of
renegotiation seems to have first been mentioned
on the TLS working group mailing list in mid-
1998.) The problem with directly sending the
client’s public-key certificate in the initial hand-
shake is that the client’s identity is exposed in
cleartext because the client and server don’t yet
share a key to encrypt the client’s identity. So,
sending the client’s identity in the second hand-
shake (see Figure 2) solves this problem because
all the messages that form the second handshake
are protected (encrypted and integrity protected)
using the keys established in the first handshake.

Clients and servers can also change the set of
cryptographic parameters in use via TLS rene-
gotiation. In the 1990s, US authorities, in par-
ticular, tightly controlled the export of strong
cryptography, resulting in standard Web brows-
ers that could only use TLS to negotiate weak
ciphers. This was a problem for banking appli-
cations, and, in 1999, Microsoft and other com-
panies developed what they called server-gated
cryptography (SGC) to solve this problem. With
SGC, the server certificate, which is sent from
the server to the client as part of the initial hand-

Why Didn’t We Spot That?

Stephen Farrell • Trinity College Dublin

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 07:09:34 EST from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2010� 85

Why Didn’t We Spot That?

shake, included a special flag, indi-
cating that the server belonged to a
financial institution. The server cer-
tificate was then used as a signal for
the client (a Web browser) to enable
otherwise disabled strong ciphers.
Because the client only saw the SGC
flag during the initial handshake, a
second handshake was required to
enable the stronger ciphers.

Thus, the two main uses of TLS
renegotiation (client identity protec-
tion and enabling strong ciphers)
solved problems that were essentially
protocol artifacts. Or, put another
way, both uses of renegotiation were
afterthoughts. In fact, the original
purposes of renegotiation were to
allow rekeying, once an enormous
number of bytes had been sent in
a long-lived TLS session (using the
same keys for too long is bad crypto-
graphic practice), or to reset message
sequence numbers once they had
reached a bit boundary (to prevent
possible replay attacks that might
occur if sequence numbers were
allowed to repeat). Importantly, nei-
ther of these original purposes are
relevant for the application making
use of TLS, whereas the main current
use for renegotiation (client identity
protection) is really relevant only to
the application and not to the TLS
protocol itself.

In any case, the recently dis-
closed problem with renegotiation is
that no binding exists between the

different handshakes. So, a man-in-
the-middle attacker can carry out
the first handshake with the server
and then trick the victim-client into
doing the second handshake. Fig-
ure 3 shows the man-in-the-middle
attacker first dong a handshake
with the server and then tunnel-
ing the victim-client’s handshake
through the session established with
the initial handshake. Because the
attacker is a man-in-the-middle, in
the important case of HTTP running

over TLS, the attacker can wait until
it sees a client attempt to access a
given site and can then trigger the
attack. From the server’s viewpoint,
it just sees the initial handshake and
then the renegotiation, so it doesn’t
detect the attacker. From the cli-
ent’s point of view, it doesn’t see the
initial handshake at all and doesn’t
know that what it (the client) thinks
is an initial handshake is actually a
renegotiation.

The problem with this is that the

Client

Server

Handshake

Client traf
c

Clear Protected

Figure 1. Transport Layer Security handshake. This figure provides an abstract
view of such an exchange, showing the initial handshake messages that aren’t
encrypted, followed by protected application-layer traffic between the client
and server.

The Transport Layer Security Protocol — A Brief History

In the mid 1990s, the Internet and the Web were exploding
in terms of numbers of users and hosts. The advent of the

Web led to many new commercial uses of the Internet and also
resulted in lots of nontechnical users engaging in Web commerce.
As is still the case, credit cards were the main payment mecha-
nism, so there was a widespread concern that people’s credit-
card information could be misused because it was generally sent
unprotected over the Internet between the user’s browser and
the commerce site’s Web server. The fact that this isn’t the most
likely source of exploits (attacking a server containing a database
of credit-card information is much more lucrative) was in a sense
irrelevant because the main issue was one of confidence — users

wanted to feel “secure” when they entered their credit-card
information, and it seemed that encrypting the data as it transited
the network was the required solution. Starting in early 1996, and
basing their work on Netscape’s Secure Sockets Layer (SSL) pro-
tocol, the IETF’s Transport Layer Security (TLS) working group
was formed to standardize a solution for this problem, resulting
in TLS version 1.0 (RFC 2246)1 being published in 1999, with the
current version being TLS 1.2 (RFC 5246) published in 2008.

Reference
1.	 T. Dierks and C. Allen, The TLS Protocol, Version 1.0, IETF RFC 2246, Jan.

1999; www.ietf.org/rfc/rfc2246.txt.

Client

Server

Handshake

Client traf
c

Second handshake

Client traf
c

Clear Protected

Figure 2. Transport Layer Security renegotiation. Sending the client’s identity
in the second handshake allows that identity to be protected (encrypted and
integrity protected) using the keys established in the first handshake.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 07:09:34 EST from IEEE Xplore. Restrictions apply.

Practical Security

86 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

server could (and in fact does in real
Web servers) treat the “initial traf-
fic” and the “later traffic” as belong-
ing to one session, even though one
comes from the attacker and the
other from the victim-client. In the
client certificate in the second hand-
shake use case, real Web servers do
treat the “initial traffic” as if it were
from the client who in fact is only
authenticated as part of the second
handshake. This lets the attacker
insert an application-layer request,
which is treated as being from the
victim-client. In the case of HTTP
running over TLS, the attacker gets
to send the initial HTTP request that
could be exploitable or could dam-
age the victim-client — for example,
by deleting something or causing a
purchase to occur.

In fact, there are also HTTP-
specific ways in which the attacker
could exploit the second handshake
to attack a victim-client who has pre-
viously authenticated via a password
and has received a cookie, which the
browser presents with subsequent
HTTP requests to demonstrate that
the user is authenticated. In this
case, the attacker essentially splices
together two HTTP sessions via some
rather clever HTTP-specific “glue.”

So, a couple of things are going
on here. One is that the TLS proto-
col doesn’t bind the different hand-
shakes (and there could be more
than two), and the other is that the
higher-layer protocol (for example,
HTTP) treats the initial and later
traffic equivalently, even though
they might not be from the same

source. And to make matters worse,
most TLS implementations don’t
make it easy for the server applica-
tion to see the difference between
the initial and later traffic, handling
renegotiation transparently to the
application, as the TLS specification
perhaps implies.

The longer-term fix here is rela-
tively straightforward and binds
together the previous handshake with
the current one so that if an attacker
is in the middle, then the current
handshake fails at the stage at which
the previously exchanged handshake
messages are verified. This is a rela-
tively simple change to the TLS pro-
tocol, and participants in the TLS
working group are currently dis-
cussing the details of exactly how to
embed this binding into the protocol,
with one proposal3 looking like it will
form the basis for the standardized
solution to the problem. In the mean-
time, many SSL and TLS deployments
could simply turn off renegotiation
because they don’t have a real need for
it, and server vendors will undoubt-
edly distribute patches that provide
this control to administrators.

It’s also worth noting that the
attacker in all these cases doesn’t get
to fully control the victim-client’s
TLS session because the attacker
can’t decipher the later traffic (see
Figure 3). The bottom line is that
most client application data remains
protected, even in the face of a suc-
cessful attack. However, there are
potentially many Web applications
in which the attacker can guess or
calculate damaging values to include

in the initial traffic. Thus, server
administrators should give a high
priority to deploying fixes for this
vulnerability — for example, this
kind of attack has been reported
against Twitter (www.theregister.co.
uk/2009/11/14/ssl_renegot iat ion
_bug_exploited). Application devel-
opers should also consider how their
applications are structured — and
whether an attacker could calculate
or guess damaging values — and con-
sider making appropriate changes at
the application layer.

Finally, because TLS also pro-
tects other applications (for example,
those using the Internet Message
Access and Lightweight Directory
Access protocols, IMAP and LDAP),
we should expect variations on the
attack that will affect some uses
of those protocols. Administrators
and developers using TLS should be
on the lookout for reports of such
attacks and should, of course, be
diligent about updating their appli-
cation and security infrastructures.

How Did We Miss It?
Having described the newly pub-
lished vulnerability, we come to the
main question: why didn’t the secu-
rity community spot this problem
sometime over the past decade of
widespread TLS use?

This might partly be due to a
split between those who develop and
use security protocols (such as par-
ticipants in the IETF) and those who
analyze security protocols. There are
generally few analyses of security
protocols presented to IETF partici-
pants because its focus is generally
on either producing new protocols
or fixing known problems in exist-
ing ones, as in this case. Although
several analyses of TLS have been
published in the literature4,5, they
mainly seem to focus (as we would
expect) on the security of key estab-
lishment and how applications sub-
sequently use those keys. To date, I
haven’t seen any security analysis

Client

Attacker

Server

Handshake

Initial traf
c

Handshake

Later traf
c

Clear Protected

Figure 3. Transport Layer Security handshake under attack. This shows a
man-in-the-middle attacker first doing a handshake with the server and then
tunneling the victim-client’s handshake using the initial handshake’s session keys.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 07:09:34 EST from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2010� 87

Why Didn’t We Spot That?

that directly addresses using renego-
tiation in TLS.

People doing (in particular)
formal security analysis presum-
ably didn’t realize that applications
using TLS used renegotiation as I’ve
described, and, because they rarely
meet with the protocol developers,
there were few opportunities to com-
municate this fact. There’s also the
fact that it’s often hard for protocol
developers to fully understand the
assumptions built into the security
proofs presented in the literature —
for example, typical IETF partici-
pants might not properly understand
the conclusion that “the TLS protocol
framework securely realizes secure
communication sessions,”5 and typi-
cal application developers depending
on TLS to secure their applications
are probably even less well-placed to
understand such conclusions.

Implicit in what I’ve just described
is the fact that today’s uses of the TLS
protocol don’t actually use renegotia-
tion for the purposes for which it was
initially intended (rekeying or wrap-
ping sequence numbers). Renegotia-
tion to handle rekeying or sequence
numbers is quite reasonably some-
thing that a TLS implementation
could handle transparently. How-
ever, because renegotiation ended
up being used particularly for tran-
sitioning between authentication
states that are highly meaningful for
applications using TLS, it’s now clear
that such renegotiation shouldn’t be
transparent to applications when
used like this. In the case of SGC, the
ciphers that end up being used are
in fact visible to the application, but
in the case of client authentication
based on certificates, the transition
from unauthenticated to authenti-
cated is less visible, which leads to
the now realized possibility that an
attacker could splice together the
initial and later traffic into what the
application sees as a single session.

Arguably, protocol developers
should pay closer attention to features

like this that end up being used for
purposes for which they weren’t orig-
inally intended. We could also con-
clude that protocol developers should
more carefully consider what inter-
nal states of the protocol should be
visible to that protocol’s consumers,
rather than simply convincing them-
selves that the protocol can be used
“securely.” Finally, protocol devel-
opers should clearly more carefully
consider whether and how to crypto-
graphically bind different phases or
parts of complex protocols like TLS.

Probably psychological issues
also play a role here, in that we tend
not to focus on what we perceive as
secondary use cases when consider-
ing deployed protocols. In this case,
the use of certificate-based client-
authentication (which uses hand-
shake renegotiation) is perceived as
rare and so, presumably, receives
less attention as a potential source
of vulnerabilities in TLS. One way
to counter this might be for security
protocol developers to build up a set
of antipatterns (such as the man-
in-the-middle attack I described
earlier) that they could compare to
protocol proposals.

I n this case, it’s hard to reach defini-
tive conclusions because I and a

few people I’ve asked really aren’t
sure why we didn’t spot this flaw
in TLS earlier. However, as protocol
developers, we might benefit in the
future if we try to talk more with
people doing more formal security
analyses, if we look more closely at
things being used for purposes other
than those for which they were origi-
nally intended, and if we build up a
set of antipatterns and occasionally
check our work against those. We
should also consider whether what
we think of as a protocol’s internal
states should actually be exposed to
applications, and we should prob-
ably include additional cryptographic
bindings between different parts of

complex protocols as a general fea-
ture even if we aren’t quite sure why
we need them at the outset. In the case
of this particular vulnerability, we
can expect security and application
providers to update TLS clients and
servers, in the short term, to include
relevant fixes. Administrators should
plan to deploy these updates to con-
tinue to get the real benefits that TLS
brings to the Internet for, hopefully,
at least another decade.�

Acknowledgments
I thank Marsh Ray, Steve Dispensa, and

Nasko Oskov for comments on a draft of

this article. All errors, of course, remain my

responsibility.

References
1.	 T. Dierks and E. Rescorla, “The Transport

Layer Security (TLS) Protocol, Version

1.2,” IETF RFC 5246, Aug. 2008; www.

ietf.org/rfc/rfc2246.txt.

2.	 M. Ray and S. Dispensa, Renegotiating TLS,

tech. report, Nov. 2009; http://extended

subset.com/Renegotiating_TLS.pdf.

3.	 E. Rescorla et al., “Transport Layer

Security (TLS) Renegotiation Indication

Extension,” IETF Internet draft, work in

progress, Nov. 2009.

4.	 L.C. Paulson, “Inductive Analysis of the

Internet Protocol TLS,” ACM Trans. Infor-

mation Systems Security, vol. 2, no. 3,

1999, pp. 332–351.

5.	 S. Gajek et al., “Universally Composable

Security Analysis of TLS,” Proc. 2nd Int’l

Conf. Provable Security, J. Baek et al.,

eds., LNCS 5324, Springer-Verlag, 2008,

pp. 313–327.

Stephen Farrell is a research fellow at Trin-

ity College Dublin and chief technolo-

gist with NewBay Software. His research

interests include security and delay/

disruption-tolerant networking. Far-

rell has a PhD in computer science from

Trinity College Dublin. Contact him at

stephen.farrell@cs.tcd.ie.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on February 24,2010 at 07:09:34 EST from IEEE Xplore. Restrictions apply.

